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region, neurons still have to choose a spe­
cific synaptic partner from among several 
potential targets (I) . We studied synapse 
formation in the neuromuscular system of 
Drosophila melanogaster. In each abdominal 
hemisegment of Drosophila larvae, ~40 
motorneurons innervate 30 muscle fibers 
in a specific manner (2). Once a motor 
axon enters its target region during late 
embryogenesis, its growth cone searches 
over the surface of many muscles but with­
draws from most of these contacts, forming 
stable synapses only with its own target or 

Drosophila Synapse Formation: Regulation by 
Transmembrane Protein with Leu-Rich Repeats, 

CAPRICIOUS 
Emiko Shishido, Masatoshi Takeichi, Akinao Nose*f 

Upon reaching the target region, neuronal growth cones transiently search through 
potential targets and form synaptic connections with only a subset of these. The ca­
pricious (caps) gene may regulate these processes in Drosophila. caps encodes a 
transmembrane protein with leucine-rich repeats (LRRs). During the formation of neu­
romuscular synapses, caps is expressed in a small number of synaptic partners, in­
cluding muscle 12 and the motorneurons that innervate it. Loss-of-function and ectopic 
expression of caps alter the target specificity of muscle 12 motorneurons, indicating a 
role for caps in selective synapse formation. 
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targets (3-5). Here, we describe the caps. 
gene that regulates the formation of some 
of the selective synaptic connections in 
this system. 

We screened for enhancer trap lines 
that express a reporter gene in specific 
muscle fibers during the establishment of 
motorneuron innervation (6). caps was 
identified by analysis of one such line, 
E2-3-27 (7). In E2-3-27 embryos, the re- 
porter (caps-LacZ) is expressed in four dor- 
sal (1,2; 9, and 10) and six ventral (12, 14 
to 17, and 28) muscles (Fig. 1A). In mus- 
cle 12, caps-Lac2 and caps RNA (see be- 
low) are expressed in a single nucleus of 
the syncytial muscle, near the contact site 
of the motorneuronal growth cone (Fig. 1, 
B, C, and F). caps-LacZ is also expressed in 
central nervous system (CNS) motorneu- 
rons aCC, RP2, RP5, and the most medial 
U, all of which innervate caps-LacZ-posi- 
tive muscles (Fig. 1, D and E) (8). caps- 
LacZ is not expressed in motorneurons 
that have been identified as innervating 
caps-negative muscles (for example, RPl, 
RP3, and RP4). Thus, the expression of 
caps-LacZ is correlated with neuromuscu- 
lar specificity (Fig. 1H). 

We cloned the genomic DNA flanking 
the P-element insertion site (Fig. 2A) and 
identified a gene (caps) whose expression 
pattern was identical to that of the report- 
er gene (Fig. 1, F and G) (9). caps encodes 
a transmembrane protein with 14 Leu-rich 
repeats (LRRs) in its extracellular do- 
main (Fig. 2, B and c ) .  LRR, a -24 amino 
acid motif found in various proteins 
from sources as diverse as yeast to human, 
may mediate protein-protein interactions 
(10). Among the proteins with LRRs, 
CAPS protein was most closely related to 
the product of the tartan gene from 070- 
sophila (1 l ) ,  with amino acid similarity 
extending beyond the LRR region into the 
cytoplasmic region. Proteins with LRRs 
expressed on the cell surface may function 
in cell adhesion or recognition (6, 12). 
CAPS protein is expressed on the surface 
of developing motor axons (Fig. 11) (13). 
In first-instar larvae, CAPS protein was 
detected in the mature synaptic sites of all 
caps-positive muscles (Fig. 1, J to L) (14, 
15). 

T o  determine the function of caps in 
vivo, we first generated caps loss-of-func- 
tion mutant alleles, which lack the first 
exon (Fig. 2A) and do not express CAPS 
protein detectable by our antibody (16). 
Most of the caps mutants die late in em- 
bryogenesis or soon after hatching, al- 
though a few survive to adulthood (17). 
Although no gross developmental defects 
were found in the CNS or musculature of 
caps mutant embryos and larvae (la) ,  the 
target specificity of muscle 12 motorneu- 

rons was altered (19). In wild-type larvae, 
muscle 12 is innervated by the terminal 
branch of ISNb, including the RP5 axon, 
which projects to the boundary between 
muscles 12 and 13 and forms synaptic 
endings exclusively on muscle 12 (Fig. 
3A) (20). In contrast, in caps mutant lar- 
vae, the terminal branch is often accom- 
panied by additional varicosities on mus- 
cle 13, a neighboring caps-negative muscle 
(Fig. 3B) (21, 22). Thus, caps restricts 
arborization of the nerve terminal to mus- 
cle 12. 

Ectopic overexpression of caps in all 
embryonic muscles by G14-GAL4 driver 
caused formation of more ectopic synapses 
(23, 24). In -70% of the hemisegments, 
the ISNb terminal formed one or more 

additional collaterals that formed more ro- 
bust synaptic endings on muscle 13 (Fig. 
3C) (25, 26). The ectopic nerve endings 
contained type I11 boutons, which are typ- 
ical of muscle 12 but not muscle 13 neuro- 
muscular synapses (Fig. 3, D and E) (22, 27, 
28). Since the ectopic synapses were 
present in the first-instar larvae, caps may 
function while the connections are being 
formed (29). This possibility is further sup- 
ported by the absence of such ectopic end- 
ings when caps expression was induced after 
completion of synaptogenesis by MhcS2- 
GAL4 (30). . .  , 

We propose that caps mediates selective 
svnaDse formation. The loss-of-function , . 
phenotype may result from improper recog- 
nition of the target muscle, whereas the 

I CNS 

Fig. 1. Expression of caps in motomeurons and muscles. (A to E) caps-Lac2 expression. Stage 15 
E2-3-27 embryos stained with an antibody to LacZ. (A) Expression in a single nucleus in muscle 12 
(arrowheads) and in nuclei of other ventral muscles 14 to 17 and 28 (Cy3; red). Muscle morphology 
visualized with fluorescein isothiocyanate (FlTC)-phalloidin (green). (B) Double staining with antibodies to 
Lac2 (arrowhead; brown; horseradish peroxidase reaction) and to Fasciclin I I  (arrow; purple; alkaline 
phosphatase reaction), which visualizes the motor axons. (C) 4',6'-diamidino-2-phenylindole staining to 
visualize all nuclei (blue). @and E) Expression in a subset of motomeurons in the CNS (arrowheads; Cy3; 
red). Subset of CNS axons visualized with monoclonal antibody (mAb) 22C10 (FITC; green) (18). (F and 
G) caps RNA expression in a single nucleus in muscle 1 2 [(F), arrowhead] and in motorneurons aCC and 
RP2 [(G), arrowheads]. (H) Hemisegment structure. caps-positive muscles (yellow), caps-positive mo- 
tomeurons in the intersegmental nerve (ISN; green) and in intersegmental nerve b (ISNb; blue) are 
shown. Still to be determined is whether motomeurons that innervate other caps-positive muscles (9,14 
to 17, 28) also express caps. (I to L) CAPS protein localization. (I) CNS of a stage 15 embryo. (J to L) A 
first-instar larva. The same preparation is visualized with Nomarsky optics (J), or with antibodies to CAPS 
[(K) Cy3; red] or to Fasciclin I I  [(L) FIX; green]. Fasciclin I I  is expressed on all neuromuscular synapses 
(4). CAPS is detected at the synapses on muscle 12 (arrowheads) but not on muscle 13 (arrows). Bar: 
30 pm in (A), (D), and (El; 20 pm in (B), (C), (F), (GI, and (I) to (4. 
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1 MSLAPHLGOAFSLCLCLCLCLVLATLPVALGLANCPNGCECDDDTWNC 

E2-3-27 51 GEGTLDVLPIALNPAIORLVIKNNKLKTIDSSMOFY 

65.2 - LRR1 - LRR2 

caps - 101 TIPERSFAYHAKLOELHLDHNKIGOVSNKTFLGLSTISVLNLRGNLIAEL 
LRR3 LRR4 124.2 

caps + - 151 EYRTFSPMVKLAELNLGHNRISHIDPHALDGLDNLRVLYLDDNTLTTVPG - LRRS LRRB L 

Exon I-"----- 201 ELTFOALHSLAELYLGTNSFMTIPGGAFODLKGLTRLDLRGAGLHNISGD 
-I_ -- - LRR7 - LRR8 L 

PV BHVSc E  P EXhW E  W  P K W P  

H H 

- 

Tartan 

Capricious 

sp 1 - / GPI 
Connectin 

Fig. 2. (A) Configuration of the caps gene in E2-3-27 enhancer trap line 
and in two caps alleles. The horizontal bar at the bottom of (A) indicates 
restriction mapping of the region. E, Eco RI; H, Hind Ill; K, Kpn I; P, Pst I; 
Sc, Sac I; SI, Sal I; V, Eco RV; Xb, Xba I; and Xh, Xho I. (8) The deduced 
amino acid sequence of CAPS protein. The signal peptide is underlined, 
and the transmembrane domain is double underlined. Arrowheads indicate 
conserved Cys residues in the NH,-terminal and COOH-terminal flanking 

Fig. 3. The effects of loss-of-function and ec- 
topic expression of caps. Body-wall fillet prepa- 
rations of third-instar larvae were stained with 

m- 
mAb 1 D4 to visualize all motor endings (A to C) 
and with antiserum GCl (39) to visualize only 
type Ill endings (D and E). (A) Wild-type pattern 
of innervation of muscles 12 and 13. (B) In a 
caps mutant larva [ c a p ~ ~ ~ . ~ / D f ( 3 L ) L y ] ,  the mus- 
cle 12 nerve terminal sends a collateral back to 
form a few type Ib boutons on muscle 13 (arrow, 

251 ALKGLVSLRFVDLSDNRLPAIPTAAFORLGRLEOLNIGONDFEVISSGAF - LRRQ - LRRlO L 

301 SGLRELRHLELTGAORLRRVESGAFSGNTNLEHLNLSSNKOLNELSSIAL 
~ ~ m l  - LRRl2 L v 1 

351 GGLPHLSTVVLKANOLSSLDEGLVPWADLOTLDLSENPFECDaLLWLRH 
LRR13 

1 
L R R 1 4  , 

401 LLVSRNASGOYAPVICAYPTALRDLPLAHLAEPLLGCAHGAASKOe - 
451 LVVACAGLITTLALVLYTCRHRIREMLKGHSALGRKEREYOKTFSDEEYM 

501 SRPPPGGGGVHPAAGGYPYIAGNSRMIPVTEL 

regions of LRRs. Single-letter codes for amino acids are: A, Ala; 
C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; 
N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. (C) 
Diagram showing the domain structure of Tartan ( l l ) ,  CAPS, and 
Connectin (6). Hatched rectangles indicate LRR, and dotted boxes 
denote NH,-terminal and COOH-terminal flanking regions. Conserved re- 
gions in the cytoplasmic domain of Tartan and CAPS are shaded with 
horizontal lines. SP, signal peptide; TM, transmembrane domain; GPI, 
GPI-anchor. The bar at the bottom of (C) shows the length of 100 amino 
acids. 

enlarged in the inset). (C) In a G74-GAL4/+: UAS-caps-lb/+ individual, the muscle 12 nerve terminal 
projects toward and forms several type Ib boutons on muscle 13 (arrows). (D) Wild type showing 
exclusively type Ill motorneuron innervation of muscle 12. (E) In a G14-GAL4I-t; UAS-caps-lbl+ larva, 
the type Ill motomeuron turns back and innervates muscle 13. Bar: 200 krn. 

extra synapses on  muscle 13 could reflect 
retention of inappropriate synaptic con- 
tacts. In contrast, the gain-of-function phe- 
notype could indicate that the nerve termi- 
nal is attracted to muscle 13 and other 
muscles by ectopic caps (31 ). In both cases, 
however. muscle 12 motorneurons reach 
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their target region normally (32) and ex- 
tend along muscle 12 before making ectopic 
synapses on  muscle 13 (33). Thus, caps may 
stabilize specific motorneuronal contacts 
during a late phase o f  target selection. 

The expression o f  caps on  both sides of 
the synaptic partners suggests that caps 
functioris homophilically, as has been pro- 
posed for the candidate target recognition 
molecules, Connectin and Fasciclin 111 (6, 
34, 35). However, expression of caps in S2 
cells did not promote cell aggregation (36, 
37). Thus, caps may mediate synaptic target 
recognition through cell-cell signaling rath- 
er than adhesion. 

Other molecules implicated in Drosoph- 
ila neuromuscular target recognition (35, 
38) include another LRR protein, Connec- 
tin, which is expressed both pre- and 
postsynaptically on  a different subset o f  mo- 
torneurons and muscles (6, 34). Thus, neu- 
romuscular connections mav be s~ecif ied in , . 
part by a combination of this group o f  genes 
in Drosophila. 
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when the rat (or mouse) is in a cell-specific 
part of the current environment, the cell's 
"firing field." The conjoint activity of place 
cells is therefore thought to be the basis of 
a map of the environment that the animal 
uses for solving spatial problems. In this 
sense, the cognitive map serves as a cellular 
substrate for spatial memory (3). Place cells 
have two other properties that make them 
attractive as elements of a spatial memory 
system. The first is environmental stabili-

Abolition of Long-Term Stability of New 
Hippocampal Place Cell Maps by NMDA 

Receptor Blockade 
Clifford ^entros,* Eric Hargreaves, Robert D. Hawkins, 

Eric R. Kandel, Matthew Shapiro, Robert V. Mullerf 

Hippocampal pyramidal cells are called place cells because each cell tends to fire only 
when the animal is in a particular part of the environment—the cell's firing field. Acute 
pharmacological blockade of A/-methyl-D-aspartate (NMDA) glutamate receptors was 
used to investigate how NMDA-based synaptic plasticity participates in the formation and 
maintenance of the firing fields. The results suggest that the formation and short-term 
stability of firing fields in a new environment involve plasticity that is independent of NMDA 
receptor activation. By contrast, the long-term stabilization of newly established firing 
fields required normal NMDA receptor function and, therefore, may be related to other 
NMDA-dependent processes such as long-term potentiation and spatial learning. 
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