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ments and innovations of ancient Meso-
potamians. Material compositionally iden­
tical to synthetic basalt, but without the 
vesicles, was a by-product of the ceramic 
and metallurgical industries before the sec­
ond millennium B.C. The deliberate pro­
duction of synthetic basalt suggests that the 
potentialities of those by-products as a sub­
stitute for imported grinding stones was per­
ceived and that the pyrotechnologies devel­
oped by potters and smiths were pooled in 
an experimental process that eventually 
yielded a consistent product. 

For synthetic basalt to be produced re­
quired (i) that the possibility of melting soil 
had to have been conceived, (ii) that the 
typically small metal-smelting furnaces be 
increased in size without decreasing the 
maximum temperatures attained, and (iii) 
that the resulting product be cooled rela­
tively slowly to ensure adequate crystal 
growth. This technology can only have 
come about through experimentation and 
as part of the wider process of innovation. 
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(Mg,Fe)Si03-Perovskite Stability Under Lower 
Mantle Conditions 

G. Serghiou, A. Zerr, R. Boehler 

In three different experiments up to 100 gigapascals and 3000 kelvin, (Mg,Fe)Si03-
perovskite, the major component of the lower mantle, remained stable and did not 
decompose to its component oxides (Mg,Fe)0 and Si02. Perovskite was formed from 
these oxides when heated in a diamond anvil cell at pressures up to 100 gigapascals. 
Both MgSi03 crystals and glasses heated to 3000 kelvin at 75 gigapascals also formed 
perovskite as a single phase, as evident from Raman spectra. Moreover, fluorescence 
measurements on chromium-doped samples synthesized at these conditions gave no 
indication of the presence of MgO. 

Although some past studies indicate that 
silicate perovskite is a dominant compo­
nent of the lower mantle (1, 2), recent 
experiments with C 0 2 and yttrium-alumi­
num-garnet (YAG) laser heating in the di­
amond anvil cell (DAC) have suggested 
that (Mg,Fe)Si03-perovskite decomposes 
to (Mg,Fe)0 and Si0 2 above 65 GPa (3, 4). 
In one experiment where the temperature 

Max-Planck-lnstitut fur Chemie, Postfach 3060, 55020 
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was not measured, (Mg,Fe)0 and Si0 2 

formed from Mg087Fe013SiO3-perovskite at 
70 GPa, with a C 0 2 laser and a NaCl 
pressure medium (3). In another study, with 
a YAG laser but no pressure medium (4), 
MgSi03 broke down to MgO and Si0 2 

above 65 GPa. The reason for this decom­
position is most likely disequilibrium asso­
ciated with large temperature gradients 
caused by the poor thermal insulating prop­
erties of the NaCl pressure medium, the 
lack of laser stabilization (3, 5, 6), or the 
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YAG laser-heating technique used in the 
second experiment (4, 7). Large tempera- 
ture gradients are known to drive cation 
diffusion, resulting in the production of 
nonequilibrium multiphase assemblages (8, 
9). This effect has been demonstrated at 
pressures as low as 26 GPa with pyroxene 
(Mg,,,Fe,~,SiO,) as a starting material (1 0). 

We  heated s am~le s  that were thermallv 
insulated from the highly conductive dia- 
monds with the defocused beam of a stabi- 
lized C02 laser (1 1, 12). The pressure me- 
dium was either argon or CsC1, both pro- 
viding quasi-hydrostatic pressure conditions 
around the heated samples. The combina- 
tion of high optical absorption of the sam- 
ples at the laser wavelength of 10.6 pm, the 
small thickness of the samples (on the order 
of 10 pm),  and the effective thermal insu- 
lation bv the areon or CsCl allowed essen- - 
tially uniform heating of the sample with 
temperature gradients on the order of 10'1 
p m  (13). We  measured the temperature 
from the center of the hot spot with an 
uncertainty of + 100 K using the Planck 
radiation function (Fig. 1)  (14). Heating 
durations ranged from 5 to 30 min. The 
temperature was quenched to ambient con- 
ditions within milliseconds by switching off 
the laser. Pressures were measured from mi- 
crometer-sized ruby chips placed at 2- to  
3-pm distances from the sample. Pressure 
differences between ruby chips in the heat- 
ed area did not exceed 1 GPa. 

Four different starting materials were 
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Fig. 1. (A) Schematic of the laser-heated DAC 
used in this study. The dried samples (dimensions 
10 pm x 40 pm x 40 pm) were thermally insu- 
lated from the diamonds and heated with a defo- 
cused stabilized CO, laser (1 7, 12). (B) Emission 
spectrum and the fitted Planck function of the 
heated sample at 78.0 GPa and 2578 2 100 K; 
arb. units, arbitrary units. 

used: (i) fine-grained powder pellets (15) of 
stoichiometric mixtures of MgO and SiO,, 
(ii) Mg,,Fe,,O, SiO,, and synthetic (Mg- 
SiO,), (iii) crystals (enstatite) (16), and 
(iv) glasses (17). For the stoichiometric 
mixtures of MgO and SiO, as well as 
Mgo,,5Feo~,50 and SiO,, we used CsCl as a 
pressure medlum because the pressed pow- 
der samples often disperse in an argon pres- 
sure medium. The powder mixtures were 
heated to 2800 K at 100 GPa, 2600 K at 78 
GPa, and 2600 K at 74 GPa for 15, 15, and 
5 min, respectively. We  used Raman spec- 
troscopy for phase identification because it 
is effective in detecting subtle structural 
changes in silicate perovskite to high pres- 
sures (18) and in identifying high-pressure 
polymorphs of SiO, (19). Raman spectra 
obtained from several spots of the heated 
area after temperature quenching (Fig. 2, A 
to C )  showed all major lines of perovskite 
(18), but no  lines for SiO, were detected 
(19). 

4000 I 

78 GPa 

Fig. 2. Raman spectrataken at room temperature 
after heating stoichiometric powder mixtures of 
MgO and SiO, to (A) 2800 K at 100 GPa and (B) 
2600 K at 78 GPa. (C) Raman spectrum of 
Mgo,,,Feo,,,O and SiO, heated to 2600 K at 74 
GPa. All spectra exhibit only perovskite (Pv) bands 
(78). 

Fig. 3. Raman spectra at 
room temperature (A) after 
heating MgSiO, orthoensta- 
tite to 2750 K at 75 GPa and 
(B) after decompression of the 
sample in (A) to 15 GPa with 
no further heating. All bands .% 
belong to the perovskite 5 
structure (18). - c - 

In a second set of experiments, we heat- 
ed synthetic enstatite to 2750 K at 75 GPa 
for 15 min. Again, the spectra (Fig. 3 )  only 
show features associated with perovskite. 
The ~erovskite Raman freauencies shown 
in Figs. 2 and 3 agree with those extrapo- 
lated from 65 GPa (18, 20). We  did not 
detect any modes associated with SiO, 
polymorphs (19, 21). 

In a third experiment, we used a method 
(22) for the detection of small amounts of 
MgO, which is Raman inactive and there- 
fore could not have been detected in the 
above experiments, by doping samples with 
Cr3+. MgO containing traces of Cr3+ ex- 
hibits a sham fluorescence line at 699.2 nm 
at room pressure (23, 24). As a test, we 
heated Cr-doped Mg,SiO, (forsterite) at 
high pressure, producing MgO and Mg- 
Si0,-~erovskite. This test resulted in the 
per&skite Raman spectrum and the MgO: 
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Fig. 4. Fluorescence spectra at ambient condi- 
tions of (A) MgO doped with 0.1 atomic % CP+ 
and (B) the recovered MgSiO, perovskite sample 
synthesized from CP+-doped MgSiO, glass at 
3000 K and 73 GPa. (C) Raman spectrum of the 
recovered sample in (6). 
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Cr fluorescence spectrum. Thus, we would 
expect that a breakdown of Cr-doped Mg- 
SiO, to its oxide components would also 
result in such a fluorescence spectrum (25). 
The lack of phase transitions in MgO addi- 
tionallv allowed measurements with hieher - 
sensitivity on the reco~~ered samples outside 
the diamond cell. We found no MgO after 
heating MgSi03 glass, doped with 0.1 atom- 
ic % Cr3+,  In an argon medium at 3000 K 
and 73 GPa for 10 min (Fig. 4, A and B).  
Instead, the recovered ~erovskite crvstal 
(Fig. 4C)  exhibits two bominent  fluores- 
cence peaks at 7 10.2 and 7 14 nm (Fig. 4B). 

We have shown that silicate perovskite 
heated with small temperature gradients in 
a quasi-hydrostatic pressure medium does 
not decompose to ~ t s  component oxides and 
that ~nstead these oxides react to form ner- 
o~~sk i t e  when heated to the highest pres- 
sures In our experiments (100 GPa). These 
results are important in \iew of new evi- 
dence for a dense 111gh-pressure polymorph 
of SiOz ( 2 6 ) ,  because they show that, at the 
present pressure and temperature condi- 
tions, (Mg,Fe)SiO,-perovskite is more 
dense than a (Mg,Fe)O-SiO, assemblage. 
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Perennial Antarctic Lake Ice: An Oasis for 
Life in a Polar Desert 
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Stephen J. Giovannoni, Hans W. Paerl, Christopher P. McKay, 

Peter T. Doran, Douglas A. Gordon, Brian D. Lanoil, 
James L. Pinckney 

The permanent ice covers of Antarctic lakes in the McMurdo Dry Valleys develop liquid 
water inclusions in response to solar heating of internal aeolian-derived sediments. The 
ice sediment particles serve as nutrient (inorganic and organic)-enriched microzones for 
the establishment of a physiologically and ecologically complex microbial consortium 
capable of contemporaneous photosynthesis, nitrogen fixation, and decomposition. The 
consortium is capable of physically and chemically establishing and modifying a relatively 
nutrient- and organic matter-enriched microbial "oasis" embedded in the lake ice cover. 

T h e  McMurdo Dry Valleys, Antarctica, is 
one of the coldest and driest deserts on 
Earth. Lakes in this region are permanently 
Ice covered (1 ). The ice is typically 3 to 6 m 
thick and contains a layer of sand and or- 
ganic matter of aeolian origin below the 
surface. This layer represents a dynamic 
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eclu~libr~um between downward movement 
of sediments as a result of melting during 
the summer and upward movement of ice 
from ablation at the surface and freezing at 
the bottom. Liquid water inclusions are 
present in this layer for about I50 days 
during the summer when solar radiation is 
continuous; up ro 40% of the total ice cover 
volume during this period can be llquid 
water (2, 3). We disco~rered that the ice 
meltwater sumorts a viable microbial as- . & 

semblage associated with the sediment lay- 
er. Here, we describe the ecosystem. 

We collected ice samples from six lakes 
(Bonney, Hoare, Fryxell, Miers, Vanda, and 
Vida) between August and October 1993 
and 1995 using 10-cm-diameter coring de- 
vices. Cores were sectioned, melted, and an- 
alyzed for photoautotrophic and heterotro- 
phic activity; biomass, sediment, and nitrous 
oxide content; and chemistry (4). Most of 
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