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Edge Effects and the Extinction of Populations 
Inside Protected Areas 

Rosie Woodroffe* and Joshua R. Ginsberg 

Theory predicts that small populations may be driven to extinction by random fluctu- 
ations in demography and loss of genetic diversity through drift. However, population 
size is a poor predictor of extinction in large carnivores inhabiting protected areas. 
Conflict with people on reserve borders is the major cause of mortality in such popu- 
lations, so that border areas represent population sinks. The species most likely to 
disappear from small reserves are those that range widely-and are therefore most 
exposed to threats on reserve borders-irrespective of population size. Conservation 
efforts that combat only stochastic processes are therefore unlikely to avert extinction. 

T h e  contention that small populatiolns are 
vul~~erable  to extinction through stochastic 
processes has a sound theoretical basis in 
both demography and population genetics 
(1) .  Management of small populations has 
therefore dominated both the theory and 
practice of conservation biology for nearly 
20 years (2).  However, most empirical evi- 
dence supporting this contention is indi- 
rect, because direct measures of size are 
rarely available for populations that have 
subsequently become extinct (3). 

If small populations are \,ulnerable, 
large carnivores should be especially ex- 
tinction-prone because their trophic posi- 
tion constrains them to living at low pop- 
ulation densities. However, carnivore pop- 
ulations are also exposed to strong exter- 
nal pressures because their requirements 
conflict with those of local people. Where 
large carnivores survive outside protected 
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areas, intentional or accidental killing by 
humans frequently limits their lnumbers 
(4 ) .  Even within protected areas, conflict 
with humans is usually the single most 
important cause of adult mortality (5). 
Most of this mortality occurs when carni- 
vores ralnge beyond reserve borders (5); 
such deaths account for proportions of 
mortality comparable with those known to 
cause decline in harvested populations of 
the same species (4 ,  5). Border areas of 
reserves may therefore become population 
sinks. Such sinks will have the greatest 
impact on  overall population dynamics in 
small reserves with high peri1neter:area ra- 
tios and in species that range widely and 
therefore come into frequent contact with 
reserve borders. In large carnivores, then, 
both stochastic processes and strong edge 
effects could contribute to the extinction 
of isolated populations. 

We investigated the relative impor- 
tance of these two factors by cornpiling 
data on  population extinctions for 10 spe- 
cies of large carnivores (Table 1). For each 
species, we chose a geographic region 
within the species' historic range in which 
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Table 1. Results of logistic regressions on the presence and absence determined (1 1). Population density refers to the denslty of adults, aver- 
of large carnivores in protected areas falling within their hlstoric ranges aged across studies; home range size refers to the mean area used 
(7, 8). Wherever possible, data on population densities and home range by each adult female (or soc~al group for soc~al specles). 
sizes are taken from the regions for which critical reserve sizes were 

Species Region 

Chanae In deviance - 
No. of due to Cr~tical Populat~on dens~ty range Home size 

reserves 
Reserve Reserve 

reserve size (adults/lOO km2)$ 
(km2)t (km2):l 

age size 

Lycaon plctus East Africa 46 3.15 26.59*** 3606 2.4 (4) 823.1 (1 2) 
(African w~ld dog) 

Can~s lupus Western Canada 44 0.0 19.82*** 766 1 . 1 (9) 684.6 ( I  I )  
(gray wolf) 

Cuon alp~nus India 71 1.69 30.59*** 723 10.6 (1) 68.8 (2) 
(dhole) 

Panthera leo East Africa 32 1.39 17.61 *** 291 16.2 (1 2) 121.4 (59) 
(lion) 

Panthera tigris India, Nepal 154 0.0 39.1 *** 135 3.6 (3) 16.9 (3) 
(tiger) 

Panthera uncia Ind~a, Nepal, Pakistan 30 1.27 21.09*** 116 4.6 (6) 29.3 (2) 
(snow leopard) 

Panthera onca Central Amer~ca 28 0.91 29.98*** 69 6.8 (2) 18.8 (5) 
uaguar) 

Crocuta crocuta East Africa 37 5.14* 20.22*** 179 74.5 (6) 34.9 (1 2) 
(spotted hyena) 

Ursus americanus California 45 1.48 13.05*** 36 58.0 (3) 19.8 (32) 
(black bear) 

Ursus arctos Western Canada, 54 0.78 18.48*** 3981 2.0 (5) 773.8 (36) 
(brown bear) Northwest U.S. 

*P = < 0.05. "'P = < 0.0001. tThe area for which the logstc model predcts a 50% probability of popuaton persstence. $Numbers n parentheses give sample sizes. 

suitable habitat has become fragmented. - 
In all of these regions, people kill large 
carnivores that ranee outside the protect- " 

ed areas (5). For each region, we identified 
nrotected areas that fell within the former 
geographic range of the species, treating 
complexes of contiguous reserves as single 
protected areas (6) .  We determined the 
presence or absence of the snecies in each 
of these protected areas, using a combina- 
tion of published and unpublished data 
(7). Because none of the species has highly 
specific habitat requirements, and all have 
experienced range contractions within the 
last century, their absence from those pro- 
tected areas that contain suitable habitat 
can be taken as evldence of local extlnc- 
tion. We excluded areas where evldence 
indicated that extinction had occurred be- 
fore the reserves were designated. We re- - 
corded the size of each protected area 
(reserve size) and the time elapsed be- 
tween the dates when the area was offi- 
cally designated and when it was surveyed 
for carnivores (reserve age). 

We investigated the relation between 
reserve size, reserve age, and carnivore 
extinction, using logistic regression, a 
standard technique for the analysis of bi- 
nary data (8). All 10 species were more 
likely to disappear from small reserves 
than from larger ones, but extinction was 

u 

related to reserve age in only one species 
(Table 1 ). The statistical effect of reserve 
size was very strong for all species, but 

there was considerable variation in the 
size of the reserves from which each spe- 
cies had disappeared (Fig. 1). We derived 
a measure of critical reserve size by using 
the logistic regression models to predict 
the area at which populations persisted 
with a probabilitv of 50%. This measure is 
analogous to  the'^^,, of a drug, the dose 
that, administered to experimental sub- 
jects, kills exactly half of them. Critical 
reserve size varied among species by over 
two orders of magnitude (Table 1). 

If probability of extinction is deter- 
mined primarily by population size, then 
critical reserve size should be related to 
average population density, because the 
size of a population at isolation will be 
determined by the population density and 
the area of the reserve. In contrast, if 
extinction is caused by edge effects, criti- 
cal reserve size should he related to home 
range size, as long as reserve shape varies 
randomly with reserve area. Population 
density and home range size will not nec- 
essarily be correlated with one another, 
because carnivores that range widely tend 
to occupy overlapping home ranges (9) .  

For each species, vve collected data 
from published reports to estimate average 
population density and average female 
home range size within the regions for 
which we investigated population extinc- 
tion (Table 1). We avoided statistical 
nonindependence of measures from closely 
related species by analyzing phylogeneti- 

Reserve area (km2) 

Fig. 1. Proport~on of reserves of varlous slzes In 
which 10 species of large carnivores have persist- 
ed (7). Population persistence IS related to reserve 
area for all specles (Table 1). Curves show the 
probability of persistence predicted by log~stic re- 
gresslons f~tted to the b~nary data (8); fllled circles 
show the critical reserve sizes ( tSE)  for wh~ch the 
models predict a 50% probability of population 
persistence. Spec~es: (A) black bear; (B) jaguar; 
(C) snow leopard; (D) tiger; (E) spotted hyena; (F) 
lion; (G) dhole; (H) gray wolf; (I) Afrlcan wild dog; (J) 
grizzly bear. 
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cally independent contrasts, calculated 
from a composite phylogeny for the Car-
nivora (10). All contrasts were calculated 
with log-transformed data, and all regres
sions of contrasts on contrasts were forced 
through the origin. 

After controlling for phylogeny, average 
female home range size was a good predictor 
of critical reserve size (Fig. 2) (r2 = 0.84, 
F 1 8 = 42.1, P < 0.0005). The effect of 
population density was much weaker (r2 

= 0.52, F1 |8 = 8.8, P < 0.05), and disap
peared entirely after we controlled for home 
range size (multiple regression: overall, F2 7 

= 20.6, P < 0.005; effect of density, t = 
0.82, P > 0.4; effect of home range size, t = 
4.00, P = 0.005). As expected, contrasts for 
population density and female home range 
size were only weakly intercorrelated (r8 = 
—0.69), partly because some species were 
social and partly because home range over
lap was high in species with large home 
ranges (9, 11). 

These results show that, in a reserve of 
given size, wide-ranging carnivores are more 
likely to become extinct than those with 
smaller home ranges, irrespective of popu
lation density. Thus, population size is a 
relatively poor predictor of extinction 
among carnivores. Ranging behavior medi
ates contact with human activity, contact 
that accounts for a very high proportion of 
adult mortality in all of these species. Our 
results therefore indicate that human-in
duced mortality contributes more to the 
extinction of populations of large carni
vores isolated in small reserves than do 
stochastic processes. Conservation measures 
that aim only to combat stochastic process
es are therefore unlikely to avert extinction. 
Instead, priority should be given to mea
sures that seek to maximize reserve size or to 
mitigate carnivore persecution on reserve 
borders and in buffer zones. 

Female home range size 
(standardized linear contrast) 

Fig. 2. Relation between phylogenetically inde
pendent contrasts in log (critical reserve size) and 
log(female home range size) calculated for 10 spe
cies of large carnivore, r2 = 0.84, F1 8 = 42.1, P 
< 0.005. The effect remains strong after control
ling for the (nonsignificant) effect of population 
density [t = 4.00, P = 0.005). 
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