exploited to construct reporter strains for
the rapid screening of novel inhibitors of
these critical constituents of the mycobac-
terial cell wall.
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Axonal Swellings and Degeneration in Mice
Lacking the Major Proteolipid of Myelin
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Glial cells produce myelin and contribute to axonal morphology in the nervous system.
Two myelin membrane proteolipids, PLP and DM20, were shown to be essential for the
integrity of myelinated axons. In the absence of PLP-DM20, mice assembled compact
myelin sheaths but subsequently developed widespread axonal swellings and degen-
eration, associated predominantly with small-caliber nerve fibers. Similar swellings were
absent in dysmyelinated shiverer mice, which lack myelin basic protein (MBP), but
recurred in MBP*PLP double mutants. Thus, fiber degeneration, which was probably
secondary to impaired axonal transport, could indicate that myelinated axons require

local oligodendroglial support.

Proteolipid protein (PLP) is a four-helix—
spanning membrane protein thought to sta-
bilize the ultrastructure of central nervous
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system (CNS) myelin by forming the dou-
ble-spaced intraperiod line (IPL), but nei-
ther PLP nor its splice isoform DM20 is
required for spiral membrane wrapping and
myelin compaction ([). Mutations of the
X-linked PLP- gene (2) cause Pelizacus-
Merzbacher disease (PMD) and spastic para-
plegia—2 (SPG-2) in humans and related
disorders in animal models, such as the jimpy
(jp) mouse, characterized by premature
death of oligodendrocytes and dysmyelina-
tion. However, the severe consequences of
spontaneous PLP mutations are explained, at
least in part, by the toxicity of the encoded
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polypeptide when misfolded (3).
PLP-DM20-deficient mice containing a
null allele develop normally and assemble
compacted myelin of appropriate thickness
enwrapping small- and large-caliber axons
(1). Although the IPL of myelin in these
mutants is frequently condensed, oligoden-

drocytes are morphologically normal. Unex-
pectedly, from the age of 6 to 8 weeks,
increasing numbers of focal axonal swellings
containing organelles were detected
throughout the white and gray matter in all
regions of the CNS, particularly in areas
where small-diameter myelinated axons pre-

dominate, such as in optic nerves (4). Most
spheroids contained numerous dense bodies,
multivesicular bodies, and mitochondria
(Fig. 1, A and B), often located at the pre-
sumptive distal paranode (Fig. 1B). The my-
elin sheath was preserved over small accu-
mulations of organelles, but became focally

Fig. 1 (left). Axonal spheroids containing membranous organelles in (A)
transverse section of the spinal cord and (B) longitudinal section of the optic
nerve from a 4-month-old Plp—/Y mouse. Secondary attenuation of the
myelin sheath as a result of slipping is apparent in (A). Axonal swellings often
commenced in the paranodal region (B) adjacent to the node of Ranvier (N).
(C and D) Large spheroids in the optic nerve of a 1-year-old Plp—/Y mouse.
The swellings in (C) contain predominantly neurofilaments with some or-
ganelles, whereas those in (D) contain mainly membranous organelles. As
swellings enlarge, the myelin sheath retracts and is eventually lost over the
swollen region of the axon [in (C)]. (E) MBP*PLP-deficient double mutants
display spheroids identical to those of PLP-deficient mice. All axons are
dysmyelinated and many retain an association with ensheathing oligoden-
drocyte processes. No such swellings were detected in MBP-deficient (shiv-
erer) mice. Bars: 1 um (A, B, and E); 2 um (C and D). Fig. 2 (right). (A)
Cerebellar cortex from a 4-month-old Pip—/Y mouse immunostained with
antibody RM024 recognizing phosphorylated NF (72) revealing swellings
(filled arrows) in Purkinje cell axons. The cell body of one Purkinje cell (open
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arrow) contains phosphorylated NFs, suggesting that its axon has degener-
ated. (B) Degenerating (filled arrow) or swollen (open arrow) small-caliber
fibers are apparent in the fasciculus gracilis of a 22-month-old Plp—/Y
mouse. The density of myelinated axons is decreased, indicating axonal loss.
In contrast (C), degeneration is not apparent and myelin sheaths are intact in
the ventral columns of spinal cord from the same mouse. (D) Proximal region
of optic nerve from a 22-month-old Pip—/Y mouse. Low-power micrograph
shows the retina and optic disc (O), the area of the lamina cribrosa (between
the retina and the large arrow), and the more distal myelinated region of the
nerve (to the right of the large arrow). Some large axonal swellings are visible
(small arrow). (E) Unmyelinated axon from lamina cribrosa area of the optic
nerve in (D). The axon, surrounded by astrocyte processes, is normal. (F) A
myelinated axon at a level just to the right of the large arrow in (D) shows
accumulation of organelles at the distal paranode and node (N). The retinal
end is to the left. Bars (Eand F): 1 pm. ’
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attenuated and eventually lost through slip-
page (5) as swellings enlarged (Fig. 1, C and
D). The normal periaxonal space was main-
tained as predicted by the presence of myelin-
associated glycoprotein (I). By 1 year of age,
numerous large axonal swellings were present
in the optic nerve and spinal cord (Fig. 1, C
and D). A smaller proportion of swellings,
such as those of Purkinje cell axons (“torpe-
does”), were rich in phosphorylated neurofila-
ments (NFs) (Fig. 2A), but failed to stain with
antibodies recognizing dephosphorylated NF
epitopes (6). There was no apparent increase
in the number of degenerating fibers in the
distal compared with the proximal optic
nerve, suggesting that the presence of axonal
spheroids was not followed immediately by
fiber breakdown. At this time, PLP-deficient
mice were normal when tested for motor per-
formance on a rotarod (1). In animals older
than 1 year, axonal degeneration was more
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Fig. 3. Loss of motor control in aged PLP-defi-
cient mice. (A to C) A cohort of Plp—/Y mice (n =
6) and age-matched controls of the same sex (n =
6) were tested on the rotarod at 6, 12, and 16
months of age (8). The holding time of 16-month-
old mutant mice (n = 5, one animal died) was
decreased compared with WT littermates, which
is not apparent at younger ages (7). The motor
performance of WT mice was not significantly dif-
ferent between age groups. Error bars are stan-
dard deviations.
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prominent in the optic nerve and fasciculus
gracilis (Fig. 2B), indicating a slow, progres-
sive loss of fibers with age, although neuronal
cell loss was not apparent. Increased numbers
of microglia and a mild astrocytosis accompa-
nied these degenerative changes (7). Occa-
sional inner-tongue processes of oligodendro-
cytes contained degenerate organelles. No
swellings were detected in wild-type (WT)
littermates or in 129/Sv mice, the strain from
which the embryonic stem cells were derived.
At older ages, the motor performance of
mutant mice appeared altered when the ani-
mals’ gait was unusually slow and showed
signs of spasticity. To quantify these observa-
tions, we performed a rotarod test (8) and
studied, in a follow-up, a cohort of mutant and
WT mice between 6 and 16 months of age.
We observed a sudden impairment of motor
functions in 16-month-old mice (Fig. 3) with-
out any corresponding evidence of demyelina-
tion, for up to at least 22 months (Fig. 2C).
Thus, the behavioral phenotype was most
likely associated with a threshold effect in the
progressive degeneration of CNS axons.
Whereas a null allele of the human PLP
gene is associated with a mild peripheral
neuropathy (9), our PLP-deficient mice
showed no peripheral involvement, even at
22 months of age. Specifically, axons of
dorsal root ganglia neurons (which project
centrally through the affected fasciculus

-gracilis) " appeared normal. This, and the

absence of neurogenic atrophy in skele-
tal muscle, argues against a major periph-

-
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Fig. 4. Quantitation of axonal changes in the optic
nerve of PLP/DM20-deficient mice and rescue
by transgenic complementation. The combined
number of CNS axons, showing abnormal swell-
ings or degeneration, was guantified in cross sec-
tions of the mid-optic nerve. In each experiment,
the relative proportion of axonal swellings and de-
generation profiles was roughly equal (not shown).
Complete transgenic complementation was
achieved with an autosomal PLP/DM20 genomic
transgene (tg72) (710). A partial rescue was ob-
served with both a PLP ¢cDNA (Plp-tg) and a DM20
cDNA (Dm20-tg) construct, driven by the human
PLP promoter (71). Also shown are the changesin
female heterozygous mice (Plp+/—), whose optic
nerves contain a mosaic of PLP+ and PLP— my-
elin sheaths. Each bar represents the mean
(=SEM) of four mice aged 4 months, with the
exception of the heterozygotes (n = three mice).

eral component of the decreased motor
performance.

To demonstrate that the absence of pro-
teolipids was the responsible defect, we com-
plemented the mutants (Plp—/Y) with a WT
PLP genomic transgene (10) expressing both
PLP and DM20 at nearly normal levels (line
tg72). The presence of this transgene com-
pletely prevented the axonal pathology in
Plp—/Y*tg72 offspring (Fig. 4). Next, we ex-
amined the ability of each isoform, PLP and
DM20, to rescue the null mutant. This was
achieved by two PLP and DM20 c¢DNA-
based transgenes under control of the human
PLP promoter [expressing 70 and 50% of the
normal RNA level (11)]. The presence of
PLP or DM20 in myelin reduced the axonal
changes by 84 and 60%, respectively (Fig. 4),
suggesting that both PLP isoforms serve, in
principle, the same function.

Myelin-forming glial cells modify axonal
morphology (12), but the molecular mecha-
nisms are not known. Schwann cell dysmy-
elination, caused by mutations of the Pmp22
and PO genes, has also been associated with
perturbations of the axonal cytoskeleton and
fiber degeneration (13). However, the major
changes in myelin volume and composition
make it difficult to evaluate the contribution
of individual myelin components. This is
markedly different in Plp—/Y mice, in which
oligodendrocytes elaborate and maintain ap-
propriately thick myelin sheaths. We exam-
ined 4-month-old shiverer (shi) mice, which
lack myelin basic protein (MBP), the second
most abundant CNS myelin protein (14).
Although the CNS of shi/shi mice is poorly
myelinated and myelin sheaths lack compac-
tion, no similar spheroids were detected. In
contrast, shi/shi*Plp—/Y double mutants were
severely hypomyelinated, but in addition
contained the axonal spheroids (Fig. 1E).
Thus, axonal swellings appeared to be related
to the absence of PLP-DM20 and not to
morphologically abnormal myelin.

Because we never observed axonal pathol-
ogy in normal nonmyelinated fibers, we hy-
pothesized that glial ensheathment provides a
necessary signal that induces the axonal de-
pendency on glial support. To distinguish be-
tween possible signaling mechanisms that
could be either localized (glia to axon) or
long-range (glia to neuron), we studied the
optic nerve in mouse chimeras. Because of
random X chromosome inactivation, both
jp/+ and Plp+/— females are mosaics for Plp
gene expression so that axonal internodes
have an equal probability of myelination by
WT or mutant oligodendrocytes. In jp/+
mice, mutant oligodendrocytes fail to myelin-
ate, leaving patches of naked axons (15). In
contrast, all optic nerve axons in Plp+/—
females are normally enwrapped, with about
50% of internodes surrounded by PLP-defi-
cient myelin (I). In adult Plp+/— chimeras,
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we identified all the morphological signs of
axonal swelling and degeneration, although
less frequently than in Plp—/Y mice (Fig. 4).
Thus, optic nerve axons had become depen-
dent on oligodendrocyte function along their
entire length, and WT oligodendrocytes were
unable to support adjacent axonal segments
enwrapped by PLP-deficient myelin. Oligo-
dendrocytes therefore serve a localized func-
tion. In contrast, the nonmyelinated patches
of adult jp/+ mice showed no axonal swell-
ings. Thus, unmyelinated axonal segments of
the optic nerve were not oligodendrocyte de-
pendent, a conclusion supported by the ab-
sence of swellings in the normally unmyeli-
nated proximal regions in Plp—/Y mice (Fig.
2, D to F). Taken together, the glial-to-axon
signaling requires intimate cellular interaction
and is also localized. The nature of the signal-
ing molecule is currently unknown, but be-
cause PLP-DM20—deficient oligodendrocytes
generated this signal after myelination, it can-
not be PLP or DM20 itself.

The normal development of myelin in
PLP-deficient mice followed by progressive
axonal degeneration was unexpected. The ax-
onal defect is best explained if we assume a
deficiency of an oligodendroglial function
that relates to the maintainance of axonal
-integrity. The accumulation of membranous
dense bodies and mitochondria at distal para-
nodes strongly suggests an impairment of ret-
rograde axonal transport (16), and the NF
swellings may indicate that slow anterograde
transport is also compromised, but both will
require direct confirmation. It is likely that
the complete breakdown of axonal transport
at sites of swellings progresses to axonal degen-
eration before other mechanisms, such as neu-
ronal target deprivation, produce this effect.

Although a supportive function of oligo-
dendrocytes is the most likely explanation
of the phenotype under study, two related
explanations cannot be formally excluded:
(i) The absence of PLP-DM20 from myelin
could provide a hostile environment in
which axons alter their behavior; (ii) PLDP-
deficient oligodendrocytes could physically
constrict  small-caliber axons, although
axon “crushes” have never been observed.
Indeed, frequency distributions of internod-
al axonal diameter in optic nerve were nor-
mal in 4-month-old Plp—/Y mice (7).

The molecular basis of glial-axonal com-
munication is poorly understood. In inverte-
brates, a direct vesicular transfer of molecules
from glia to axon has been described and may
also occur in vertebrates (17). PLP-DM20 is
localized in both compact and adaxonal my-
elin, and the proposed “channel-like” func-
tions of proteolipids (18) could be involved in
glial-axonal communication. The lack of con-
nexin-32 from peripheral nervous system my-
elin underlies a peripheral neuropathy with
axonal involvement (19).
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The low frequency of axonal spheroids in
the few myelinated nerve segments of PLP
mutants (20), such as jimpy, is probably relat-
ed to their early death. CNS axonal swellings
are also uncommon in adult rumpshaker mice
(7), presumably because their myelin sheaths
incorporate PLP-DM20 (21). The predilec-
tion for small-caliber axons is striking; for
example, those of the fasciculus gracilis (di-
ameter, 0.96 = 0.04 wm, mean = SEM) are
affected, but the contiguous larger axons of
the fasciculus cuneatus (2.39 = 0.18 wm)
appeatr, at least morphologically, intact. The
reason (or reasons) for the predilection of
small-caliber axons is presently unclear.

We suggest a model for neuron-glia inter-
actions in which CNS axons become depen-
dent on oligodendrocyte support some time
after myelination has been completed. Ac-
cordingly, oligodendrocytes may provide both
myelin for rapid impulse conduction and long-
term support for axons, a function for which
proteolipids and presumably other proteins
are required. Whether this function involves
the putative channel-like property of PLP
(18) awaits further investigation. The princi-
ple finding of an oligodendrocyte-dependent
axonopathy is relevant to human demyelinat-
ing diseases, including multiple sclerosis,
where axonal degeneration is now recognized
as a major cause of persistent disability (22).
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