
functioil of RUB/NEDD8 modification in 
both plant and animal systems. 

In yeast, the most abundant Rublp- 
modified protein is Cdci3p (14). Genetic 
evidence suggests that Rublp inodificatiol~ 
regulates the activity of SCFCL"" the E3 
reiponsible for conlugation of UBQ to the 
CDK inhibitor Siclp at the GI-to-S phase 
transition. It is possible that RUBl has a 
sllnilar f~lnction in plant cells. For example, 
the Arabidopsls F-box protein TIRl  may be 
Dart of an SCF comnlex that is reauired for 
the degradation of negatlve regulators of 
auxln resvonse. RUBl lnav modifv the ac- 
tivity of ;his $?F, perhaps in resboilse to 
auxin (23). A holnoloe of CDC53 exists in 
~ y n b i d o ~ s i s ,  and it willbe interesting to see 
if CDC53 is a target of RUBl co~~jugat ion 
in plants. 
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Close Contacts with the Endoplasmic Reticulum 
as Determinants of Mitochondria1 Ca2+ 

Responses 
Rosario Rizzuto," Paolo Pinton, Walter Carrington, 

Frederic S. Fay,? Kevin E. Fogarty, Lawrence M. Lifshitz, 
Richard A. Tuft, Tullio Pozzan 

The spatial relation between mitochondria and endoplasmic reticulum (ER) in living HeLa 
cells was analyzed at high resolution in three dimensions with two differently colored, 
specifically targeted green fluorescent proteins. Numerous close contacts were ob- 
served between these organelles, and mitochondria in situ formed a largely intercon- 
nected, dynamic network. A Ca2+-sensitive photoprotein targeted to the outer face of 
the inner mitochondrial membrane showed that, upon opening of the inositol 1,4,5- 
triphosphate (IP,)-gated channels of the ER, the mitochondrial surface was exposed to 
a higher concentration of Ca2+ than was the bulk cytosol. These results emphasize the 
importance of cell architecture and the distribution of organelles in regulation of Ca2- 
signaling. 

U p o n  physiological stiinulation with IP3- 
generating agonists, initochondria ~lildergo 
an increase in the concentration of CaL- in 
the inatrix ([Ca2-I,,,) ( I ) ,  well in the range 
of the Ca2- sensitivity of the inatrix dehy- 
drogenases (2) .  This process, besides play- 
ing a direct role in the control of organelle 
function, rnay coi l t r ib~~te to the modula- 
tion of the cytosolic Ca2- concentration 
([Ca"],), hy huffering [Ca"], (3 )  or influ- 
encing its spatiotemporal pattern (4 ) .  The 
acculnulation of Ca2- by mitochoildria is 
rapid, despite the low affinity of their trans- 
port inechanisins (5). Because mitochon- 
dria rnight respond to rnicrodornains of high 

[Ca"] that were generated 111 their proxim- 
ity by the opening of the IP,-gated channels 
(1 ), we coilducted high-resolution imaging 
of mitochondria and of their relation with 
the intracellular CaL-  store (the ER). We 
directly luonitored the [Ca2+] sensed by the 
iuitochondrial Ca2+ uptake systems hy us- 
ing a targeted aecluorin chimera. 

The combined use of green fluorescent 
protein (GFP) chirneras with distinct spec- 
tral and targeting properties allows identifi- 
cation of two different subcellular structures 
in living cells (6) .  We expressed the S 6 i T  
GFP mutant targeted to mitochondria 
[mtGFP(S65T)] (6) in HeLa cells (7) and 
used a high-sveed iinaeii~e system that al- 

R. Rizzuto, P. Pnton, T. Pozzan. Depariment of Biomed- lolXTs a tl,r~e.&ll,ensioll~~ ( 3 ~ )  fluorescence 
c a  Scences and the Natona Research Councl Center 
for the Study of Biomembranes, Unversity of Padova, V a  ilnage to be obtained 
Colo~nbo 3 ,  35121 Padova, Italy from coinputationally dehlurred optical sec- 
W. Carrington, F S. Fay, K. E. Fogarty, L. M. L~fsh~tz, tiolls (a) .  The 3D images, derived from 
R A. Tuft, Biomedical Imaging Group, University of Mas- 
sachusetts Medical Center, Worcester, MAO1 605, USA, image stacks taken at 3C-s inter~als  with a 

6CX objective (pixel size 133 nm), re\~ealed 
"To whom correspondence should be addressed. E-mall. 
r~rruto@civ b~o.unipd.it that mitochondria forin a largely intercon- 
+Ceceased nected "tubular" network that ui~dergoes 
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continlous rearrangement (Fig. 1A). With- 
in 1 min of observation, both growth and 
retraction, as well as fusion to other por- 
tions of the network, were frequently ob- 
served (see arrow), indicating a high struc- 
tural plasticity. In agreement with previous 
observations (9), the "mitochondrial net- 
work" was even more obvious when a por- 
tion of a mtGFP(S65T)-transfected cell was 
analyzed at higher resolution (Fig. 1B). The 
visual appearance of a connected network 
and the luminal continuity were confirmed 
by the rapid recovery of fluorescence after 
photobleaching of mtGFP in a portion of 
the network (Fig. 1C). Finally, to simulta- 
neously visualize the mitochondria and the 
ER, we cotransfected in HeLa cells a 
mitochondrially targeted blue mutant of 
GFP, mtGFP(Y66H, Y 145F) (6), and a chi- 
mera of GFP(S65T) targeted to the ER 
[erGFP(S65T)] (10) (Fig. ID). Domains of 
close apposition were evident in Fig. 1D 
and in similar images. From these data, the 
surface of the mitochondrial network in 
close apposition to the ER was estimated to 
be -5 to 20% of total (I I). 

On the basis of the morphological data, 
we expected that the microdomains of high 
[Ca2+] generated by the opening of the 
IP,-gated channels might be sensed by only 
a small portion of the mitochondrial sur- 
face. To verify this possibility, we construct- 
ed an aequorin chimera targeted to 
the mitochondrial intermembrane space 
(MIMS) ( 12). This chimera (designated 
mimsAEQ), when transiently expressed in 
HeLa cells, appeared properly sorted, as 
shown by the pattern of the immunocyto- 
chemical stain (1 3) (Fig. 2A) and by results 
of dual-labeling experiments with the mito- 
chondrial marker cytochrome c oxidase 
(14). The MIMS location of aequorin was 
confirmed by the characteristics of agonist- 
dependent [Ca2+] changes ( 15). Indeed, 
the peak [Ca2+] increase elicited by hista- 
mine, an IP3-generating agonist (Fig. 2B), 
was much smaller than that measured in the 
mitochondrial matrix with mtAEQ (Fig. 
2C) and was unaffected by treatment with 
the uncoupler carbonylcyanide p-(trifluoro- 
methoxy) phenylhydrazone (FCCP), which 
collapses the driving force for Ca2+ uptake 
in the matrix (1 6). 

The histamine-dependent [Ca2+],,,, 
changes differed also from those of 
[Ca2+],. In particular, the initial maximal 
[Ca2+],,,, increase, which is mostly con- 
tributed by the release of Ca2+ from intra- 
cellular stores, exceeded that of [Ca2+], 
(3.5 2 0.2 compared with 2.5 2 0.3 p.M, 
n = lo), and then declined to similar con- 
centrations (Fig. 2D). Because the outer 
mitochondrial membrane is freely perme- 
able to ions, a possible explanation of this 
finding is that a small fraction of the pho- 

toprotein is transiently exposed to a local 
domain of saturating [Ca2+] and is com- 
pletely discharged. Thus, although the in- 
crease in [Ca2+] in most of the MIMS is in 
fact similar to that of the cvtosol. 
the maximal light emission of this aequorin 
fraction contributes to the total lumi- 
nescence signal; hence, the calibrated 
[Ca2+],i,, increase appears to be larger 
than that of [Ca2+],. If this were the case, 
then, because of the irreversible photopro- 
tein consumption in these domains, the 
difference in the apparent [Ca2+] of the two 
compartments would decrease during a sub- 
sequent agonist stimulation applied shortly 
after the first. Indeed. when the cells were 
exposed to another IP,-generating agonist, 
adenosine triphosphate (ATP), after the 
stimulation with histamine, the difference 
in the peak [Ca2+] increase of the cyto- 

plasm and of the MIMS was nearly abol- 
ished (17). The discrepancy between the 
increases in [Ca2+],,,, and [Ca2+], '(Fig. 
2D) is not a calibration artifact due either 
to an intrinsic difference in the Ca2+ affin- 
ity of the two chimeras or to local pH or 
pMg gradients. Indeed, using a membrane- 
bound cytosolic probe (mGluRl/AEQ) 
( la) ,  we observed, in digitonin-permeabi- 
lized cells, that release of Ca2+ from the ER 
induced by the administration of IP, caused 
a greater increase in [Ca2+] in the MIMS 
than in the bulk cytosol, whereas perfusion 
of a buffered Ca2+ solution increased the 
[Ca2+] of the two compartments to the 
same extent (Fig. 2E). 

At contacts between the ER and mito- 
chondria, microdomains of high [Ca2+] may 
be generated upon opening of the IP,-gated 
channels. These microdomains could allow 

1 

&mdhand ER. ( A ) T i m e - @ s e 3 D ~  
of mitochondrial stNctue in a HeLa cell Wan- 
sierWyexpmshgmtGFP(eachimagewas 
taken30sap&).Transfection, macqui-  
sition (with a 60x objective), and pmesing 
were done as described (7,8). (6) A 3D im- 
age of mitochandria, taken wilh a 1 OOx ob- D 
iective; all othereaperimental C o n d m  as 
n (A). (C) Recovery of mtGFP fluorescence aftw photobl6aching; wpe&wW conditions as in (A). The 
first and second image were t a l a  hnmediiely Mom and after PhcQobbchhg mtGFP &aescence in 
a small area withh the cell. The folkwing thtw images were taken at 2-min intervals after and the final 
image 30 min aftw the photobleaching. (D) Combhd 3D imaging of mit- and ER KI a Hela cell 
transientfyexpresslng mtGFP(YBBH,Y145F) and ~~. The two 30 hnages were processed as 
in (A) and superimposed. fhe mitochondria] and 03 images are rqmmted in red and green, respec- 
tively; the ovdaps of the two images are white. On the bottom, a detail of the main mage (80-nm phi). 
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the rapid uptake of a large amount of Ca2+ 
by mitochondria. The rapid diffusion of 
Ca2+ within the mitochondrial network (as 
revealed by the discharge of a major portion 
of mitochondrial matrix aequorin, mtAEQ) 
could allow the rapid tuning of mitochondri- 
at metabolism to cell needs. On the cytosolic 
side, diffusion of Ca2+ would dissipate the 
microdomains, thus extending the Ca2+ sig- 
nal to the bulk cytosol (and eliciting the cell 
response). The lower [Ca2+] would limit fur- 
ther accumulation into mitochondria, avoid- 
ing organelle overload, Ca2+ cycling, and 
collapse of the proton gradient. 

On the basis of this model, we would 
predict that if a second release of Ca2+ from 
the ER is induced after the first, then be- 
cause of the depletion of active aequorin in 
the mitochondrial regions closer to the ER, 
the apparent [Ca2+], increase should be 
underestimated. However, if enough time 
elapses between two consecutive stimula- 
tions, unconsumed mtAEQ should diffuse 
intralumenally from other regions of the 

mitochondrial network, leading to a larger 
increase in light emission, and thus the 
calibrated [Ca2+], increase should recover 
its initial amplitude. We treated cytosolic 
aequorin (cytAEQ)- or mtAEQ-transfected 
cells with ATP first, and then 1.5 or 10 min 
later, with histamine (Fig. 3). In the former 
case, the histamine-dependent [Ca2+], in- 
crease was smaller than the increase caused 
by ATE' and drastically less than that ob- 
served in cells in which the ATP stimula- 
tion was omitted (43 + 3%). The ampli- 
tudes of the [Ca2+], increases did not cor- 
relate with those of [Ca2+], (for example, in 
the second stimulation with histamine, the 
[Ca2+], increases were larger than those 
caused by ATE'), but rather suggested that, 
during stimulation with a first agonist, 
mtAEQ was preferentially consumed at the 
"hotspots." In fact, if the second histamine 
treatment was given after a 10-min delay, 
the increase in [Ca2+], was larger, ap- 
proaching the values measured when his- 
tamine was applied as first stimulus 

(84 2 8%). 
The observation that mitochondria form 

in vivo a largely connected, continuous net- 
work has consequences for understanding 
physiological events, such as organelle bio- 
genesis and mitochondrial energy conserva- 
tion, and for clarifying pathophysiological 
events, such as the mechanisms that lead to 
defects in mtDNA. Close appositions be- 
tween ER and mitochondria may represent 
the site where microdomains of high [Ca2+] 
are generated upon IP3-mediated Ca2+ re- 
lease. Indeed, there is a good agreement 
between the area of the apposition sites 
and the area in which the increase in 
[Ca2+] saturated the binding of Ca2+ to 
aequorin ( 19). The microheterogeneity of 
the Ca2+ signal, and the spatial relation 
between ER and mitochondria, may thus 
be _determinants of mitochondrial Ca2+ 
uptake, which influences organelle func- 
tion (1 ) and may modulate the cytosolic 
Ca2+ signal (2, 3). 
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