times (2400 to 13,900 years), an approxi-
mate flux of BC per year to the world’s
oceans of 8.4 X 10! wmol (9) and an aver-
age deep ocean DOC concentration of 39
uM (29) we calculate that BC could be 4 to
22% of the total deep ocean DOC pool.

Within this calculation are a number of
first-order approximations about BC in the
oceans. Among them are the assumptions
that (i) suspended BC resides only in the
DOC pool and not the POC pool; (ii) oce-
anic BC has one homogeneous age; (iii) river
inputs of BC to remote sediments are not
significant; and (iv) BC (and DOC) removal
processes are similar between oceans. All of
these approximations are reasonable given
the available information; however, it is like-
ly that they simplify the actual environmen-
tal processes. Small changes in each of these
variables could result in site-to-site variability
in the estimated residence time of BC in the
water column, variabilities such as those ob-
served between our northeastern Pacific and
Southern Ocean sites {2400 to 5400 years
and 13,900 years, respectively). For example,
if the largest BC particles are removed closer
to shore, the age difference between BC and
non-BC SOC would be smaller closer to
continents (providing one possible explana-
tion for the difference between our Southern
and Pacific ocean cores). Once the causes of
these site-to-site differences are better under-
stood, it may be possible to use sedimentary
BC as a tracer of water column and sedimen-
tary carbon cycle processes.
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Elasticity of Single-Crystal MgO to 8
Gigapascals and 1600 Kelvin

Ganglin Chen,* Robert C. Liebermann,t Donald J. Weidner

The cross pressure (P) and temperature (T) dependence of the elastic moduli (C;) of
single-crystal samples of periclase (MgO) from acoustic wave travel times was mea-
sured with ultrasonic interferometry: 9°C,,/0PaT = (—=1.3 = 0.4} X 1072 per kelvin;
82C4/0PIT = (1.7 = 0.7) X 1072 per kelvin; and ¢°C,,/0PIT = (0.2 = 0.3) X 1073 per
kelvin. The elastic anisotropy of MgO decreases with increasing pressure at ambient
temperature, but then increases as temperature is increased at high pressure. An as-
sumption of zero cross pressure and temperature derivatives for the elastic moduli
underestimates the elastic anisotropy and overestimates the acoustic velocities of MgO
at the extrapolated high-pressure and high-temperature conditions of Earth’s mantle.

Periclase has the cubic rock salt (B1) struc-
ture. It has traditionally been regarded as a
standard solid for testing new experimental
techniques developed for elasticity imea-
surements (1-5) and for theoretical model-
ing and analyses of thermoelastic properties
of solids at elevated pressure and tempera-
ture {(6-8). It is an important mineral in
geophysics because mineralogical models of
Earth’s lower mantle contain magnesiowtis-

tite, (Mg,, Fe,_)O (9), on the basis of high
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pressure—high temperature phase equilibri-
um experiments {10). Its availability and
stability over a wide range in the pressure-
temperature space have prompted its use as
a pressure standard in high pressure—high
temperature x-ray diffraction experiments
in diamond anvil cells and multianvil ap-
paratus (11, 12).

Although the elastic properties of MgO
have been the subject of numerous experi-
mental and theoretical investigations over
the past 30 years, direct measurements of
the acoustic velocities with the techniques
of physical acoustics have been made pri-
marily at high pressure (=8 GPa) but am-
bient temperature (2—4), or at high temper-
ature (=1800 K) but ambient pressure (5).
A previous effort to map the elasticity of
this mineral at simultaneous elevated pres-
sures and temperatures covered the range
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Fig. 1. Acoustic transducer tungsten carbide anvil setup (left) and the sample cell assembly (right) for
the simultaneous ultrasonic and x-ray experiment at high pressure and high temperature.

up to 0.8 GPa and 800 K (1). For such a
highly incompressible solid, this restricted
range of experimental conditions has not
allowed an unambiguous determination of
the cross pressure and temperature depen-
dence of the elastic moduli or the acoustic
velocities.

Progress has been made in several labo-
ratories to develop techniques for perform-
ing acoustic measurements in multianvil
apparatus at the pressure and temperature
conditions approaching those of the transi-
tion zone (pressure P = 13 to 23 GPa,
temperature T > 1500 K) of Earth’s man-
tle, with both single-crystal samples (13)
and polycrystalline samples (14). Recent-
ly, we adapted these techniques to a DIA-
type, cubic anvil, high-pressure apparatus
(SAMB85) installed on the superconduct-
ing wiggler beamline (X17B1) at the Na-
tional Synchrotron Light Source of the
Brookhaven National Laboratory (15). X-
ray spectra of the sample and the NaCl
pressure medium that surrounds it can be
monitored continuously; the former pro-
vides pressure-volume-temperature (PVT)
data to complement the velocity measure-
ments and the latter the pressure standard.
These developments enable in situ ultra-
sonic and x-ray measurements to be per-
formed simultaneously at high pressure
and temperature (16). Data for polycrys-
talline alumina obtained with this appara-
tus (SAMS85 with x-rays) agree with those
obtained on a uniaxial, split-cylinder, high-
pressure apparatus (USCA-1000) using dis-
crete pressure calibration points of Bi and
ZnTe (16, 17); these data confirm the suit-
ability of Bi and ZnTe as pressure indicators
in the acoustic experiments and lend addi-
tional credibility to the ultrasonic data ob-
tained with the USCA-1000 (13, 14).
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Here we present data on the elasticity of
single-crystal MgO measured in SAM85 to 8
GPa and 1600 K with ultrasonic interferom-
etry. The acoustic piezoelectric transducer—
tungsten carbide (WC) anvil arrangement
and the high-temperature cell assembly used
in SAM85 have LiNbO; transducers (40
MHz, 36° Y-cut for compressional waves and
41° X-cut for shear waves) that are mounted
onto the back side of the WC anvil (Toshiba
grade F) with a high-temperature epoxy and
connected to the interferometer by coaxial
cables (Fig. 1). The WC anvil serves as an
acoustic buffer rod to transmit the high-
frequency signal (20 to 70 MHz) into the
cell assembly (18). The single-crystal sample
is centered within the cubic cell assembly
and is surrounded by a boron nitride sleeve.
The acoustic signal is transmitted into the
sample through another buffer rod of fused-
silica glass. The NaCl disc serves two impor-
tant purposes: it provides (i) a pseudo hydro-
static pressure environment for the sample
(15), and (ii) a pressure standard at room
temperature and high temperature in the
Decker equation of state (19).

Acoustic travel times corresponding to
three elastic modes were measured (20):
compressional modes for the [100] and [110]
directions and a shear mode for [100]. We
converted the acoustic travel times to elas-
tic moduli using the high-precision x-ray
diffraction volume data of MgQO obtained by
Utsumi et al. (11) in the same high-pressure
apparatus over a comparable pressure and
temperature range, thus providing data for
the three elastic moduli C,, C,,, and C,
with uncertainties of about 1%. The mod-
ulus data at ambient temperature agree with
the results of Jackson and Niesler (2) ob-
tained in a gas pressure vessel to 3 GPa (Fig.
2). With the high-precision modulus values
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Fig. 2. Elastic moduli of MgO versus pressure at
ambient temperature (C,, = pV 007 Cay =
PVspoopr @nd Cyq6 = pVyp4° where p is density,
V,, is the velocity of the compressional wave, and
V, is the velocity of the shear wave). The symbols
are from this study; uncertainties in the moduli are
about the size of the symbols. The three solid
curves are results obtained by Jackson and
Niesler (2) in a gas pressure vessel.

along the pressure (acoustic data, this
study) and temperature (5) axes and the
wide P-T coverage of the present ultrasonic
data, the cross pressure and temperature
derivatives of the elastic moduli for MgO
were calculated (Table 1) (21). QOur results
indicate that the effect of cross pressure and
temperature dependence on the behavior of
C,, and C,, is different. Whereas the cross-
derivative (BZCH/BPBT) [that is, the tem-
perature derivative of (9C,,/dP);] is about
1073/K, the cross-derivative for the (O
mode (9°C,,/dP3T) is an order of magni-
tude smaller in absolute value, and a value
different from zero is not resolvable by our
data. Furthermore, the effect of cross pres-
sure and temperature dependence on the
bulk modulus is also about 1073/K, in agree-
ment with the earlier suggestions derived
from experimental data (22), but in marked
contrast to the conclusions drawn when the
cross derivatives of the bulk modulus were
computed from thermodynamic relations

Vp (km/s)

g
g ,
- 50 . ambient PT e
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\ v
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Fig. 3. Compressional (Vp) and shear wave (Vs)
velocities as functions of angular distance from
[100] orientation in the (001) plane at different
pressure and temperature conditions: solid curve,
ambient condition (1 bar, 300 K); dashed curve, 8
GPa and 300 K; and dashed-dot curve, 8 GPa
and 1600 K.
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Table 1. Cross pressure and temperature derivatives of e\astic moduli of MgO (79) (all in the unit of
PVor s ]

107%/K; C,,

and adiabatic bulk modulus Kg = (C,, +

= pY, 1001 Cas = PVgp ? Ciio =
2C,,/3) from this study (to 8 GPa, 1EL>‘O K) and earher work of Spetzer (7) to 0.8 GPa and 800 K.
Study #C, /aPaT &C, ,/oPaT &C,1o/0PIT 8PK/oPaT
This study -1.3(0.4) -0.2(0.3) 1.7 (0.7) 2.7 (1.1)
Spetzler (7) -0.3t0 0.5 Oto0.2 -0.1t0 1.0 -0.2t004
Fig. 4. Elastic anisotropy of MgO as 0.55 T r T T T
functions of pressure and tempera- 0.50 - T =208 K
ture. The solid curves are based on
the modulus data from this study; < 045[
the dashed curve on the right pan- € o401
el assumes zero Cross pressure "E
and temperature derivatives for the & 038 K This work This work
elastic moduli. *2' 0.30 - 74
< 025} -~ .
020 | ~7PCyfoPaT = 0
0.15 1 1 1 L I
0 2 4 6 8 500 1000 1500

and lattice dynamics modeling (6, 23).
When modeling the composition of Earth’s
lower mantle or formulating the equation of
state of MgQO at the high-pressure and high-
temperature regime, one must take into ac-
count the effect of the cross pressure and
temperature dependence on the acoustic
velocities and elastic moduli of MgO For
example, neglect of these (3*C, /BP()T)
terms leads to overestimates of 1.7% for the
compressional (C,;) and 0.8% for the shear
(C,4) velocities of MgO at P = 10 GPa and
T = 1300 K.

Although the cubic MgO is optically
isotropic, it exhibits a substantial elastic
anisotropy at ambient pressure and temper-
ature (Fig. 3). Increasing pressure at ambi-
ent temperature suppresses compressional
wave and shear wave anisotropy. However,
temperature has a dramatic and opposite
effect on the elastic wave anisotropy for this
cubic material. When temperature is in-
creased to 1600 K at 8 GPa, the elastic wave
anisotropy (both compressional and shear)
becomes even stronger than at ambient
conditions. Quantitatively, we characterize
this anisotropy by the anisotropy factor [for
example, (7)]: A = 2(C,4~Cg)/C,,, where

s = (C;=C},)/2. For isotropic elasticity,
the two shear moduli C,, and Cg are equal
and A = 0. Using our acoustic data, we
calculated the evolution of A at high pres-
sures and temperatures (Fig. 4). With in-
creasing pressure at ambient temperature, A
decreases and would vanish at about 19
GPa from extrapolation of our data. A sim-
ilar trend is observed from extrapolating
Jackson and Niesler’s data (2) (21 GPa) and
from the theoretical calculations by Karki et
al. (7) (15 GPa); experimental evidence for
such a transition was provided by Duffy et
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al. (24). As temperature increases, our data
show that the elastic anisotropy increases.
At 8 GPa, the anisotropy factor A recovers
to the value of ambient conditions by about
1000 K. An assumption of zero cross-deriv-
atives (dashed curve) would significantly
underestimate the temperature effect on the
anisotropy at high pressure. Thus, at elevat-
ed pressure and temperature conditions,
such as those typical of Earth’s deep interi-
or, MgO may remain distinctly anisotropic.
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along the pressure axis also have high precision [in
light of their good agreement with the results ob-
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The Influence of Vegetation—-Atmosphere-
Ocean Interaction on Climate During the
Mid-Holocene

Andrey Ganopolski, Claudia Kubatzki,” Martin Claussen,
Victor Brovkin, Vladimir Petoukhov

Simulations with a synchronously coupled atmosphere-ocean-vegetation model show
that changes in vegetation cover during the mid-Holocene, some 6000 years ago, modify
and amplify the climate system response to an enhanced seasonal cycle of solar inso-
lation in the Northern Hemisphere both directly (primarily through the changes in surface
albedo) and indirectly (through changes in oceanic temperature, sea-ice cover, and
oceanic circulation). The model results indicate strong synergistic effects of changes in
vegetation cover, ocean temperature, and sea ice at boreal latitudes, but in the sub-
tropics, the atmosphere-vegetation feedback is most important. Moreover, a reduction
of the thermohaline circulation in the Atlantic Ocean leads to a warming of the Southern

Hemisphere.

Numerous paleodata suggest that the cli-
mate of the mid-Holocene around 6 thou-
sand years ago (ka) was quite different from
that of today. Generally, the summer in
many mid- to high-latitude regions of the
Northern Hemisphere was warmer, and pa-
leobotanic data indicate an expansion of
boreal forests north of the modern tree line
(1-6). In North Africa, paleoclimatological
reconstructions (5, 7, 8) reveal a climate

A. Ganopolski, C. Kubatzki, V. Brovkin, Potsdam-Institut
fir Klimafolgenforschung, Postfach 601203, D-14412
Potsdam, Germany.

M. Claussen, Potsdam-Institut flr Klimafolgenforschung,
Postfach 601203, D-14412 Potsdam, Germany and In-
stitut fur Meteorologie, FU Berlin, C.-H. Becker Weg
6-10, D-12165 Berlin, Germany.

V. Petoukhov, Potsdam-Institut fir Klimafolgenfor-
schung, Postfach 601203, D-14412 Potsdam, Germany
and Oboukhov Institute for Atmospheric Physics,
Pyzhevsky 3, 108017 Moscow, Russia.

*To whom correspondence should be addressed. E-mail:
kubi@pik-potsdam.de

1916

wetter than today’s. Moreover, it has been
found (9, 10) that vegetation covered a
substantial part of the Sahara during the
mid-Holocene. Climate models have been
used to examine how the changes in Earth’s
orbit result in the differences between the
climate of today and that of 6 ka. Atmo-
sphere models that use prescribed modern
sea surface temperatures (SSTs), sea-ice dis-
tribution, and vegetation cover (l1-14)
seem to underestimate the amplitude of the
observed climatic differences (2, 5). Sensi-
tivity studies in which artificially prescribed
changes in vegetation were introduced into
climate models (2, 15, 16) suggest that
positive feedbacks between climate and
vegetation can be important in explaining
the climate changes during the Holocene.
Coupled atmosphere—vegetation models
(17, 18) support this hypothesis. Recently,
coupled atmosphere—ocean models (19, 20)
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demonstrated that some of the climatic dif-
ferences might be explained by changes in
ocean temperatures, but again, the simula-
tions reveal only partial agreement with
paleodata. We describe the strong synergis-
tic effect of the response of atmosphere,
ocean, and vegetation on the changed solar
insolation conditions found in our coupled
atmosphere—ocean—vegetation model.

We used a climate system model of inter-
mediate complexity, CLIMBER (for CLI-
Mate and BiosphERe) (21, 22), to perform a
set of consistent experiments with different
model configurations from the atmosphere-
only model to the coupled atmosphere—
ocean—terrestrial vegetation model. CLIMB-
ER does not employ any flux adjustment
between the atmospheric and oceanic mod-
ules. The model has a coarse resolution of
10° in latitude and 51° in longitude. It en-
compasses a 2.5-dimensional dynamical-sta-
tistical atmosphere model; a multibasin, zon-
ally averaged ocean model, including sea ice;
and a terrestrial vegetation model (23). The
latter simulates vegetation that is in equilib-
rium with climate. Vegetation cover is rep-
resented as a mixture of trees, grass, and
desert (bare soil). The fraction of each is not
a discrete, but a continuous function of
growing degree days (sum of mean daily tem-
perature for days with temperature above
0°C) and annual precipitation. Hence, in
contrast to biome-type models, CLIMBER is
able to describe changes in vegetation cover
that can be interpreted as shifts in vegetation
zones smaller than the spatial resolution of
the model.

A control run was performed, using the
fully coupled atmosphere—ocean—biosphere
version of the model for characteristics of
preindustrial climate (when the system was
close to equilibrium)—in other words, mod-
ern solar insolation and a CO, concentra-
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