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when the rat (or mouse) is in a cell-specific 
part of the current environment, the cell's 
"firing field." The conjoint activity of place 
cells is therefore thought to be the basis of 
a map of the environment that the animal 
uses for solving spatial problems. In this 
sense, the cognitive map serves as a cellular 
substrate for spatial memory (3). Place cells 
have two other properties that make them 
attractive as elements of a spatial memory 
system. The first is environmental stabili-

Abolition of Long-Term Stability of New 
Hippocampal Place Cell Maps by NMDA 

Receptor Blockade 
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Hippocampal pyramidal cells are called place cells because each cell tends to fire only 
when the animal is in a particular part of the environment—the cell's firing field. Acute 
pharmacological blockade of A/-methyl-D-aspartate (NMDA) glutamate receptors was 
used to investigate how NMDA-based synaptic plasticity participates in the formation and 
maintenance of the firing fields. The results suggest that the formation and short-term 
stability of firing fields in a new environment involve plasticity that is independent of NMDA 
receptor activation. By contrast, the long-term stabilization of newly established firing 
fields required normal NMDA receptor function and, therefore, may be related to other 
NMDA-dependent processes such as long-term potentiation and spatial learning. 
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ty-a given cell has the same firing field in 
each of many exposures to the same envi- 
ronment, for as long as the cell is identifi- 
able (up to 6 months) (4). The other is 
environmental specificity-the firing field 
of a place cell in one environment does not 
predict its field in a second, distinct envi- 
ronment (5, 6). Thus, when an animal is 
put into a new environment, each pyrami- 
dal cell changes its positional firing pattern 
in an entirely unpredictable fashion: The 
field of any cell can change in firing rate, 
shape, or position (or a combination of all 
three) or turn off or on. irres~ective of what , A 

other cells do. This process is called "remap- 
ping" and reflects the formation of a new 
hippocampal map for the novel environ- 
ment. Once formed, this new map is also 
stable and does not interfere with existing 
maps of familiar environments (7, 8). 

That rodents can rapidly form stable rep- 
resentations of new environments raises the 
following question: What are the cellular 
mechanisms whereby firing fields are first 
formed and once formed are then main- 
tained? One candidate mechanism is long- 
term potentiation (LTP) or, more precisely, 
the plastic processes that underlie LTP. 
LTP is a long-lasting, activity-dependent 
enhancement of synaptic strength that has 
been extensively studied in the hippocam- 
pus (9). One type of LTP that appears to be 
important for spatial memory is the NMDA 
rece~tor-de~endent form that occurs at the 

setts] and addressed three questions: (i) 
Does acute blockade of NMDA receptors 
throughout the brain produce a degradation 
of the positional firing patterns of CAI 
place cells in a familiar environment? (ii) 
Does acute blockade of NMDA receptors 
prevent remapping when the rat is put into 
a new environment? (iii) Finally, does this 
blockade affect the short- or long-term 
stability of newly formed place fields? 

Our experimental strategy, summarized 
in Fig. 1, was based on the stability of place 
cells in a familiar environment and the 
develo~ment of new fields bv the same cells 
in a novel environment (6, 7). We used a 
76-cm-diameter gray cylinder with a white 
cue card as the familiar environment and a 
geometrically identical white cylinder with 
a black cue card as the novel environment. 
Animals were injected with either CPP or 
saline before their first exposure to the nov- 
el environment. Examples of positional fir- 
ing patterns in the two environments of four 
pyramidal cells simultaneously recorded from 
a saline-injected rat (Fig. 2, A and B) and 
four pyramidal cells simultaneously recorded 
from a CPP-injected rat (Fig. 2, C and D) are 

shown in Fig. 2 (1 1 ). Each row shows firing 
rate maps for a single cell during 10 record- 
ine sessions over 2 davs. The maDs are 

L, 

grouped first according to the recording ap- 
paratus (gray cylinder on the left; white cyl- 
inder on the right) and then by the time 
order of the session. 

These maps illustrate four basic findings. 
First, blocking NMDA receptors did not 
interfere with a previously formed map. In 
the familiar gray cylinder, each cell had the 
same firing pattern after the injection as it 
did before (sessions DlGO and DlGl), 
showing that  lace cells are as stable in a 

u 

familiar environment after injections of 
CPP as they are after injection of saline. 
Second, blocking NMDA receptors did not 
prevent remapping in a novel environment. 
During the first exposure of the rats to the 
novel white cylinder (DlWl), the firing 
patterns of the place cells did not obviously 
resemble those in the gray cylinder (DlG1). 
Third, despite the blockade of NMDA re- 
ceptors, the remapping seen in the novel 
white cvlinder during the first session on - 
day 1 persisted for at least 1.5 hours until 
the second session in the white cylinder 

Schaffer collateral pathway that connects 
pyramidal cells of the CA3 region to those 
of the CAI region. Typically, pharmacolog- 
ical or genetic disruption of this type of LTP - 
results in impaired performance in tasks 
that require spatial memory (10). Thus, 
NMDA receptors may play an essential role 

~ r a -  sas. ~ r a  me b k  mm Dah.3.4 mrhdup  
I l  M? w m  .%a .hd ah - all 

.pldhgm r.".ww dm m? a arm? 

in the formation and maintenance of spatial - Fig. 1. Expenmental protocol. Record- 
maps. To test this idea, we used the com- ings were made during three experi- 
petitive NMDA receptor antagonist CPP mental days called DO, D l ,  and D2. On 
[( + )-3-(2-carboxypiperazin-4-y1)propyl-1- the first day (DO), at least two well-iso- 
vhosvhonic acid; RB, Natick, Massachu- lated place cells were ~dentified, and 
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m a  bm A* me 
g l l *  - Mb - three sessions were run in the familiar 

I- a? ,ahm? -? gray cylinder. The first session (DOG1) 
was used to characterize the cell set, 

the second (DOG2) to test the effects of rotating the cue card, and the third (DOG3) to test whether the 
card rotation effects were reversible. For all rats, we found that rotating the white cue card 90" caused 
equal rotations of each firing field and that the field rotations were reversible. establishing that visual 
stimuli controlled firing fields. At the start of the next day (Dl), a gray cylinder session (DlGO) was run to 
see if the cell recordings were stable. If so, the rat was injected with either physiological saline or CPP (1 0 
mg/kg) and returned to its home cage for 1 hour. Three sessions were then run in the familiar gray 
cylinder, the novel white cylinder, and the familiar cylinder (DIGI, DIW1, and DlG2, respectively). 
Session D l  G1 allowed us to ask if the drug affected established place cells, session D l  W1 allowed us 
to see if CPP interfered with remapping, and session D l  G2 allowed us to tell if exposure to the new 
environment disrupted the established firing fields. These sessions took a total of about 1 hour, after 
which the rat was returned to its home cage for 1 hour. Two more sessions were then run in the white 
cylinder and the gray cylinder. Session D l  W2 allowed us to ask if the remapping in the novel environ- 
ment was stable, and session DIG3 provided both a check of cell stability and a baseline for day 2 
recordings. On day 2, after the drug had ceased to act (see Fig. 4), recording sessions were divided into 
two pairs separated by 1 hour in the home cage. Session D2G1 allowed us to check for cell stability in 
the familiar environment, and session D2W1 allowed us to see if the remapping on the first day was 
stable. Session D2G2 provided yet another check of cell stability, and session D2W2 allowed us to see 
if the firing fields in the white cylinder were the same as in session D2W1. 
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(DlW2). Fourth, the most profound effect 
of blocking NMDA receptors was to abolish 
the long-term stability of the map in the 
novel environment. In the saline-injected 
rat, the remapping established on day 1 
(DlW1 or DlW2) remained stable on day 2 
(D2W1 and D2W2), but in the CPP-inject- 
ed rat the new map formed on day 1 was 
replaced on day 2 with another new map. 
Thus, CPP prevented the first remapping 
from being stabilized. 

To quantify these results, we compared 
positional firing patterns in pairs of sessions 
to look for stability or remapping before, 
during, and after NMDA channel blockade. 

We calculated a "similarity" score for a 
session pair by computing the correlation 
between the firing rates on a pixel-by-pixel 
basis (1 2). The mean similarity for the cells 
of each rat was com~uted and then aver- 
aged across rats to get group means (Fig. 3). 
The high similarity for preinjection and 
postinjection sessions in the gray cylinder 
(DlGO/DlGl) indicates that established 
firing fields are not significantly affected by 
CPP. This persistence is in agreement with 
studies showing that NMDA blockade does 
not interfere with established LTP in slices 
or with previously formed spatial memories 
in intact animals (9, 10). Moreover, CPP 

did not degrade the firing properties of in- 
dividual place cells. We measured several 
properties of firing fields and found no sig- 
nificant effect of drug on field size, peak 
firing rate, coherence, information content, 
or signal-to-noise ratio. CPP also did not 
have any significant effect on average run- 
ning speed in the familiar environment 
(13). 

When the same cells were recorded dur- 
ing the animal's first introduction to the 
novel white cylinder, a remapping was seen 
for all saline- (6 of 6) and most CPP- (5 of 
6) injected rats (comparison DlGl/DlWl, 
Fig. 3). For both saline- and CPP-injected 

Fig. 2. Examples 61 L I I ~  firing fields of four cells from a saline-injected rat 
and four cells from a CPP-injected rat for all sessions on days 1 and 2 of the 
protocol. Each square pixel in a rate map represents a 3.5 cm by 3.5 cm 
area in the apparatus. Yellow encodes regions that the rat visited in which 
the cell never fired. Orange, red, green, blue, and purple pixels encode 
progressively higher firing rates and are autoscaled in each session. A gray 
pixel signifies the field center, and white pixels were not visited. See (6, 7) 
for details. (A and B) Saline-injected rat in familiar (A) and novel (B) envi- 

ronments. Firing rate maps for each pyramidal cell are shown as a row. I rle 
rate maps are sorted first according to the recording chamber as indicated 
by the outlines around each map and then according to time order. 
The gray backgrounds highlight all day 1 postinjection sessions. (C and D) 
CPP-injected rat in familiar (C) and novel (D) environments . Firing rate 
maps for four pyramidal cells recorded for the 10-session protocol 
spanning 2 days. Cell 4 was lost before the last two sessions (D2G2 and 
D2W2). 
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rats, the first session in the gray cylinder ed rats. However, the initial remapping in effects on remapping during day 1, it abol- 
(DlG1) was significantly more similar to rats injected with CPP tended to be less ished the long-term stability of the newly 
later gray cylinder sessions than to the first complete than in saline rats. By inspecting formed map: A second remapping occurred 
session in the white cylinder (DlW1) (14). rate maps, we saw that the firing pattern for each CPP rat on day 2, as if they had not 
Furthermore, in all but the one CPP ani- in the novel environment partially resem- previously seen the white cylinder (DlW2/ 
ma1 that did not remap, the firing fields of bled the pattern in the familiar environ- D2W1, mean similarity = 0.03 + 0.02). 
simultaneously recorded cells in the novel ment for one or more cells in each rat. The second remapping also did not resemble 
environment changed independently of This residual discharge was absent in the the original gray cylinder map (D2G1/ 
each other. Comparing the first two white second white cylinder session (DIG11 D2W1, mean similarity = 0.01 2 0.02). By 
cylinder sessions (DlWl/DlW2) indicates DlW2) except in the one rat injected contrast, the day 1 remapping was stable on 
that the remapping was stable for at least with CPP that did not remap. day 2 in all saline-injected rats [DlW2/ 
1.5 hours for both saline- and CPP-inject- Although CPP had only relatively minor D2W1, mean similarity = 0.47 2 0.05, 

t(10) = 7.08, P < 0.001 compared with 

ee CPP]. For CPP-injected rats, the new firing 
S P Y R ,  I -P patterns in the white cylinder on day 2 (after 

the drug's effects had worn off) (15) were 
stable for at least 1.5 hours (D2Wl/D2W2). 
The firing fields in the gray cylinder persist- 
ed from the first to the last session (familiar 
environment, DlGlP2G2) in both groups, 
indicating that the recordings were stable for 
the duration of the experiment. 

One possible explanation of the second 
remapping is that CPP acts as a discrimina- 
tive stimulus for statedependent learning 
(1 6). In this state-dependent view, the 
combination of CPP and the novel cylinder 
on day 1 is effectively a different environ- 

0 ' .  ment than the novel cylinder on day 2, 
when CPP has ceased to act. According to 
this explanation, however, the combination 
of CPP and the familiar cylinder should 
cause a remapping from the predrug map in 

=Omparison the familiar cylinder, which did not occur. 
In addition, we made a second injection of 

as two bars indicating the mean similarity score (+SEM) for saline-injected rats (red) and CPP-injected CPP in one rat on day 2 after the two white 

rats (blue). Above the label for each comparison is the probability that the mean similarity for saline- and 'ylinder sessions. The firing stayed in 
CPP-injected rats is equal by t tests, corrected for the number of tests. '*, P < 0.001. the day 2 pattern, suggesting that the 

remapping on day 2 was not due to state- 
dependent learning but rather was due to 

A 6 -. 
300- 

instability of the day 1 map. 
S - - 
2 -  

brlk. - To determine how effectively the 10- 
PBP m& dose of CPP blocks NMDA recep- 

D q y o ( - f = m )  
tors, we examined primed-burst potentia- - 1 (90 llftW cpp -1 tion (1 7) in awake, freely moving rats (Fig. 

2 
Dw 1 (1 80 m h  clttsrcpp h@ctim) 4) (1 8). Primed-burst potentiation is an 
Dw 2 (24 activity-dependent enhancement of synap- 

4- tic strength that is similar to LTP in its. 

- dependence on NMDA receptor activation 
0 but is of shorter duration, so that it can be 

CPPre-biyM Q 
tested repeatedly without saturation. A 

-burst pottmt!ath g primed burst with no drug on day 0 caused 
\- robust potentiation of the population spike. 

By contrast, there was no potentiation on 
Wbefore@hdSand5 2 day 1 when primed bursts were delivered 1.5 
min after (red) prkned-burst 2 -- T R.WI and 3 hours after CPP injection, showing - effective blockade of NMDA receptors. On 

day 2, a primed burst again caused potenti- 
ation, showing the drug had ceased to act. 

1 1 1 1 1 1 1 ~  There was a significant effect of drug con- 
PBS 5 10 15 = 25 30 35 dition [F(3,12) = 7.40, P < 0.011 and a 

Tme &el Pes (mm) significant condition x time interaction 
[F(18,72) = 2.60, P < 0.011 in a two-way 

c 0.05 compared with tes?m conditions (before CPP injection and 90 
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min, 180 min, and 24 hours after injection). 
Subsequent analysis showed that the 90- 
and 180-min conditions were significantly 
different from baseline and 24 hours. Thus, 
the dose of CPP used for place cell record- 
ings effectively blocked NMDA receptors at 
the time of day 1 recordings and ceased to 
act during day 2 recordings. 

In a previous study investigating the role 
of NMDA receptors in spatial mapping, 
McHugh et al. (19) recorded from mice 
with a selective knockout of the NMDA 
receptor in pyramidal cells of the C A I  re- 
gion. They found that place cells in the 
CA1 region of the knockout mice had firing 
fields that were somewhat abnormal b ~ ~ t  
were stable for at least 1 hour. McHugh et 
nl. (19) attributed the inability of NMDA 
receptor subunit 1 knockout mice to  solve 
spatial problems to a defect in a higher 
order property of place cells: that cells with 
overlapping fields in the knockout mice do 
not tend to fire at the same time and there- 
fore do not properly signal the animal's 
position. 

Because these results suggested that fair- 
ly normal CA1 place cell activity is still 
possible when NMDA receptors are deleted 
from the C A I  region, we asked whether a 
more widespread blockade of NMDA recep- 
tors might cause a greater disruption of 
C A I  place cells. For example, does the 
formation of place cells in the CA1 region 
require normal NMDA-mediated LTP in 
other parts of the hippocarnpus or the neo- 
cortex? We therefore used global pharma- 
cological blockade of NMDA receptors in 
all brain areas. A pharmacological blockade 
also offered the advantage of temporal con- 
trol, allowing us to  investigate the effects of 
NMDA receptor blockade on both the 
maintenance of a previously formed place 
cell map and the establishment of a new 
map in a novel environment. 

Our results with acute, global interfer- 
ence with NMDA receptors confirm the 
main conclusion of McHugh et al. (1 9 )  that 
NMDA receptors must be available for 
place cells to be normal and extend that 
conclusion by show~ng more precisely the 
role played by NMDA receptors in the for- 
mation and long-term maintenance of a 
place cell map. However, our results also 
differ in one respect from those of McHugh 
et nl. (1 9 ) .  Whereas they found that chronic 
knockout of NMDA receptors in CA1 re- 
sulted In C A I  place cells with somewhat 
enlarged and diffuse f i r~ng fields, we found 
that CPP had no effect on field size or 
quality. One possible explanation for this 
difference is that McHugh et nl. (19) were 
able to eliminate NMDA receptor subunit 1 
protein completely by genetic means, but 
the dose of CPP that we used may not have 
been suffic~ent to block NMDA receptors 

completely. However, the dose we used is 
twice as great as needed to impair spatial 
memory (20) and is sufficient to reversibly 
prevent primed-burst potentiation (Fig. 4) 
and hippocarnpal LTP (21 ). A second pos- 
sibility is that in the study of McHugh et al. 
( 1  9) the gene encoding the NMDA recep- 
tor subunit 1 protein was knocked out dur- 
ing a period in the development of the 
 napping system when NMDA receptor ex- 
pression is still required for the for~nation of 
normal synaptic organization (22). 

Consistent with previous studies on LTP 
and learning, we found that the hippocam- 
oal remesentation of an already fa~niliar 
environment was unaffected by global 
NMDA receptor blockade [(9, 10); see also 
(23)]. A surprising result of our study was 
that NMDA-dependent processes are also 
not required for creating new firing fields in 
a novel environment or for the short-term 
maintenance of the new fields, although 
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they are required for long-term rnainte- 
nance of the new fields. The maintained 
quality of firing fields in the familiar en\+ 
ronment and the development of crisp new 
fields in a new environment suggest that -- 
the place cell system receives adequate sen- 
sory information despite blockade of 
NMDA receptors and therefore that the 
deficits caused by systern-wide NMDA re- 
ceotors blockade are not due to interference 
with sensory systems. Reliable location-spe- 
cific firing in a new environment requires 
that cell activity becomes linked to a sen- 
sory configuration that exists only within 
the cell's firing field. How can this linking 
occur if NMDA receptors are blocked? Per- 
haps place cells are tuned to certain stimuli 
by genetic or developmental events before 
the rat enters the new environment. In this 
case, the resemblance of firing fields in the 
two environments might be expected to 
reflect the resemblance of the environ- 
ments to each other. Remapping is, howev- 
er, often c o m ~ l e t e  even when a new envi- 
ronment closely resembles the old environ- 
ment (6, 7). Moreover, it is hard to under- 
stand why preexisting tuning would allow 
the same cells to have fields that 
are different during days 1 and 2 in the same 
environment, as happened with the CPP 
animals. 

Our data, therefore, suggest the interest- 
ing possibility that, in addition to the 
NMDA-dependent plasticity essential for 
long-term stability of a new map, there 
exists a second, more labile and NMDA- 
independent form of plasticity that is suffi- 
cient to allow firing fields to form and to be 
maintamed for 1.5 hours. The oossibilitv 
that there are two forms of plasticity for 
different phases of spatial memory processes 
is consistent with topological mapping the- 
ones, which require firing fields to be estab- 

lished first by some unspecified mechanism, 
after which NMDA-dependent plasticity 
encodes the distance between the fields, 
creating a map that can he used to solve 
navigational problerns (24). This more la- 
bile form of plasticity could be sufficient to 
subserve working memory in the radial arm 
maze, which persists for several hours during 
NMDA receptor blockade (25), and might 
also contribute to the ahilitv of rats to learn 
other spatial tasks durini blockade of 
NMDA receptors (26). 

The most profound effect of NMDA re- 
ceptor blockade was to disrupt the long- 
term (16 to 24 hour) stability of a newly 
formed firing field map: The first set of 
fields disappeared and was replaced by a 
second, newer set of fields the next day. 
McHugh et al. (19) did not investigate 24- 
hour stabilitv. However, studies of several 
other types df mutant Inice with deficits in 
both LTP and soatial learning have found 
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that they also have as a common feature 
place fields with short- or long-term insta- 
bility, although the fields in these mutant 
mice have other abnormal properties as well 
(27). Our results indicate that acute phar- 
macological blockade of NMDA receptor- 
dependent processes produces a selective 
deficit in long-term stabilization of new 
firing fields, with little effect on other firing 
field properties. Because some forms of both 
spatial learning and LTP are also NMDA- 
dependent (9, l o ) ,  our results suggest that 
these three ohenomena mav be related: The 
same plasti'city mechanislk that underlie 
the lono-term maintenance of LTP mav be " 
required for long-term stabilization of new 
place field maps (either in hippocampus or 
in other brain areas), ~vhich in turn may be 
necessary for spatial memory. 
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Edge Effects and the Extinction of Populations 
Inside Protected Areas 

Rosie Woodroffe* and Joshua R. Ginsberg 

Theory predicts that small populations may be driven to extinction by random fluctu- 
ations in demography and loss of genetic diversity through drift. However, population 
size is a poor predictor of extinction in large carnivores inhabiting protected areas. 
Conflict with people on reserve borders is the major cause of mortality in such popu- 
lations, so that border areas represent population sinks. The species most likely to 
disappear from small reserves are those that range widely-and are therefore most 
exposed to threats on reserve borders-irrespective of population size. Conservation 
efforts that combat only stochastic processes are therefore unlikely to avert extinction. 

T h e  contention that small populations are 
vulnerable to extinction through stochastic 
processes has a sound theoretical basis in 
both detnography and population genetics 
(1) .  Management of small populations has 
therefore dominated both the theory and 
practice of conservation biology for nearly 
20 years (2) .  However, most empirical evi- 
dence supporting this contention is indi- 
rect, because direct measures of size are 
rarely available for populations that have 
subsecluently become extinct (3). 

I f  stnall populations are \,ulnerable, 
large carnivores should be especially ex- 
tinction-prone because their trophic posi- 
tion constrains them to living at low pop- 
ulation densities. However, carnivore pop- 
ulations are also exposed to strong exter- 
nal pressures because their requirements 
conflict with those of local people. Where 
large carnivores survive outside protected 
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areas, intentional or accidental killing by 
humans frequently limits their numbers 
(4).  Even ~vithln protected areas, conflict 
with humans is usually the single most 
important cause of adult mortality (5). 
Most of this mortality occurs when carni- 
vores range beyond reserve borders (5);  
such deaths account for proportions of 
mortality cornparahle with those known to 
cause decline in harvested populations of 
the same species (4,  5). Border areas of 
reserves may therefore become population 
sinks. Such sinks will have the greatest 
impact on overall population dynamics in 
small reserves with high peri1neter:area ra- 
tios and in species that range widely and 
therefore come into frequent contact with 
reserve borders. In large carnivores, then, 
both stochastic processes and strong edge 
effects could contribute to the extinction 
of isolated populations. 

We investigated the relative itnpor- 
tance of these two factors by compiling 
data on population extinctions for 10 spe- 
cies of large carnivores (Table I ) .  For each 
species, we chose a geographic region 
within the species' historic range in which 


