
than double that of Pt-Ru under short cir- 
cuit conditions. This difference is especially 
striking when one considers that the  Pt-Ru, 
prepared by a proprietary method, is a n  
optimized, high-surface-area catalyst [mea- 
sured Brunauer-Emmet-Teller (BET) sur- 
face area of 65 m2/g]. T h e  quaternary cata- 
lyst, made by borohydride reduction, is not  
optimized and has roughly half (31 m2/g) 
the  surface area. This difference indicates 
that the intrinsic activity of Pt-RLI-0s-Ir per 
surface atom is several times greater than 
that of Pt-RLI. Why  the addition of relative- 
lv small amounts of 0 s  and Ir causes such a 
substantial increase in  activity is a n  inter- 
esting question, to which we currently have 
n o  answer. 

This study illustrates some of the 
strengths of the  combinatorial method as 
applied to catalysis. It is possible to search a 
fairly large phase space rapidly and exhaus- 
tively. Although the  best catalyst is close in 
composition to pre~~iously  known binaries 
and ternaries, it is markedly superior in  
performance. Although this catalyst might 
have been looked for by extrapolation of 
the  binary and ternary results, a serial 
search of this composition space would be 
very time-consuming. Further, the  combi- 
natorial approach identifies active compo- 
sitions in  regions bounded by inact i~-e  bina- 
ries-that is, where a targeted, serial search 

u 

would not normally be done. Finally, we 
note that the optical screening method de- 
veloped for anode catalysts might be ap- 
d i e d  to various electrochemical materials 
problems (electrocatalysis, battery materi- 
als, corrosion) by using the  appropriate flu- 
orescent cl~emosensor molecules. 
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Compatibility of Rhenium in Garnet During 
Mantle Melting and Magma Genesis 

Kevin Righter* and Erik H. Hauri 

Measurements of the partitioning of rhenium (Re) between garnet and silicate liquid from 
1.5 to 2.0 gigapascals and 1250" to 1350°C show that Re is compatible in garnet. Oceanic 
island basalts (OIBs) have lower Re contents than mid-ocean ridge basalt, because 
garnet-bearing residues of deeper OIB melting will retain Re. Deep-mantle garnetite or 
eclogite may harbor the missing Re identified in crust-mantle mass balance calculations. 
Oceanic crust recycled into the upper mantle at subduction zones will retain high Re/Os 
(osmium) ratios and become enriched in radiogenic '870s. Recycled eclogite in a mantle 
source should be easily traced using Re abundances and 0 s  isotopes. 

T h e  Re-Os isotopic system provides con- 
straints o n  the role of crustal recycling into 
Earth's deep interior ( 1 ) .  Both elements 
exhibit siderophile behavior in  metal-sili- 
cate systems, yet in  mantle and crustal melt- 
ing environments, Re is thought to be 
strongly incompatible (partitioned into 
magma) and 0 s  strongly compatible (parti- 
tioned into the  residue) (2) .  Several aspects 
of the  geochelnical behavicr of Re during 
mantle melting have remained uncertain. 
First. oceanic island basalts (016s )  and 
some picrites have lower Re contents than 
mid-ocean ridge basalt (MORB) ( 3 ) ,  but 
just the  opposite is expected for a n  incnm- 
patible element controlled by the  extent of 
partial melting. Second, the  mass of Re in 
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the  primitive mantle cannot be balanced by 
the  sum of the  continental crust and deplet- 
ed mantle reservoirs (4) .  Finally, oceanic 
crust with a high Re/Os ratio is injected 
into the  mantle a t  subduction zones, yet it is 
not  knonrn xhe the r  the  Re is lost to fluids 
in the  subduction zones or is retained in  
eclogite and recycled back into the mantle. 

Rhenium is incompatible in most sili- 
cate phases such as clinopyroxene and oli- 
vine (5), but its behavior in  garnet-bearing 
systems a t  depths >100 km in the  mantle 
has been uncertain. Several observations 
suggest that garnet may play a role in  frac- 
tionating Re from 0 s .  Garnet separates 
from a garnet pyroxenite have almost 10 
times more Re than the bulk rock (6) .  Data 
from oceanic basalts show that Re and Yb 
behave similarly during mantle melting (3 ) ;  
and because Yb is compatible in  garnet (i), 
a similar behavior has been hypothesized for 
Re  (3 ) .  Re-Al20,  systematics in  orogenic 
lherzolites also suggest a link between Re 
and garnet (8). In  order to better under- 
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stand the behavior of Re, we conducted an 
experimental study of the partitioning of Re 
between garnet and silicate liquid at pres- 
sure, temperature, and redox conditions rel- 
evant to the genesis of oceanic basalt. 

Fig. 1. Backscattered electron image of garnet 
and silicate melt (quenched to glass) produced in 
experiment KR-47. The bright circular areas are 
pits produced during sputtering of the sample by 
0- ions. The small size of the ion beam allows 
metallic flakes to be avoided during analysis and 
thus avoids the nugget effect that plagues analy- 
sis of highly siderophile elements. 

We studied a synthetic basalt (Table 1) 
in the system Si02-A1,0,-Fe0-Mg0-CaO; 
for this composition, garnet and orthopyrox- 
ene are liquid phases at - 1.5 to 2.0 GPa and 
1250" to 1350°C. Experiments were done in 
a %-inch piston cylinder apparatus (9); ba- 
salt samples were held in either graphite- 
lined Pt or in FeNiCo alloy capsules. Oxygen 
fugacities (fo,) in these capsules are ap 
proximately 2.5 and 4.5 log fo2 units be- 
low the fayalite-magnetite-quartz buffer, 
which is within the range of terrestrial man- 
tle fo2 (10). Run products include pyroxenes, 
garnet (Fig. l ) ,  Re metal, or FeNiCoRe alloy 
and silicate melt (quenched to a glass), as 
well as minor amounts of hercynitic spinel 
(see Table 1); phases were analyzed by elec- 
tron microprobe and secondary ion mass 
spectrometry (1 1, 12). Evidence for the at- 
tainment of equilibrium during the runs was 
provided by the measured garnet-liquid ex- 
change distribution coefficient, KdFeO-Mfl 

[(xg, ~ 2 f l ) l ( ~ k ' o  - XGfl)I 

where X = mole fraction (Table 1) and 
gametlliquid partition coefficients [D = 

(weight % element in gamet)/(weight % 
element in liquid)] DLa, Gd, Yb, which are in 
agreement with previous work (1 3, 14). 

The data show that Re is compatible in 

garnet [in an average of four runs, D = 2.7 
(Table I)]; thus, garnet is a host phase for Re 
during melting of the mantle. Conversely, 
Re is incom~atible in ortho~vroxene (Table . , 
l ) ,  clinopyroxene, and olivine (5). For these 
vartition coefficients. 35 to 95% of the Re in 

typical gamet peridotite would be hosted 
by garnet, depending on how strongly Re 
partitions into an Fe-Ni sulfide phase (15). 

Ocean island basalts have lower Re con- 
tents than MORB [mean MORB Re = 0.926 
parts per billion (ppb) (2, 16, 17), and mean 
OIB = 0.377 ppb (18, 19)]. Formation of 
both types of magmas leaves residual sulfide 
in the mantle source (20). but because var- . ,, 

tition coefficients for Re between sulfide 
liquids and silicate liquids are large, Re con- 
centrations in derivative partial melts should 
be equally buffered and there should be no 
discernible difference in the average Re con- 
tents of OIBs and MORB. If the presence of 
residual sulfide had any differential leverage 
on the Re contents of magmas, it might be 
expected that MORB would have lower Re 
contents than OIBs, because the lower rela- 
tive fO2 during MORB genesis (10) would 
favor partitioning of Re into the sulfide. The 
lower Re contents of OIBs. however. are iust 
the opposite of this expedtation, ikdica;ing 
that another phase is involved. Our data 
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Fig. 2. Mantle melting relations for Re and Yb. (A) Melting with no residual and occupy a different area inthe Re-Yb diagram; OIB Re-Yb characteristics 
garnet. The positive trend for peridotites and komatiites is consistent with the can be modeled by equilibrium melting of mantle with residual sulfide (fixed at 
incompatibility of both elements during large degrees of mantle melting, 0.088%) and gamet (0 to 14%; diagonal lines). The uppertrend is for a mantle 
where no sulfide or garnet would be left in the residuum; the diagonal line with 0.40 ppb of Re, and the lower trend is for a mantle with 0.15 ppb of Re; 
shows the expected trend during equilibrium melting of peridotite, starting this represents the range of Re contents in fertile mantle (34). Most picrites 
with 0.28 ppb Re and 0.40 parts per million (ppm) Yb. The Re concentrations can be produced by melting of a mantle that is sulfide-free but garnet-rich, 
for MORB that plot below this trend are consistent with the presence of small whereas ferropicrites can be generated by melting of a mantle that is sulfide- 
amounts of sulfide liquid in the residual mantle during melting. The horizontal and garnet-free. The vertical line is for f = 0.02; the steep diagonal dashed 
line represents the variation produced by variable degrees of melting with line is the same as the diagonal line in (A). PUM, primitive upper mantle. Both 
0.088% residual sulfide in the mantle-the amount expected from fertile of the shallow diagonal trends are for f of 0.02, XoIiv,,, = 55 to 60%, Xopx = 
mantle with 300 ppm S (3). The vertical line represents the effect of increasing 20 to 25%, and X,, + X,,,, = 20% of the solid mantle. Partitioning data for 
or decreasing the amount of residual sulfide present in the residual mantle for Re are from (9, ( 7  6), and this study, and for Yb from (35). For Re: D(oliv) = 

afixed melt fraction (f) of 0.05. Both of the calculated trends for MORB are for 0.01 ; D(opx) = 0.18; D(cpx) = 0.03; D(gamet) = 2.7; and D(sulf) = 900. For 
Xol,v,n, = 55 to 60% and Xopx = 20 to 25%, and X,,, = 20% of the solid Yb: D(oliv) = 0.03; D(opx) = 0.03; D(cpx) = 0.5; D(garnet) = 3; and D(sulf) = 

mantle, where X is the mole fraction. (B) Melting with residual garnet. Many 0. Sources of Re and Yb data are peridotite with AI,O, > 3.0; (34), MORB (2, 
picrites and OlBs have even lower Re contents than MORB (shaded area) 7 7), komatiite (27,28), OlBs (18, 19), and picrites (23,24). 
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im~lv  that the Re abundances of MORB can . , 
be modeled by melting a garnet-free but 
sulfide-bearing residuum (Fig. 2A), consis- 
tent with their low platinum group element 
(PGE) abundances and subdued garnet rare 
earth element (REE) signature. Oceanic is- 
land basalts can be generated with a garnet- 
and sulfide-bearing residuum (Fig. 2B). For 
comparison, komatiites and some basaltic 
tholeiites with high Re concentrations can 
be derived by melting with no residual gar- 
net or sulfide in the source (Fig. 2A). In a 
plot of Re and Yb, these lavas, together with 
mantle ~eridotite. form a ~ositive trend with 
a slope of unity, as expected for two incom- 
patible elements (Fig. 2A). 

The low bulk Re concentrations of many 
picrites have been difficult to explain by the 
presence of residual sulfide in the mantle 
source (21). Many picrites and komatiites 
are not sulfide saturated (20), as indicated by 
their high PGE concentrations. Our data 
imply that many picrites [for example, Karoo 
(22) and Siberia (23) (Fig. 2)] can be derived 
by melting with a garnet-bearing but sulfide- 
free residuum, consistent with their REE and 
high PGE abundances. Although isotopic 
data from the Karoo and Siberia localities are 
also consistent with the involvement of old, 

Re-depleted, subcontinental lithospheric 
mantle, such a source is not available be- 
neath Hawaii. where some of the lowest Re 
contents havd been measured in the Hawai- 
ian Scientific Drilling Project picrite sam- 
ples (18). Ferropicrites from the Pechenga 
region (24), on the other hand, have Re 
contents as high as those in komatiites but 
are believed to be sulfide saturated. On the 
basis of major and trace element data, it 
appears that garnet was not present in the 

mantle residuum of these picrites (24), and 
thus the high Re contents of ferropicrites 
relative to those of more normal picrites may 
be attributed to the absence of garnet in 
their melting residuum. 

Mass balance calculations (3 ,4)  indicate 
that the crustal abundance of Re is too low 
by a factor of 10 to balance the depletion of 
Re in the MORB mantle (depleted modem 
mantle), which suggests that there is an un- 
identified reservoir of Re (Fig. 3). Some have 

I?, Pmterozoic/Archean 
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MORR 

0.01 
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Table 1. Summaty of experimental and analytical results. Starting composi- Park garnet (9). Phase abbreviations are as follows: gl, glass; opx, orthopy- 
tion: 50% SiO,, 13% AI,03, 19% FeO, 11 % CaO, and 7% MgO; doped with roxene; cpx, augite; gt, garnet. AFMQ is the b2 of an experiment relative to 
5% ReO, by weight. Runs  60,62, and 69 were also seeded with natural Buell the fayalite-magnetite-quartz buffer (33). 

A 

ave rap  of ProterozolcIAi-chean I \&/ - 
- &&g c z 

Run no. 
Duration (hours) 
Pressure (GPa) 
Temperature ("C) 
logf,? (AFMQ) 
Phases 
Proportions (%) 
Phase n 
SiO, 
AI203 
FeO* 
MgO 
CaO 
NiO 
coo  
Re ( P P ~ )  
Mg no. 
Total* 
Phase n 
SiO, 

"? 

MgO 
CaO 
Re ( P P ~ )  
Mg no. 
Total 
DRe (xtal/liquid) 
KdF*-MgO (garnevliquid) 
DL" (gamevliquid)? 
DGd (garnevliquid) 
Dm (garnevliquid) 

(ppm) for mantle (DMM, depleted 
modern mantle) and crustal (CC, 
cont~nental crust) reservoirs (3), to- 
gether wlth data from Proterozoic/ 

KR-47 
24 

1.55 
1300 

-10.6 (-4.8) 
gl:opx:gt 
60:20:20 
Glass 3 

45.3 (4) 
11.6 (2) 
28.50 (1 2) 
3.7 (1) 
9.29 (6) 

B - 7 Archean komat~~tes (27), and tholel- n - 
&@(PUh.Il , A  i ltes (27, 29). MORB and OIB sam- B 

t -  - s 'z : '* ples are the same as those present- " 1 D W W  , 7 3 + * * 7 @  - ed ~n Flg. 2 
n ., . 

- 
0 " 

. . 
ND 

0.23 (2) 
1.2 + 0.8 
0.21 

98.61 
Garnet 10 
38.2 (3) 
21.4 (4) 
26.60 (6) 
6.6 (1) 
6.98 (6) 

3.6 ? 1.1 
0.31 

100.09 
3.0 (+9.0,-1.8) 

0.52 
0.0037 
0.035 
8.3 

Re-60 
48 

1.65 
1250 

-8.6 (-2.5) 
gl:opx:sp 
30:60: 10 
Glass 3 

52.8 (4) 
13.0 (6) 
14.18 (8) 
4.1 (1) 
9.76 (4) 

ND 
0.25 (1) 
130 + 2 
0.33 

94.10 
Opx 8 

51.6 (6) 
3.7 (1) 

22.83 (12) 
20.5 (3) 
2.03 (3) 
26 ? 3 
0.46 

101.27 
0.1 8 (+0.04,-0.01) 

- 
- 

Re-62 
24 

1.85 
1250 

-8.4 (-2.3) 
g1:opx:cpx:gt 
10:40:40:10 

Glass 5 
52.1 (3) 
13.1 (2) 
17.92 (1 5) 
3.1 (1) 

11.24 (5) 
0.04 (1) 
0.02 (1) 
24 + 4 
0.23 

97.45 
Garnet 6 

39.3 (2) 
21.1 (4) 
24.87 (1 1) 
7.6 (1) 
8.61 (4) 

115 ? 25 
0.35 

101.43 
4.8 (+2.2,-1.6) 

0.56 
0.01 10 
0.077 
2.0 

KR-55 
23.5 

1.50 
1350 

- 10.2 (-4.3) 
gl:gt:opx 
50:35:15 
Glass 9 

43.2 (6) 
9.4 (2) 

32.78 (1 5) 
3.0 (2) 
9.68 (4) 

ND 
0.26 (2) 

4.7 + 1.4 
0.14 

98.40 
Garnet 10 
38.1 (3) 
21.5 (4) 
27.24 (1 0) 
5.5 (1) 
8.21 (4) 

6.5 + 1.8 
0.26 

100.77 
1.4 (+1.1,-0.6) 

0.46 
0.035 
0.060 
6.2 

Re-69 
26 

2.00 
1275 

-8.4 (-2.5) 
g1:gt:opx:cpx 
40:45:15:5 

Glass 2 
45.9 (5) 
13.0 (3) 
22.38 (1 3) 
3.7 (1) 

10.04 (6) 
0.96 (3) 

ND 
11.3 + 1.5 

0.23 
96.02 
Garnet 10 
38.7 (2) 
21.9 (4) 
25.90 (1 1) 
7.5 (1) 
6.76 (3) 

16.2 + 1.8 
0.34 

100.79 
1.4 (+0.4,-0.3) 

0.59 
0.16 
0.37 
6.4 

*The slightly low totals for glasses 60, 62 and 69 are due to impurities (not reported in the table) introduced by the garnet: Ti, Na, Cr, Ni, and Mn; n, number of points analyzed by 
microprobe; ND, not detected. Units in parentheses represent 2u of replicate analyses in terms of the least units cited. tDLa, Gd, and Yb (garnewliquid) are based on the ratio 
of counts normalized to 30Si. 
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argued that there may be a large percentage 
of garnetite in the transition zone (25); 
this layer inight have originated by segre- 
gation of garnet from a rnagllla ocean and 
remained stable during mantle convec- - 
tion. Dense silicate melt trapped in the 
deep mantle after crvstalliratiol~ of a n  ear- 
ly i ~ a g m a  ocean lnay also be capable of 
seq~lestering Re. But the lnost likely sce- 
ilario is that continuous subduction of 
oceanic crust to form eclogite introduces 
garnet-rich and thus Re-rich inaterial into 
the inantle where it is stored. This last 
hypothesis is supported by correlatiolls of 
0 s  isotopes a.ith isotopes of Sr, Nd,  Pb, 
and 0 in  OIBs, as well as numerous other 
trace elelllent and isotopic data that are all 
coi~sistent with recycling of basaltic crust 
(3, 19, 26) .  A mass of 2.6 X grams of 
oceanic crust, introduced into the inantle 
over 4.5 bill1011 years, would require only 
3.650 ppb of Re to balance the Re deple- 
tion of the upper mantle (4'). This con- 
centration is within the range of Re con- 
tents of typical hlORB [average = 0.926 
ppb (2, 1 j)] and Proterozoic/Archean ba- 
saltic rocks [average = 0.848 ppb (27- 
29)l.  Subducted Proterozoic and .Archean 

, A  

ultramafic volcal~ic rocks could potential- 
ly account for all the missing Re and could 
balance the low Re/Yb ratios of the deplet- 
ed mantle and the continental crust, be- 
cause these rocks have Re/Yb ratios well 
above the primitive mantle ratio (Fig. 3) .  

The coupled behavior of Re and Yb in 
oceanic basalts argues against core-mantle - " 

interaction to explain the enriched 0 s  iso- 
tope signatures of OIBs coinpared to MORB. 
Rhenium, a highly siderophile element, is 
concei~trated in the core, in such a wav that 
addition of even 1 weight 46 core material to 
OIB sources (33) \vould result in higher Re 
and Re/% in OIBs than in hfORB, which is 
opposite to what is actually observed (Fig. 
2B). Garnet-enriched recycled oceanic crust 
is a inore likelv source 131 ) .  Subducted ba- 
saltic crust is i i~~roduced into the upper man- 
tle with an initially high Re/Os ratio. Within 
the stability field of garnet (> 93 to 103 
km), Re could be retained during dehvdra- 

u 

tioil or melting of the slab, and thus garnet 
may play a role in preserving the high Re/Os 
ratio (and, with time, high 0 s  isotope ratio) 
of slab material during subduction zone pro- 
cessing. Elevated 0 s  isotopes should thus be 
a sensitive lildicator of recvcled basaltic ma- 
terial, as Indicated by 0 s  Isotope data for 
ailciei~t pyroxenites and eclogites (6, 8, 28). 
The high 0 s  isotopic coinpositiol~s of OIBs, 
together ~171th the evldence that Re 1s corn- - 
patible in garnet, implies that the sources of 
mantle plumes contaln inost of the Re, 
which has been apparently removed from 
the upper mantle, and that this Re resides in 
recycled oceailic crust. 
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Integrated Optoelectronic Devices Based on 
Conjugated Polymers 

Henning Sirringhaus,* Nir Tessler, Richard H. Friend* 

An all-polymer semiconductor integrated device is demonstrated with a high-mobility 
conjugated polymer field-effect transistor (FET) driving a polymer light-emitting diode 
(LED) of similar size. The FET uses regioregular poly(hexylthiophene). Its performance 
approaches that of inorganic amorphous silicon FETs, with field-effect mobilities of 0.05 
to 0.1 square centimeters per volt second and ON-OFF current ratios of >lo6. The high 
mobility is attributed to the formation of extended polaron states as a result of local 
self-organization, in contrast to the variable-range hopping of self-localized polarons 
found in more disordered polymers. The FET-LED device represents a step toward 
all-polymer optoelectronic integrated circuits such as active-matrix polymer LED displays. 

Solution-processible conjugated polymers 
are among the most promising candidates 
for a cheap electronic and optoelectronic 
technology on plastic substrates. Polymer 
LEDs exceeding peak brightnesses of lo6 cd 
m-2 ( I  ) and high-resolution video polymer 
LED displays (2 )  have been demonstrated. 
One of the main obstacles to all-polymer 
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optoelectronic circuits is the lack of a poly- 
mer FET with sufficiently high mobility and 
ON-OFF ratio to achieve reasonable 
switching speeds in logic circuits (3) and to 
drive polymer LEDs. 

Conjugated polymer FETs (4) typically 
show field-effect mobilities of k,, = 

to cm2 V-l s-' , 1' lmited by variable- 
range hopping between disordered polymer 
chains and ON-OFF current ratios of <lo4 
(5). This is much too low for logic and 
display applications, and therefore all previ- 

Fig. 1. (A) Cross section of the integrated P3HT FET and MEH-PPV LED. The device IS a part 
(shown inside the dashed area in the top left corner) of a full active-matrix polymer LED pixel. The 
lamellar structure of the regioregular P3HT and ~ t s  orlentation relative to the SIO, substrate and 
the direction of the in-plane FET current I, are shown schematically. (B) Photograph of a FET-LED 
wlth one of the four "plxels" switched on. The MEH-PPV layer (orange) was made to cover the 
substrate only partially in order to make the underlying (blueish) P3HT layer visible. 

ous approaches to drive polymer LEDs have 
used polycrystalline (2 )  or amorphous silicon 
(a-Si) (6) technology. Recently, a polymer 
FET with a mobility of 0.01 to 9.04 ctn' V-' 
s-' and an ON-OFF ratio of 102 to 104 using 
regioregular poly(hexy1thiophene) (P3HT) 
was described (7). The high mobility is re- 
lated to structural order in the polytner film 
induced by the regioregular head-to-tail 
(HT)  coupling of the hexyl side chains. 
However, a clear understanding of the trans- 
port mechanism giving rise to the relatively 
high mobilities is still lacking. 

Here, we report a considerably improved 
P3HT FET reaching mobilities of 0.05 to 
0.1 ctn2 V-' s-' and ON-OFF ratios of 
>lo6,  the performance of which starts to 
rival that of inorganic a-Si FETs and en- 
ables us to demonstrate integrated optoelec- 
tronic polymer devices. As an example, we 
have chosen a simple pixel-like configura- 
tion in which the FET supplies the current 
to a polytner LED. This allows us to assess 
the prospects of active-matrix addressing in 
all-polymer LED displays. 

To construct the tnultilayer device (Fig. 
lA) ,  we first fabricated the FET byo spin- 
coating a film of P3HT (500 to 700 A )  (8) 
gnto a highly doped nt-Si wafer with a 2309 
A SiO, gate oxide (capacitance C, = 15 nF 
~ m - ~ ) .  Au source-drain contacts were depos- 
ited onto the P3HT through a shadow mask. 
Then, a layer of SiO, was thermally evapo- 
rated through another, mechanically 
aligned, shadow mask to define the active 
LED area on the finger-shaped Au FET drain 
electrode acting as the hole-injecting anode 
of the LED. A single layer of poly[2-me- 
thoxy-5-(2'-ethyl-hexyloxy)-p-phenylene- 
vinylene] (MEH-PPV) was spin-coated on 
top. Evaporation of a semitransparent Ca-Ag 
cathode completed the device. No photo- 
lithographic steps were involved. The device 
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