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surface of elastomeric stamps or flexible pho­
tomasks. Subsequent processing steps trans­
form patterns on these cylindrically symmet­
rical substrates into structures with different 
symmetries and more complex topologies. 
Microelectrochemistry provides an additive 
method that strengthens thin metal patterns 
produced by printing and etching and that 
welds proximal, nonconnected structures. 
Potential applications for these techniques 
may be in the fabrication of ultralight struc­
tures for micro air and space vehicles, com­
ponents for microelectromechanical systems, 
3D metallic membranes and electrodes, and, 
at smaller dimensions, dielectric structures 
for photonic band gap materials. 
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8 cm) slabs were found near the remains of 
the main temple in Mashkan-shapir (Fig. 
1). One of the two large sides of each was 
flat, with the opposite face uneven. The 
material resembles basalt, but the uniform 
size, shape, and characteristic appearance of 
the slabs suggest that they are not naturally 
formed rock. They appear to be the result of 
deliberate manufacture and not an acciden­
tal by-product of some other manufacturing 
process. 

At Mashkan-shapir, these slabs were 
only found in the southern, religious quar­
ter, but their characteristic profile, with 
uneven top and flat bottom surfaces (Fig. 
2), can be used to link them with several 
hundred fragments found across the site. 
The large slabs and fragments were around 
8 cm thick, except where the latter had 
been worn down by grinding. Except where 
broken, the edges show evidence of delib­
erate trimming. Closest to the flat face, the 
vesicles are small (0.1 to 0.5 mm), and they 
increase in size as they approach the uneven 
face (2 to 3 mm). The pieces are black to 
dark gray in color except for the uneven 
surface, which usually exhibits a greenish 
tinge. Compositionally, this material falls 
outside the range of known basalts (3), 
particularly in the high CaO and KzO con­
centrations and low amounts of A1203 and 
total Fe, but is similar to the composition of 
a sample of alluvial silt from the area (Table 
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From Shifting Silt to Solid Stone: 
The Manufacture of Synthetic Basalt 

in Ancient Mesopotamia 
E. C. Stone, D. H. Lindsley, V. Pigott, G. Harbottle, M. T. Ford 

Slabs and fragments of gray-black vesicular "rock," superficially resembling natural 
basalt but distinctive in chemistry and mineralogy, were excavated at the second-
millennium B.C. Mesopotamian city of Mashkan-shapir, about 80 kilometers south of 
Baghdad, Iraq. Most of this material appears to have been deliberately manufactured by 
the melting and slow cooling of local alluvial silts. The high temperatures (about 1200°C) 
required and the large volume of material processed indicate an industry in which lithic 
materials were manufactured ("synthetic basalt") for grinding grain and construction. 
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Table 1. Comparison of synthetic basalts with natural basalts. All analyses normalized to 100% by weight to facilitate comparison; errors are 21 % of the 
amount present. In the sample column, MS indicates a sample from Mashkan-shapir, and AH indicates al-Hiba. 

Sample SiO, TiO, A1,03 FeO MnO MgO CaO Na,O K,O P,O, 

Range of natural basalts (9) 47.6-55.9 1.03.3 12.5-18.1 8.7-14.4 0.19-0.27 2.7-10.5 6.9-11.9 1.89-3.27 0.1-0.7 0.07-0.4 
Gray-black slab (MS 3652)' 52.93 0.79 12.52 6.56 0.13 6.44 16.94 1.89 1.62 0.18 
Green handstone (MS 4353)' 53.33 0.77 11.78 6.22 0.13 6.97 16.93 1.76 1.90 0.21 
"Slag" (MS-HGA), green inclusions' 53.28 0.67 1 1.1 4 5.35 0.13 8.1 1 16.29 2.31 2.13 0.58 
"Slag" (MS-HGA), gray-black matrix* 53.51 0.71 11.21 6.06 0.12 7.33 16.18 2.06 2.16 0.67 
Gray-black slag (AH-5)' 51.06 0.70 12.19 6.49 0.13 7.3 16.7 2.06 2.4 0.98 
Silt from auger sample from MSt 51.70 0.64 11.77 6.67 0.14 6.85 18.09 2.08 1.60 0.45 

Analysis conducted by x-ray fluorescence by XRAL Industries. tSiit from Mashkan-shapir at the 45- to 70-cm level- chosen because it probably represents the surface 
alluvium at the time the site was occupied-was taken from the one drill-core sample exported to the United States. Analysis of this sample was by electron microprobe on glass 
made by fusing the soil at 1200°C. 

1). The samples contain less than 10 ppm 
Cu, indicating that they were not formed as 
a by-product of Cu smelting. Thus, this 
material may be anthropogenic in origin. 

Small pieces of synthetic basalt were 
found throughout the site, on the surface 
and in excavation (4). In a 1000-m2 exca- 
vation area, 17 pieces were encountered, all 
lying in situ, the flat side up and used for 
grinding grain. One still had the handstone, 
also of synthetic basalt, lying on top. In 
addition, some fragments on the surface 
were used for construction, either built into 
baked brick walls or fashioned into door 
sockets. The consistency in size, shape, col- 
or, and texture of the synthetic basalts as 
well as their ubiquity-we estimate more 
than 100 m3 of the material in the site as a 
whole-indicate that this was not simply 
reuse of material that had been accidentally 
overfired. Thus, synthetic basalt appears to 
have been manufactured in some quantity 
as a substitute for the natural basalt that 
had been used for grinding grain in all parts 
of the ancient Near East since the begin- 
nings of agriculture. 

In petrographic thin section, synthetic 
basalts were characterized by matted cli- 
nopyroxene (cpx) crystals of the diopside- 
hedenbergite series embedded in a glassy 
matrix. Plagioclase was rare to absent; most 
samples contained sparse, isolated quartz 
and chromite grains, each usually surround- 
ed by a reaction zone. Typically, the syn- 

Fig. 1. Large slab of synthetic basalt in situ. Slab 

thetic basalt was microporphyritic, with 
blocky cpx phenocrysts (typically 80 pm by 
100 pm) set in a matrix of felted acicular 
cpx (2 to 10 pm by 80 pm) and orange- 
brown glass (Fig. 3). By contrast, the over- 
fired debris found at Mashkan-sha~ir lacked 
microphenocrysts, had only the felted acic- 
ular cpx, was generally very small in size, 
and the glass was usually clear. 

The microporphyritic texture of the syn- 
thetic basalts suggests that a pyroxene-nor- 
mative material was brought almost to its 
liquidus, thus allowing the cpx phenocrysts 
to crystallize, and was then cooled slowly 
enough for finer, groundmass cpx to form. 
Our experiments (5) show that the liquidus 
(complete melting) temperatures for both 
the synthetic basalt and the local alluvial 
silts are close to 1200°C. We were able to 
approximate the microporphyritic texture 
by heating either material to 1180" or 
1190°C (just below the liquidus) and then 
cooling it at a rate of l.O°C per minute. Our 
ability to recreate the texture of the Mash- 
kan-shapir slabs starting with silt provides 
strong support for the assumption that silt 
was the raw material for making the synthet- 
ic basalt. 

The use of local silts for the production 
of svnthetic basalt at Mashkan-sha~ir would 
seem to link this technology to the ceramic 
industrv, but it was the metal-workers who , . 
had perfected high-temperature melting 
and the clean separation bf the final 
uct. It is commonly held that all Mesopota- 
mian copper and bronze was originally im- 

ported in ingot form and that the Meso- 
potamian smiths did no more than refine 
and cast the final products. However, the 
discovery of cuprous slags and copper ores 
from Mashkan-shapir and a1 Hiba (6)-the 
two southern Mesopotamian sites that have 
been the most intensely surveyed-provides 
evidence for copper smelting, albeit on a 
small scale, taking place within the south- 
em floodplain. By contrast, the large size of 
the synthetic basalt slabs indicates that they 
may have been the result of a much larger 
scale operation, incorporating some tech- 
nology derived from the ceramic and met- 
allurgical industries. 

Until we can return to Mashkan-shapir 
for further excavations, we can only surmise 
the process. The synthetic basalt must have 
been produced in large furnaces, at least 1 m 
in diameter given the size of our largest 
blocks. These furnaces probably had thick, 
chaff-tempered walls for maximum insula- 
tion and were charged with a combination 
of charcoal and lumps of silt (7). Once near 
melting of the silt had been achieved, the 
structure must have been left to cool for 20 
to 40 hours, the time necessary for the 
crystal growth observed in the thin sections 
to have occurred (8). 

The evidence of the production of syn- 
thetic basalt at Mashkan-shapir provides 
information on the technological achieve- 

Fig. 3. Thin section of the slab shown in Fig. 2. 
Microphenocrysts and elongate groundmass 
crystals of cpx (mainly light to medium gray) in a 
glassy matrix (black). The circular regions in the 

measures -80 cm by 40 cm by 8 cm. (Photo: Fig. 2. Section (-30 cm by 8 cm) across slab of upper left comerare microvesicles. crossed polar- 
Paul Zimansky) synthetic basalt. (Photo: Paul Zimansky) izers; width of field: 1 mm. (Photo: William Vernon) 
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ments and innovations of ancient Meso-
potamians. Material compositionally iden­
tical to synthetic basalt, but without the 
vesicles, was a by-product of the ceramic 
and metallurgical industries before the sec­
ond millennium B.C. The deliberate pro­
duction of synthetic basalt suggests that the 
potentialities of those by-products as a sub­
stitute for imported grinding stones was per­
ceived and that the pyrotechnologies devel­
oped by potters and smiths were pooled in 
an experimental process that eventually 
yielded a consistent product. 

For synthetic basalt to be produced re­
quired (i) that the possibility of melting soil 
had to have been conceived, (ii) that the 
typically small metal-smelting furnaces be 
increased in size without decreasing the 
maximum temperatures attained, and (iii) 
that the resulting product be cooled rela­
tively slowly to ensure adequate crystal 
growth. This technology can only have 
come about through experimentation and 
as part of the wider process of innovation. 
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(Mg,Fe)Si03-Perovskite Stability Under Lower 
Mantle Conditions 

G. Serghiou, A. Zerr, R. Boehler 

In three different experiments up to 100 gigapascals and 3000 kelvin, (Mg,Fe)Si03-
perovskite, the major component of the lower mantle, remained stable and did not 
decompose to its component oxides (Mg,Fe)0 and Si02. Perovskite was formed from 
these oxides when heated in a diamond anvil cell at pressures up to 100 gigapascals. 
Both MgSi03 crystals and glasses heated to 3000 kelvin at 75 gigapascals also formed 
perovskite as a single phase, as evident from Raman spectra. Moreover, fluorescence 
measurements on chromium-doped samples synthesized at these conditions gave no 
indication of the presence of MgO. 

Although some past studies indicate that 
silicate perovskite is a dominant compo­
nent of the lower mantle (1, 2), recent 
experiments with C 0 2 and yttrium-alumi­
num-garnet (YAG) laser heating in the di­
amond anvil cell (DAC) have suggested 
that (Mg,Fe)Si03-perovskite decomposes 
to (Mg,Fe)0 and Si0 2 above 65 GPa (3, 4). 
In one experiment where the temperature 

Max-Planck-lnstitut fur Chemie, Postfach 3060, 55020 
Mainz, Germany. 

was not measured, (Mg,Fe)0 and Si0 2 

formed from Mg087Fe013SiO3-perovskite at 
70 GPa, with a C 0 2 laser and a NaCl 
pressure medium (3). In another study, with 
a YAG laser but no pressure medium (4), 
MgSi03 broke down to MgO and Si0 2 

above 65 GPa. The reason for this decom­
position is most likely disequilibrium asso­
ciated with large temperature gradients 
caused by the poor thermal insulating prop­
erties of the NaCl pressure medium, the 
lack of laser stabilization (3, 5, 6), or the 
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