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In hi bi tion of a Mycobacterium tuberculosis 
P-Ketoacyl ACP Synthase by lsoniazid 
Khisimuzi Mdluli, Richard A. Slayden, YaQi Zhu, 

Srinivas Ramaswamy, Xi Pan, David Mead, Deborah D. Crane, 
James M. Musser, Clifton E. Barry Ill* 

Although isoniazid (isonicotinic acid hydrazide, INH) is widely used for the treatment of 
tuberculosis, its molecular target has remained elusive. In response to INH treatment, 
saturated hexacosanoic acid (C26:O) accumulated on a 12-kilodalton acyl carrier protein 
(AcpM) that normally carried mycolic acid precursors as long as C50. A protein species 
purified from INH-treated Mycobacterium tuberculosis was shown to consist of a co- 
valent complex of INH, AcpM, and a p-ketoacyl acyl carrier protein synthase, KasA. 
Amino acid-altering mutations in the KasA protein were identified in INH-resistant patient 
isolates that lacked other mutations associated with resistance to this drug. 

INH is a front-line drug of choice for the 
treatment of tuberculosis (1).  Despite the 
apparent simplicity of its chemical struc- 
ture, the mode of action of this drug is 
complex. INH is a prodrug that requires 
activation by the lnycobacterial catalase- 
peroxidase enzyme (KatG) to an active 
form that then exerts a lethal effect on  an 
intracellular target or targets (2-4). Because 
of physical and biochemical changes occur- 
ring coincident with INH toxicity, it has 
been proposed that the lethal effect lies in 
the biosynthetic pathway for mycolic acids 
( 2 ,  5-7). The  detrimental effect of INH on 
mycolic acid synthesis exactly parallels the 
time course of the loss of Mgcobacterium 
tuberculosis viability and is accompanied by 
an accu~nulation of saturated hexacosanoic 
acid (C26:0), implicating this fatty acid as 

K. Mdlul~. R. A Savden. Y. Zhu, D. Mead, D D. Crane. 

an intermediate in the biosynthetic path- 
way that produces mycolic acids (8-1 1 ) .  

The majority of INH-resistant cllnical 
isolates become resistant by losing or alter- 
ing KatG activity, not by mutation of the 
target of the activated prodrug (12, 13). 
Despite considerable effort, identification 
of the INH target in M. tuberculosis by 
genetic approaches has not been accom- 
plished (14). However, a library of DNA 
fragments from a resistant strain of the fast- 
grov:ing saprophyte M. smegmatis \\:as used 
to isolate a putative target designated InhA 
(15). InhA is an NADH-dependent enoyl- 
[acyl carrier protein] (ACP) reductase with 
a chain-length specificity centering at 16 
carbons 116. 17). Reconciline the catalytic 
function'of 1 n h k  (reduction i f  an unsaiur- 
ated fattv acid) with the observed biochem- 
ical corrilate of toxicity (accumulation of a 
saturated fattv acid) has been extremel~r 

C. E. Barry Ill, ~ube;cuoss Research Unlt, Laborarory of difficult. Furthermore, this targe; 
lntracellular Parastes, Rocky Mountan Laboratores, Na- 
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S. Ramaswamy. X. Pan, J. M Musser, nstltute for the same constructs induce ollly lom, levels of 
Study of Human Bactera Pathogenesis. Department of 
Pathology, Bay:or College of idediclne, Houston, TX resistance M. ( to  pgIm1j 
77030. USA. while KatG wild-type clinical isolates resis- . -  
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of M. tuberculosis has revealed mutations in 
putative regulatory regions upstream of the 
inhA gene and potential coding sequence 
mutations that may be directly involved in 
INH resistance. but these occur onlv in a 
subpopulation bf INH-resistant, wild-type 
catalase-peroxidase isolates (1 3, 18-21 ). 
Thus, although the InhA protein may be 
involved in INH-resistance. it vrobablv 
does not represent the target whose inhibi- 
tion results in hexacosanoic acid accumula- 
tion, and mutations in InhA and KatG do 
not appear to be sufficient to account for all 
of the observed resistance (14). 

To identify this enzymatic target, we ex- 
amined two-dimensional gel electrophoretic 
protein profiles of M. tuberculosis in response 
to low-level INH treatment (1 pglml), a 
condition that induces the accumulation of 
hexacosanoic acid (Fig. 1A). Pulse-labeling 
with [35S]methionine revealed two protein 
species of 12 and 80 kD that were signifi- 
cantly up-regulated. [14C]Acetate labeling 
under the same conditions showed that the 
12-kD protein accumulated with bound lipid 
(22). The NH2-terminus of this protein was 
determined to be PVTQEEIIAGIAEIIEEV- 
TGIEPSEIT (23). Pooling of two-dimen- 
sional gel fragments containing the 80-kD 
protein from 100 gels indicated that its NH2- 
terminal sequence was identical to that de- 
termined for the 12-kD protein. Searching of 
the recently completed mycobacterial ge- 
nome revealed that this sequence is present 
in M. tuberculosis only once (Rv2244) where 
it corresponds to the NH2-terminus of a 
12,492-dalton ACP. 

ACPs are small ~roteins covalentlv 
modified by the attachment of phospho: 
~antetheine that function to c a m  the 
growing fatty acyl chain between compo- 
nent enzymes of Type I1 fatty acid synthase 
(FAS) systems (24). The mycobacterial 
protein was similar to a family of ACPs with 
the highest identity to FabC from Strepto- 
myces glaucescens (25). AcpM was purified 
to homogeneity by taking advantage of the 
solubility of ACPs in 80% ammonium sul- 
fate and their insolubility upon subsequent 
acidification of such supernatants (Fig. 1B) 
(26). Native gel electrophoresis of whole- 
cell lysates showed that this small ACP 
accumulated after INH treatment (Fig. lB, 
lanes 1 and 2) (27). Purified AcpM from 
INH-treated cells was sa~onified. and the 
methyl esters of the attached lipids were 
analyzed by reversed-phase thin-layer chro- 
matography (TLC) revealing predominant- 
ly hexacosanoic acid, although fatty acids as 
small as palmitate were also observed in 
lower abundance (Fig. lC, lane 4). Identi- 
cal samples analyzed by argentation TLC 
confirmed that the accumulated fatty acids 
were fully saturated (22). AcpM isolated 
from untreated cells carried a broader range 

of fatty acids, with abundant species of 18, 
28, and 50+ carbons (Fig. lC,  lane 3). This 
result suggests that AcpM is involved in a 
Type I1 FAS, which produces the meromy- 
colate branch of full-length mycolic acids. 

Treatment of M. tuberculosis with 
[14C]INH resulted in the labeling of a pro- 
tein whose two-dimensional electrophoretic 
mobility exactly matched that of the 80-kD 
protein (22). The 80-kD protein displayed 
considerable instability, particularly to neu- 
tral or basic conditions, but was not dissoci- 
ated by reduction, heating, or detergent. 
Subsequent analysis by two-dimensional gel 
electrophoresis demonstrated that the 80-kD 
protein was a minor component of the total 
cellular protein pool, in spite of intense spe- 
cific radiolabeling (22). Working entirely 
under neutral to moderately acidic condi- 
tions (pH 5 to 7), we purified the 80-kD 
protein species to near homogeneity from 

Fig. 1. INH-induced up-regulation of protein syn- 
thesis in M. tuberculosis H37Rv. (A) Two-dimen- 
sional gel electrophoresis of total soluble proteins 
from [35S]methionine pulse-labeled, INH-treated 
M. tuberculosis H37Rv (INH at 1 mg/ml for 30 min, 
then pulse-labeling for 15 min). Arrow 1 indicates 
the 80-kD form, and arrow 2 indicates AcpM. Un- 
treated samples are identical except for the ab- 
sence of labeled species 1 and 2. Molecular size 
standards (in kilodaltons) are indicated on the left. 
the first-dimension isoelectric focusing is run from 
basic on the left to acidic on the right. (B) We 
performed a 15% native gel electrophoresis at pH 
9.0 without SDS. Lane 1, untreated; Lane 2, treat- 
ed with INH as in (A); Lane 3, purified AcpM (26). 
(C) Autoradiogram of a reversed-phase (KC-18) 
TLC plate of methyl esters of lipids saponified from 
purified AcpM; Lane 1, [14C]tetracosanoic acid 
standard (C24:O); Lane 2, ['4C]palmitic acid stan- 
dard (C16:O); Lane 3, methyl esters of lipids sa- 
ponified from AcpM purified from untreated 
H37Rv; Lane 4, methyl esters of lipids saponified 
from AcpM from INH-treated H37Rv. 

INH-treated M. tuberculosis H37Rv lysates 
(Fig. 2, A and B) (28). The purification was 
monitored by both [35S]methionine labeling 
and immunoreactivity of an unlabeled par- 
allel preparation with affinity-purified anti- 
peptide sera specific for the NH2-terminal 
sequence of AcpM. The purified material 
(lanes 4 of Fig. 2, A and B) was base-unstable 
and could be converted quantitatively to a 
50-kD form by dialysis against a weak base 
(lanes 5). The 50-kD form retained radiola- 
bel; however, it did not react with the AcpM 
antisera and no NH2-terminal sequence 
could be obtained. 

To establish the relationship between the 
80-kD and 50-kD forms of this protein, we 
subjected excised gel slices of each protein to 
in situ trypsin digestion (29). High-perfor- 
mance liquid chromatography (HPLC) and 
radiolabeled-HPLC patterns of extracted 
tryptic peptides showed fragments common 
to both protein species and a fragment 
unique to the 80-kD form. The 80 kD-spe- 
cific fragment (peak 3 in Fig. 3A) was se- 
quenced and corresponded exactly to an in- 
ternal fragment of AcpM (highlighted se- 

Fig. 2. Purification and labeling of the 80-kD up- 
regulated protein from H37Rv. (A) Purification of 
the 80-kD protein. M ,  molecular size markers (in 
kilodaltons), indicated to the left of the gel. Lane 1, 
crude cell lysate (28); Lane 2, 70% ammonium 
sulfate pellet; Lane 3, pooled fractions from Phe- 
nyl Sepharose HIC column; Lane 4, pooled frac- 
tions from Resource Q HPLC column; Lane 5, 
sample from Lane 4 dialyzed overnight against 10 
mM NaOH at 4°C. (B) Same as (A) except the 
sample was labeled with r5S]methionine (28). 
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quence in Fig. 3B), The  five most abundant 
peptides, which were present in both the 80- 
and 50-ltD polypeptide, each mapped to in- 
ternal tryptic fragments of a single 43.3-kD 
polypeptide, KasA (Fig. 3B). 

The  precise structure of the 80-ltD spe- 
cies that contains both AcpM and KasA is 
not ltnown, although incorporation of 
[14C]INH suggested a complex containing 
both proteins and INH. Matrix-assisted la- 
ser d e s o ~ ~ t i o ~ ~ / i o n i s a t i o n  mass spectromet- 
ric analysis of the purified 80-kD species 
showed no significant high-mass species, 
but instead revealed one dominant species 
at a mass of 12,598 atomic mass units (amu) 
(22). The  Inass of apoAcpM is 12,492 arnu 
and that of the acylpyridine moiety of INH 
is 106 amu, suggesting that this fragment 
may correspond to a covalent cornplex of 
INH and AcpM (predicted mass: 12,598 
arnu). Inhibition of KasA f ~ ~ ~ l c t i o n  would be 

Table 1. Nuceotide and amno acid (23) changes 
in the cod~ng sequence of kasA in INH-resistant 
clincal isolates of M, tuberculosis. Two of these 
strains (HN335 and HN93) have no alteratons in 
KatG, InhA, or AhpC. The remainng two strans 
have KatG Sersl%hanges and show a high min- 
imum inhibitory concentration (>I 0 p.g/ml) for 
N H .  

kasA changes 

HN113 66 GAT +AAT D + N 
HN335 269 GGT +AGT G + S 
TB029 312 GGC +AGC G + S  
HN93 413 TTC+TTA F + L  

expected to stop fatty acid elongation and 
result in the a c c u ~ n ~ ~ l a t i o n  of a saturated 
fatty acid precursor, the observed result of 
INH treatment. 

Attempts to associate overexpression of 
AcnM and KasA with INH resistance in 
several rnycobacterial species were uniform- 
ly unsuccessful (30). Subcloning experi- 
ments revealed that both AcpM and KasA 
were i~ldenende~ltlv toxic when overex- 
pressed at Ligh levels. I11 the case of AcpM, 
this was an e x ~ e c t e d  result, because over- 
expression of ACPs in other systems is le- 
thal (3 1 ). This also accounts for the failure 
to obtain the target by standard cloning 
techniques, since AcpM toxicity would pre- 
vent isolation of the closely linlted KasA. 
This observation further suggests that 
AcpM up-regulation in response to myco- 
late deprivation may be directly involved in 
INH toxicity. 

T o  examine the potential involvement 
of KasA  nuta at ions in the development of 
INH-resistance in patient isolates of M. 
tuberculosis, the kasA gene was sequenced in 
entirety from a genetically diverse panel of 
INH-resistant and INH-susceptible strains. 
N o  mutations were identified in knsA in 
ally of 43 INH-susceptible strains. In con- 
trast, among 28 INH-resistant isolates, four 
were found to have a~niilo acid altering " 
 nuta at ions in the coding sequence of knsA 
(Table 1).  In two of these strains, no alter- 
ation was fou~ld in other loci involved in 
INH resistance (including kntG, inhA, 
nhpC) (32), while in the other two strains, 
a kntG alteration was also fou~ld in codon 
315. However, these two strains had a dis- 
proportionately high ~ninirnurn inhibitory 

concentration, thereby suggesting an addi- 
tive effect of the double mutation (katG 
plus kasA). From this limited data set, knsA 
mutations in natient isolates resistant to 
INH occur at a frequency of approximately 
5 to 20%, similar to or in excess of the 
occurrence of mutations in inhA or nhpC, 
two other genes containing mutations asso- 
ciated with INH resistance. The  extremely 
low freauencv of occurrence of unselected 
nucleotkle se4uence alterations in M. tuber- 
culosis (which are 1000 times less frequent 
than in organisms like Escherichin coli) (33) 
is presumptive evidence of involvement of 
these ltasA mutations in INH resistance. 
This presurnptio~l is supported by the ab- 
sence of ltnsA sequence variation in the 
sample of 43 INH-susceptible strains. Tak- 
en together, these results provide compel- 
ling evidence that kasA coding sequence 
alterations participate in the development 
of INH resistance ill- the course of human 
antituberculosis drug therapy. 

These results have several implications 
for understanding INH resistance in M. 

c, 

tuberculosis. First, meromycolic acids are 
synthesized by a previously undescribed 
Type I1 FAS system for which AcpM is 
apparently the carrier for lipids up to 50 
carbons in length. Second, KasA represents 
an i~nportant potential target for future de- 
veloprnellt of therapeutics, because inhibi- 
tion of its function appears to be lethal. 
Third, the marked up-regulation of AcpM 
and KasA accolnpanying the inhibition of 
mycolic acid synthesis implies the existence 
of a regulatory mechanism responsive to the 
levels of rnero~nycolate or lnycolate pro- 
duced. Such a regulatory system could be 

r . 
* 1 . 

0 .... 
MPVTQEEllAQlAEllEEVTQlEPSElTPEKSFVDDLDlDSLSMV ' '. . . 
EIAVQTEDKYGVKIPDEDLAGLRWGDVVAYIQKLEEENPEA 
AQALRAKESENPDAVANVQARLEAESK 

/ 
. .A 

MSQPSTANGGFPSVVVTAVTATTSISPDIESTWKGLLAGESGIHALEDEFVTKWDLAVKIGGHLKDPVDSH 
1 1 1 1 1 1 1 1 1  

20 30 40 50 60 70 80 90 100 MGRLDMRRMSYVQRMGKLLGGQLWESAGSPEVDPDRFAVVVGTGLGGAERIVESYDLMNAGGPRKVS 
PLAVQMIMPNGAAAVIGLQLGARAGVMTPVSACSSGSEAIAHAWRQIVMGDADVAVCGGVEGPIEALPIA 

Retention Time (Min.) AFSMMRAMSTRNDEPERASRPFDKDRDGFVFGEAGALMLIETEEHAKARGAKPLARLLQAQITSDAFHM 
VAPAADGVRAGRAMTRSLELAGLSPADIDHVNAHGTATPIGDAAEANAIRVAGCDQAAVYAPKSALGHSI 
GAVGALESVLTVLTLRDGVIPPTLNYETPDPEIDLDVVAGEPRYGDYRYAVNNSFGFGGHNVALAFGRY 

Fig. 3, Identification of the trimolecular complex of KasA, AcpM, and INH.  (A) genomic locus from cosmid MTCY427 (23). The top sequence corresponds 
(Top trace) HPLC prof~le of the 80-kD protein (from the sample shown In lane to AcpM. The experimentally determ~ned NH,-terminal sequence IS shown in 
4 of Fig. 2. A and B) following n-gel tryptic digestion. Numbered peaks were bold and underlined, as is the internal tryptc peptide corresponding to peak 
sequenced, and asterisks indicate that the peptide was radiolabeled and number 3 in (A). The bottom sequence IS KasA and bold and underlined 
contained methionine resdues, (Bottom trace) Tryptc peptde profile of the peptides represent the experimentally determned sequences corresponding 
50-kD prote~n (lane 5 of Fig. 2, A and B) treated as above. OD, opt~cal density to peaks numbered 2. 4. 1, 6, and 5 In (A) in order of their appearance in the 
measured at 214-n~n wavelength. (B) Operon map of the AcpM/KasA sequence. 
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exploited to construct reporter strains for 
the rapid screening of nol-el inhibitors of 
these critical constituents of the mycobac- 
terial cell wall. 
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Axonal Swellings and Degeneration in Mice 
Lacking the Major Proteolipid of Myelin 
Ian Griffiths, Matthias Klugmann, Thomas Anderson, 
Donald Yool, Christine Thomson, Markus H. Schwab, 

Armin Schneider, Frank Zimmermann, Mailise McCulloch, 
Nancy Nadon, Klaus-Armin Nave* 

Glial cells produce myelin and contribute to axonal morphology in the nervous system. 
Two myelin membrane proteolipids, PLP and DM20, were shown to be essential for the 
integrity of myelinated axons. In the absence of PLP-DM20, mice assembled compact 
myelin sheaths but subsequently developed widespread axonal swellings and degen- 
eration, associated predominantly with small-caliber nerve fibers. Similar swellings were 
absent in dysmyelinated shiverer mice, which lack myelin basic protein (MBP), but 
recurred in MBP*PLP double mutants. Thus, fiber degeneration, which was probably 
secondary to impaired axonal transport, could indicate that myelinated axons require 
local oligodendroglial support. 

Proteolipid protein (PLP) is a four-helix- 
spanning lnelnhrane protein thought to sta- 
bilize the ultrastructure of central nervous 
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system (CNS) myelin by forming the dou- 
ble-spaced intraperiod line (IPL), but nei- 
ther PLP nor its splice isoform Dhl29 is 
required for spiral membrane wrapplng and 
myelin compaction ( 1 ) .  Mutat~ons of the 
X-linked PLP gene (2)  cause Pe1i:aeus- 
blerzhacher disease (PL,ID) and spastic para- 
plegia-? (SPG-2) m humans and related 
disorders in ani~llal models, such as the jimp? 
( jp) mouse, characterked by premature 
death of oligodendrocytes and dysmyelina- 
tion. However, the severe consequences of 
spontaneous PLP mutations are explained, at 
least in part, by the toxicity of the encoded 

2E \'OL l'ii: 7 JLNE 1993 a w\v\v.sciencemag.org 




