
Limitations of a Molecular Clock n-hich are ill-equipped to deal wit11 evolu- 
tionarl- eccentricities that are \\,ell substan- 
tiated for HIV-1: namelv, recombination Applied to Considerations of the 

Origin of HIV-1 
and ilifierent evolutionary rates in different 
lineages. Pllyloge~letic analysis using recom- 
hillant fragments co~l ld  yield I?ranch lengths 
tllat do  not reflect the  evolutionarv historv 

Bette Korber, James Theiler, Steven Wolinsky* of either parent strain. Recolnbination is 
prohabll- contrilluting to HI\'-1 evolution 
at every level, although it can be easily 
detected only \vhen distinctive reference 
strains are available, s ~ l c l ~  as two distin- 
guishable strains infectll~g the  same person 
(19) ,  or two subtypes clrculatlng in the 

T h e  evolutionary llistory of ~ ~ ~ l m a n  immu- 
nodeficiency virus (HI\') l u  unfolillng even 
as \ve study ~ t ,  a conseLluence of the under- 
lying genetic \-ariation hy mutation ( I ) ,  re- 
combination ( 2 .  3 ) ,  and freLl~lent insertions 
and deletions (4) .  Stuilies of the evolution- 
ary history of HI\' enallle us to extrapolate 
into the past and inakc estlinatei of the aqc 
of the epliiemic, as \\-ell as make preLiictions 
of the potential for variation in the future 
that \\.ill affect 1-accine ileveloyment. 

T h e  HI\'-1 nlain (M) group, although 
d o m ~ n a n t  in tlle glol?al accluircd immune- 
ileficiency synilrome (AIDS) epiclemic, 1s 
but one cluster in  a coinnlex arrav of silnlan 

ancestor. Phylogenetic methods use dlfier- 
ent  nays to cstiinate the genetic illstance 
betn-een se~lllence.; and to organize a sct of 
secluence.; into a hierarchy of ever lnore 
Llistantly relateil seilucnces (9) .  There are 
clearly defined associations ainony HI\'-1 
L1 groul? 1-iruses that becolne apparent 
through phyloyenetic analysis. This llaz led 
to the  Lleveloyxnent of an  alphabetical sub- 
type taxonomy ( l i? ,  1 1 ) (Fig. l ) ,  \\it11 &.;- 
ignations .q to J applied to  the  phylogeneti- 
cally clustered lineages (or cladcs); slll?typcs 
G,  I ,  alld J arc not  yet fully cl1aracteri:ed 
(3) .  T h e  s~ll?typeb tl~emselvcs can h a l ~  
c0111plex patterns of s ~ ~ b c l ~ ~ s t e r s  (1 2 ) ,  solne- 

zame pop~llation ( 2 .  3 ) .  Because recombi- 
nation is colnlnon in pop~~la t ions  harboring 
tn-o or Inore sul~types, it is reasonable to 
assulne that recolnbination is also a f,lctor 
in tlle generation of HIV-1 diversity in a 
population \\:it11 a preponilerance of a single 
sulltype, ilespite the  fact that it cannot be 
readily detected. There is also suggestive 
e \ -~dence that recolnbinatlon cvents oc- 
curred hefore the  formation of the  subtypes 
(2C. 21) ,  anil zuch evcnts n.oulLl obscure 
ilcei?er ancestral associations. 

and human lcntivirusesL(5). 0 t l k  lent11.i- 
ruses that can cause .qIDS in l ~ u m a n s  in- 
clude HI\'-?, a ilistant cousin of HI\'-1 that 
is coinmon in West Africa and in  India i6)  

\&'hereas recoml~ination muildles the  
l~ranchlng patterns of phylogenetic recon- 
struct~ons, different ratcs of evol~ltion in 
.;ublineages disrupt the relation Ixtnee11 
evolutionary distances 2nd time. In differ- 
ent  individuals, differences 111 rates of evo- 

tiines associatcd wit11 tlle geographic origin 

of tlle 1-irus. T h e  relations of the s~ll?types 
n-ithln the L1 yroup of HI\'-1 anil their 
relative genetic cl~stances are illustrated in a 

anil appe~lrs to ha\-e entered the h ~ l m a n  
population through multiple roonotic infec- 

pl~ylogenetic trce based o n  complete enve- 
lope seq~~ences  sampleil fsom inajor irlobal 
foci of the  epidemic (Fig. 1 ) .  

Slnce HI\'-1 sequences first beyan to 
accrue, researchers h ive  been interesteJ in 

lution may he influencecl hy clifferences 111 

host-mediate~l selectlo11 pressures. Early in 
infection, a relatively narro\v range of ge- 
netic variants is observed, \\:lllch s~lbse- 

tlons fro111 hilnlan illlllll11loLleficie11cy v ~ r u s  
(SI\')-infected soot\- mangaheys (5), ancl 
HIV-1 group 0 (i), a very distinctive "out- 
ller" form of HI\'-1 that is genetically more 
Llistant from the HI\'-1 Ltl group tllan ;I 

virus obtained from a chimpan:ee ca~lght  in  
the i ~ i l d  in Gabon (CPZGAB) (5 .  S).  
I\;onetheless, it is the M group that has l ~ e c n  
preferentially amplified in the human pop- 
~l la t lon during the  course of human events; 
n-hether this \vas due to chance or to  bio- 
lopical clifferences in human lentiviruses re- 
mains unclear. 

estimating the aye of the  epidemic and the 
rate of 1-iral evolution (1 3 .  14)  and in c ,~l-  
ibratinc a m o l e c ~ ~ l a r  clock for HI\'-1. Such 

ilucntly diversifies genetically, l.iologically, 
and antlgenically (22.  23). Tile high muta- 
tion frequency of HIV-1 (1 ) coupled \\,it11 a 
continllouz high rate of virus productlo11 
(24)  yielcls a n  extensive reservoir of vari- 
ants \vithin a single host, proviiling a k r t ~ l e  
ground for nat~lra l  selection (25) ,  the  crltl- 

a clock, if it \Yere Inore uniform (15)  tllan 
exlstentlal (16) ,  \ Y O L I ~ L ~  permit tlle use of 
conteml?or,lry seq~lences to  examine hy- 
potheses concerning the  origins of HI\'-1 in 
the  human population. There are many po- 
tential probleins with such llack-projec- 
tions, ho\vever (17). There clearly is a gen- 

cally important lneans I?y \vhich variants 
that escape immunological iletection (26)  
anil ~lrug-resistant strai~ls (27)  arise. T h e  
viral quasispecies call also exl:and into new 

Differences call I?e founil in grcater than 
25% of positions in cnvelopc nucleotide 

era1 trcnd toward greater e v o l ~ ~ t ~ o n a r y  Llls- 
tances between viral scquencez over time 
(Fig. 1 ) .  However, estilnates of HI\'-1 di- 
1-eryence rates are 111gl1ly ciependent on the 

seilu;nces of illverse isolates \vithin the L1 
group. Genetic dlstance 1s represented 111 a 
phylogenetic tree as a llranch length and is 
an  estlmate of hen- lnanv mutational el-ents 

cellular pop~llations hy ac~luiring inl~tations 
that facilitate aclaptation (28) .  During the  

region of the genome under stuii\- (14)  
ieven Lllfferent alieninents of the saine se- 

persistent stage of infection, it is not unusu- 
al to fincl HI\'-1 cnveloue scuuences from a 

actually occurred betxveen two sequences. A 
slinple tally of the  nllnlber of changes be- 
t\\-een tn-o se~luences n-dl underestlinate the  
true genetic distance, l~ecause multiple mu- 
tational events may have occurred at any 
yiven site since di\-ergence from a common 

quences can yielil quite different ii~vergence 
rates) and ilelxnd o n  the  evolutionarv inL3d- 

L A  

sillgle indiviilllal that iliffer in more tllall 
10"" of their nucleotiile t7ositions. Distinct- 

el used to calculate the genetic distances (9 .  
14).  A divergence rate can, in principle, he 
estimated hy a linear reyression an,llysis of 
cenetic distances to an  ancestral node, plot- 

17- s lo~v rates of viral evolution have been 
noted in individ~lals m11o rapiclly progress to 
ilisease. Individuals n-110 progress normally 
or slo\\:lv tend to have substantial increase 

ted as a function of the  time of sampling. In 
practice, such plots pro\-iile rather dispersed 
cloucls of point.;, nit11 limited preclictive 
power (18) ,  even for an  ideal molecular 
clock modeled as a Poisson nrocess 11 7). 

in vir a I L >, lrelsity . .: n-ith time, even iiuring the 
first fen. years of their infection. In  contrast, 
in&\-id~~ala xvho get AIDS n.ithin ,I felv 
years of their initial infection generally 
ha!-e a more homogeneous vlral population 
until their iieath (22) .  There is also evi- 
dence for different rates of evolution in 
ilifferent subtypes, a t  least in the third vari- 

6. Karcer IS n the-lieoret~cal C't! s a i  I T-' "J Los Aamas 
Natiaia Laboratoly L3s Alanas NI\; S7543. USA, ancl 
s a v s ~ t - ~ g  facl~lt) 1-enser at the Sarta Fe Iist~tlkte 
Sarta Fe. N N  8750-.  JSA. J Tlie e r  is I ti-e Space an3 
Rencte S e r s i y  Scieices Orcue (NS-2 ' .  Los Alalncs 
Nat o ia l  Lacoratat?:. L3s Alamos. NM 8'543. USA S 
?l.'o -~sk\ s r ti-e Desartne-~t a' I\;ec z i e  Ncrbi'r.,ester~i 

~, 

T h e  calculation of d ive r~ence  rates is 
Ui~tvers~ty iAlle3 c a  ~ c i - c c  Ci i~cayc, L BOEI I USA. further confounded hy liinitations inherent 
TC v.'i-c;r ccrrespc;-~c~eice s1cu13 ce act3ressect. in p l ~ ~ l o g e n e t ~ c  reconstruct~on methoils, 
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able domain (1'3) of the  envelope protein, egies it is critically important to anticipate 11 T Leltner, B Korber, D. Robeltson. F. Gao' E Hahn. 
n (31, pp. 19-26 littp:/,'li~v-vieb,lanl.gov,'HTML,' the  most hear-ily sequenced region of the  the evol~ltion c) f  the 1-trus anii to understand re,ievis,'Thomas himi 

viral genoille (29)  a~ l i i  an  important f i~nc-  genetic patterns in contemporary r.arianti, I 2 F E McCutchan e7 a / ,  n The Pjoceed/nqs of t / ~ e  
tlotlal and immunogenic region. In the  D 
subtype, the  \'? looC is mutating relatively 
rapidly, ~n the  A and B subtypes it 1s 111~1- 

tatlng a t  a nmderate pace, and in the  C 
subtype ~t is changing s l o ~ l y  (29,  3G). 

Given these co~nplicatltlg factors, at- 
telnpts to  discern when the  virus nas  intro- 
ciucecl into the  human voti~llatlon can be 

L L 

treacherous. Nonetheless, estimating the  
age of a common ancestor of the  AIDS 
palldelnic is of great interest. In this regard, 
the  seiluence of a sample from the  Derno- 
cratic Republic of tlle Congo (formerly 
Zaire) obtaineci in 1959 (ZR.59) is infortlx- 
tive (20) .  Phylogenetic analyies establiiheci 
the  authentictty of tlle salnple and placed 
the  origin c) f  the  ZR.59 sequence \.cry near 
the  allcestral node of the  B, D, and F clades 
of the  hl group, anchoring tlle node in time 
(21 ) .  It suggests that the divergence found 
in these clades arose after 1959; the  extent 
of the  iiiversification over the  last 40 years 
is striking and provides a disturbing inci~ca- 
tion of n11;it tlle future holds. T h e  extenstve 
a l th in - iu l i tv~e  vartatlon of a t  least the  B , k 

ancl D clades has accum~llated in a matter of 
decaiies: by estension. the  v i r ~ ~ s  may be able 
to  rapidly acquire new levels of diversity by 
superimposing new variants onto  the  al- 
read!; diverse array of forms now well eitab- 
lished tl~rouphout the ~\-orlJ.  Thus, 1,accines 
we devise l n ~ ~ s t  have the  potential to  cross- 
protect apainit an  extraordinarv array of 
varia~lts,  and we shoulii consider  sing vac- 
cine itrategies that would optimize tlle po- 
tetlttal for cross-strain yrotection, both 
nitlltn and hetn-een clacles (31 ). 

Tlle acalyses of the 1959 Congo sequence 
also sllggest that the precursor of the   nod ern 
global epidemic and dispersion of the A 1  
group viruiei in the human population oc- 
curred not long before 1959, probably within 
decades (20) .  Th i i  is only a r o ~ ~ g l l  estimate 
and does not date the nonhuman pri~nate 
lent ivi r~~s precurior of HIV-1, an  event or 
series of events that ma!; have occ~lrred llun- 
dreds or thouiands of \-ears earlier. A diver- 
gence rate can be calculated fro111 Fig. 1 (13, 
32) anii used as an  alternative strategy to 
eitilnate the  tttntng of ancestral branch 
pinti. Given the caveats dtscusseJ aliove, 
such esttlnates are tentative; hon-ever, tf one 
carries through the analysis to estimate the  
year the B and D claiies diverged and the A 1  
group arose, the  reiults are in accord with 

the geograplhlc association be- 
t\veen clades (1 0, 1 1 ) (Fig. 1 ) .  T h e  B clade 
vlruses of North America have genetic rela- 
t io~ls  that approximate a star L~l~ylogcny, 
n-here the  \.iral zequences radiate c)utnard 
from an  ancestral llocie in a plhylogenetic 
tree; t l l ~ ~ s ,  n o  one 1.irus is truly representative 
o i  the e p ~ d e m ~ c  (Fig. 1) .  However, there is a 
line of thinking that persists aillong sc)me 

researclleri that a sequence In tlle 
\'3 domain c)f the HI\,'-1 vaccine-candidate 
itrain XlK, Ile-Gl!;-Pro-G1y-Arg-L411~-P1~e [,in 
antigenic dolllaill that is a good neutraliztng 
antibody taryet f o r  laboratory-adapted itraina, 
but a far leis potent target in prtmary virusea 
(33)], is the  repreientative form of contern- 
p o r ~ r y  viruses circulating in North Alnertca 
(34) .  Because the HI\/-1 \'3 iiolnaitl se- 
quences are di\,er>ifying, the proportic)n of 
viruiei that cloiely match tllc I\lN \I3 rnottf 
are inexorably d~minishing (29 ,35 ,  36) .  Tlle 
overall extent of v ~ r a l  variation, as illustrated 
for the fi~ll-length envelope sequences (Fig. 
I ) ,  ii likely to  he prol~lematic fix any vac- 
cine candiciate. But unleis effective counter- 
strategiei call be Jevised, the amplificatton 
and diversiftcatiotl of the HI\'-1 A 1  erouu - L 

virusea tn the hulnan populatiotl during the 
last half-centun. is likely to be transcended 
by relentleii amplification anci diverstfica- 
tton tnto the  next; a sc~bertng perspecttve 
provided by a look back into the future. 
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HIV Treatment Failure: Testing for 
HIV Resistance in Clinical Practice 

Luc Perrin and Amalio Telenti 

I n  a recent c o r n ~ n e ~ ~ t a r y  o n  AIDS therapy, 
the phrase "Failure isn't what it used to  be 
. . . but neither is success" was coined (1 ). 
By now n7e should be used to issues con- 
cerning the human immunodeficiency virus 
(HIV)  being always Inore complex than 
expected. Understanding of HIV pathogen- 
esis indicated that early pharmacological 
intervention would glve the  best chance at 
preserving the  integrity of the  i l n m ~ ~ n e  sys- 
tem and possibly erad~cating the virus. 
These concepts provided the  impetus to  
treat a large proportion of HIV-infected 
~ n d i v i d ~ ~ a l s  with a coinblnat~on of antiret- 
roviral drugs [highly active antiretroviral 
therapy (HAART)] ,  result~ng in a dramatic 
reduction in  AIDS-related morbidity and 
mortality (2 ) .  Honlever, viral erad~cat ion 1s 
not achievable with current strategies ( 3 ) ,  
and the  shift in treatment uaradiein to  one - 
of long-term viral suppression has led to the 
challenge of ensuring continuous treatinent 
benefit and avoiding failure (4).  

Failure has generally been defined in vl- 
rological terms-the inability to  achieve 
complete suppresslon of viral replication. 
T h e  factors leading to thls type of failure are 
straightforward: poor adherence to HAART,  
prior exposure to antiretroviral drugs in 
mono- or bl-therapy, the sequential addition 
of drugs to a failing regimen, and counterac- 
tive interactions among the drugs used (5)- 
nothine new for those who witnessed the " 
early days of antit~~berculosis chemotherapy 
in the 1950s and 1960s. However, treatinent 
failure is not only viral resistance. 

In  fact, def~ni t ion of fa~lure  or success of 
treatment is a far more co~nplex phenome- 
n o n  (Fig. 1 ) .  111 real life, there are indiviil- 
uals who experience a n  optimal response to  
treatment, as shown by effective viral sup- 
presslon and ensuing lrnrnune recovery (6 )  
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(Fig. l A ) ,  but there are others with increas- 
ing C D 4  cell counts 111 the  presence of 
ongoing viral replicat~on (7 )  (Fig. l B ) ,  or 
blunted immune recovery despite viral con- 
trol (Fig. l C ) ,  and finally complete treat- 
ment  failure (Fig. ID) .  Analysis of the  S\viss 
HIV cohort study database of HIV-l-in- 
fected individuals o n  H A A R T  ind~cates 
that an  estimated 40% of the  participants 
present the  constellation described in Fig. 
l A ,  40% in Fig. lB ,  5% in Fig. l C ,  and 15% 
in Fie. ID .  W e  need to ~ ~ n d e r s t a n d  better " 
what each situation represents clinically 
and what each implies for the  current mod- 
els of HIV iinmunopathogenesis (8). Final- 
lv, we have to  learn more about the  mech- 
anisms by which current antiretroviral drugs 
exert their remarkable effect o n  HIV d~sease 
desp~te  nlidespread drug resistance (7 ,  9) .  In  
particular, the  frequent observation of in- 
creasing CD4 cell counts in individuals 
maintaining high virernia levels needs to be 
explained, because it may yield clues regard- 
ing issues such as vlral fitness, resetting in 
the steady state of CD4 cell turnover, and 
the possible action of protease inhibitors o n  
noilvlral targets participating in the  mecha- 
nlsms of CD4 T cell depletion. 

Resistance is a widespread problem. Al- 
though treatment failure is a cornplex phe- 
nomenon, v ~ r a l  reslstance indeed remains a 
major issue. It affects up to  30 to  50% of all 
individuals under H A A R T  ( 7 ,  9 )  and also 
might be transmitted (10) .  Once lnultidrug 
reslstance is present, regaining control of 
virelnia becomes d i f f i c~~ l t  because n o  effec- 
tive "salvage" strategy has been devised. 

However, testing of HIV resistance is 
not straightforward because the  best analy- 
sls strategies have not been defii~ed and 
remaln the  touic of intense clinical inves- 
tigation. Central to  its complexity are the  
phenomenon of HIV quasi-specles ( the  si- 
multaneous presence in a patient of a swarm 
of viral variants), the  extent of cross-resis- 
tance alnoilg antiviral drugs, the  existence 
in each individual of archival HIV D N A  
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