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Teratogen-Mediated Inhibition of Target Tissue
Response to Shh Signaling

Michael K. Cooper, Jeffery A. Porter,” Keith E. Young,
Philip A. Beachyt

Veratrum alkaloids and distal inhibitors of cholesterol biosynthesis have been studied for
more than 30 years as potent teratogens capable of inducing cyclopia and other birth
defects. Here, it is shown that these compounds specifically block the Sonic hedgehog
(Shh) signaling pathway. These teratogens did not prevent the sterol modification of Shh
during autoprocessing but rather inhibited the response of target tissues to Shh, possibly
acting through the sterol sensing domain within the Patched protein regulator of Shh

response.

A striking aspect of Shh function is its role
in developmental patterning of the head
and brain, as revealed in Shh™~ mouse
embryos by the occurrence of severe holo-
prosencephaly (HPE) (1). HPE is charac-
terized by development of the prosence-
phalic derivatives as a single undivided ves-
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icle that consists of the fused remnants of
the dorsal telencephalic lobes, with an un-
divided eye field and an absence of ventral
forebrain structures such as the optic stalks,
the optic chiasm, and the pituitary (I, 2).
Externally, severe HPE is characterized by
an absence of midline facial structures and
development of -a proboscis consisting of
fused nasal chambers at a location overlying
a cyclopic eye. Loss-of-function mutations
at the human Shh locus are associated with
a milder and more variable form of HPE
that is inherited in autosomal dominant
fashion, ‘indicative of haploinsufficiency at
the human Shh locus (3).

Hedgehog (Hh) proteins undergo an in-
tramolecular autoprocessing reaction that
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entails internal cleavage and covalent addi-
tion of cholesterol to generate the mature
signaling molecule (4-6) Given this criti-
cal role for cholestero! modification in the
biogenesis of Hh proteins, it is noteworthy
that certain perturbations of cholesterol ho-
meostasis cause HPE. For example, HPE is
induced in rat pups exposed during gesta-
tion to distal inhibitors of cholesterol bio-
synthesis such as triparanol, AY9944, or
BM15.766 (7-9). Milder forms of HPE are
observed in 5% of patients with Smith-
Lemli-Opitz Syndrome, which is thought to
be caused by a defect late in the cholesterol
biosynthetic pathway (10). HPE is also ob-
served in mouse embryos deficient in mega-
lin, a member of the low-density lipoprotein
(LDL) receptor family that is expressed in

embryonic neuroectoderm and binds and
internalizes LDL (I1). Finally, HPE is in-
duced in lambs born to pregnant ewes that
consume Veratrum californicum, and the ter-
atogenic effects of this plant have been
traced to the alkaloids cyclopamine and
jervine (12). These two closely related com-
pounds resemble cholesterol in structure,
and jervine acts as a distal inhibitor of
cholesterol biosynthesis (13).

As seen in Fig. 1, B to E, exposure of
chick embryos to jervine at the intermedi-
ate to definitive streak stage (14) induced
external malformations characteristic of
HPE, with a variable extent of loss of mid-
line structures and consequent approxima-
tion and fusion of paired lateral structures
such as the mandibular and maxillary pro-

cesses as well as the optic vesicles and ol-
factory processes. We circumvented the in-
herent variability of these in ovo treatments
by using an explant assay, which facilitates
a more uniform application of these hydro-
phobic compounds (15). Medial neural
plate with notochord attached was dissect-
ed from a region just rostral to Hensen’s
node (Fig. 1F), a level where the notochord
expresses Shh (16) but the neural plate does
not yet express floor plate cell (HNF38) or
motor neuron (Isll) markers (17). Induc-
tion of these cell types depends on Shh
signaling both in vivo and in vitro (1, 18),
and, as seen in Fig. 1G, both HNF3 and
Isll1 were induced within the explanted
neural plate tissue after a 40-hour incuba-
tion. Induction of HNF3B and Isll was

Fig. 1. Jervine induces
holoprosencephaly and
blocks endogenous Shh
signaling. (A) Scanning
electron micrograph of
external facial features of
an untreated embryo. (B
to E) Embryos were ex-

posed to 10 uM jervine
(74) with variable loss of
midline tissue and result-
ing fusion of the paired,
lateral olfactory process-
es (OIf), optic vesicles
(Opt), and maxillary (Mx)

MIDLINE EXPLANT
(NEURAL PLATE
AND NOTOCHORD)

and mandibular (Mn)
processes. Complete fu-

sion of the optic vesicles and lenses (L) results in true cyclopia (E). (F) Midline
tissue was removed from stage 9 to 10 chick embryos at a level just rostral to
Hensen’s node (white dashed line) and further dissected (black dashed lines)
to yield an explant containing an endogenous source of Shh signal (noto-
chord) and a responsive tissue (neural plate ectoderm) (75). (G) After 2 days
of culture in a collagen gel matrix, expression of floor plate cell [HNF3B,

rhodamine (red)] and motor neuron [Isl1, fluorescein isothiocyanate (FITC)
(green)] markers is induced in untreated neural ectoderm or (J) in explants
treated with the nonteratogenic alkaloid tomatidine ( TOM) (50 uM). (H) Inter-
mediate doses of jervine (JER) (0.6 wM) block induction of HNF38,while
permitting induction of Isl1 (see text). (I) Higher doses of jervine (4.0 uM) fully
inhibit HNF38 and Isl1 induction.

Fig. 2. Teratogens do not inhibit Shh autopro- 3

cessing. (A) Stably transfected HK293 cells con- A uw % B @ g =
taining an ecdysone-inducible Shh expression i g Yz -2 i 122
construct (lane 1, uninduced) were treated by ad- il = E <33 S R S B
dition of muristerone A (lanes 2 to 7 and 10 to 15) 24 EELC S $338L . e85882383
either alone (lanes 2 and 3) or in combination with *Edazxz= E£3 g = E = 8 2 & = R
jervine (lanes 4 and 5), cyclopamine (lanes 6 and 8835g53£%8 3532q2g: 3 i@ 2z 8322
7), tomatidine (lanes 10 and 11), AY9944 (lanes 12 MURISTERONE FoEoE o+ ks P+ o+ oo+ EERE55333
and 13), or triparanol (lanes 14 and 15) (27). Shh '{'fa - kD
from control (lane 3) or drug-treated (lanes 4 to 7 ; D i - :52
and 10 to 15) cell lysates is efficiently processed o SHH-N

with no detectable accumulation of precursor pro-

tein (M, = 45 kD). The processed NH,-terminal B A e

product (Shh-N,) is cell associated and migrates P — e e T e o GD e = "”‘-,,,. 6
faster than unprocessed Shh-N protein (lane 8) 1 2 3 45 6 78 5 101112 13 14 15 16

from the medium of cultured cells transfected with cACTIN S — - - el e ont AR B AGRERUE

a construct carrying an open reading frame trun-

cated after Gly'®® (both Shh-N_ and Shh-N are loaded in lanes 9 and 16),
indicating that Shh-N,, from treated cells likely carries a sterol adduct. The
slower migrating species resulting from tomatidine treatment is ~1.9 kD
larger, suggestive of a minor inhibition of signal sequence cleavage (see
asterisk; lanes 10 and 11). Immunoblotted actin for each lane is shown as a
loading control. (B) Coomassie blue-stained SDS-polyacrylamide gel show-
ing in vitro autocleavage reactions of the bacterially expressed HisgHh-C
protein (~29 kD) incubated for 3 hours at 30°C in the absence of sterols (lane
1), with 50 mM dithiothreitol (DT T) (lane 2), 12 uM cholesterol (lane 3), 12 uM
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7-dehydrocholesterol (lane 4), 12 uM desmosterol {lane 5), 12 M lathosterol
(lane 6), 12 and 350 pM lanosterol (lanes 7 and 8, respectively), and 12 and
350 uM muristerone (lanes 9 and 10, respectively). The 27-carbon choles-
terol precursors (lanes 4 to 6) stimulate HisgHh-C autoprocessing as efficient-
ly as cholesterol (lane 3). Lanosterol (lanes 7 and 8) and muristerone (lanes 9
and 10) do not stimulate autoprocessing above background (lane 1). The
NH,-terminal product migrates as a ~7-kD species (lane 2) when generated
in the presence of 50 mM DT T and as a ~5-kD species (lanes 3 to 6) with a
sterol adduct.
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inhibited by 4 uM jervine (Fig. 11). At 0.5
uM, jervine still blocked expression of
HNEF3, but expression of Isll was main-
tained or enhanced (Fig. 1H; see also Fig.
3). Partial and complete inhibition of Shh
signaling was also obtained with increasing
concentrations of AY9944, triparanol, and
cyclopamine (19). In contrast, the structur-
ally related but not teratogenic alkaloid
tomatidine (20) did not block induction of
HNF3p and Isl1, even at concentrations an
order of magnitude higher than the inhibi-
tory concentration of jervine (Fig. 1J).

To examine the potential effects of these
teratogens on Shh processing, we used
HK293 cells carrying a stably integrated con-
struct for expression of Shh under ecdysone-
inducible control (21). The Shh protein was
efficiently processed (Fig. 2A, lanes 2 and 3),
and addition of jervine, cyclopamine, toma-
tidine, AY9944, or triparanol during the 24-
hour induction period did not diminish pro-
duction of Shh-Np, the processed NH,-ter-
minal product, or induce accumulation of
unprocessed precursor [relative molecular
mass (M) of 45 kD], even at doses 6- to
50-fold higher than those required to com-

Fig. 3. Teratogens inhibit
response of neural ecto-
derm to recombinant

pletely inhibit Shh signaling (Fig. 2A, lanes 4
to 7 and 10 to 15). All of the NH,-terminal
cleavage product generated in the presence of
these compounds was detected in cell lysates,
not in the culture medium, and had the same
electrophoretic mobility as cholesterol-mod-
ified Shh-N_ (compare with lanes 8 and 9,
Fig. 2A), consistent with the presence of a
sterol adduct in the NH,-terminal cleavage
product. In addition, chick embryos treated
with jervine after floor plate induction dis-
played normal apical localization of Shh pro-
tein within floor plate cells (22), indicative
of normal secretion and sorting of intracellu-
lar Shh-N_.

Because the plant alkaloids resemble
cholesterol in structure, including the pres-
ence of a 3B hydroxyl, their effects were
tested in a cholesterol-dependent in vitro
autoprocessing reaction (5). None of these
compounds could replace cholesterol or in-
hibit its stimulatory effect (23). In contrast,
cholesterol could be replaced efficiently in
the in vitro reaction by desmosterol and
7-dehydrocholesterol (Fig. 2B, lanes 4 and
5), the major precursors that accumulate in
cells treated with triparanol and AY9944

(9). Other 27-carbon cholesterol precur-
sors, including lathosterol (but not lanos-
terol, a 30-carbon cholesterol precursor),
could participate in the reaction (Fig. 2B,
lanes 6 to 8). These and other observations
(24) suggest that many, possibly all, 27-
carbon sterol intermediates in the biosyn-
thetic pathway are potential adducts in the
autoprocessing reaction, and this may ac-
count for the unimpaired efficiency of pro-
cessing in the presence of distal synthesis
inhibitors.

To examine the possibility that terato-
gens affect the response of target tissues to
Shh signaling, we used an intermediate neu-
ral plate explant (15) (Fig. 3A) that re-
sponds to recombinant Shh-N protein in a
concentration-dependent manner (18). The
dorsal marker Pax7 was repressed at low con-
centrations (2 nM, Fig. 3, B and C) (25),
and the ventral markers Isll and HNF38
were induced at progressively higher concen-
trations (6.3 nM, Fig. 3D, and 25 nM, Fig.
3E) (18). These teratogens completely
blocked the repression of Pax7 (at 2 nM
Shh-N, Fig. 3, F to I) and the induction of
Isll and HNF3 (at 25 nM Shh-N, Fig. 3, P

NO SHH-N SHH-N 2 nM

Shh-N protein. (A) Inter-
mediate neural plate ec-
toderm, free of noto-
chord and other tissues,
was dissected as shown
(dashed lines) from stage

INTERMEDIATE
NEURAL PLATE
EXPLANT

9 to 10 chick embryos at

SHH-N 6.3 nM SHH-N 25 nM

a level just rostral to
Hensen's node (see Fig.
1F). (B) Explanted inter-
mediate neural plate tis-
sue cultured in a collagen
gel matrix for 20 hours
expresses the dorsal
marker Pax7 (FITC) but
not the floor plate marker
HNF3B (rhodamine). (C)
Addition of recombinant,
purified Shh-N at 2 nM
suppresses Pax7 ex-
pression. (D) Markers of
motor neuron (Isl1, FITC)
and floor plate cell
(HNF3B,rhodamine) fates
are induced upon explant
culture for 40 hours in the
presence of 6.3 nM Shh-
N. (E) At 25 nM Shh-N,
HNF3B expression ex-

SHH-N 2 nM

SHH-N 25 nM

pands at the expense of
Isl1 expression. The re-

pression of Pax7 expression by 2 nM Shh-N is inhibited by (F) 0.5 uM
AY9944 (AY), (G) 0.25 uM triparanol (TRI), (H) 0.13 uM jervine, and (1)
0.063 wM cyclopamine (CYC) but not by (J) 50 uM tomatidine. (K to N)
Induction of HNF3B is reduced, whereas induction of Is1 at 25 nM Shh-N
is maintained or expanded at intermediate concentrations of AY9944 (1.0
wM) (K), triparanol (0.25 wM) (L), jervine (0.25 uM) (M), and cyclopamine
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(0.13 uM) (N). (O) Tomatidine at 25 nM displays a slight inhibitory effect
with a decrease in HNF3B expression and an increase in the number of
Isl1-expressing cells. (P to S) HNF3B and Isl1 induction is completely
blocked at inhibitory doses twofold higher than those in (K} to (N). (T)
Tomatidine at 50 uM markedly reduces HNF3g induction and enhances
Isl1 induction.
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t0 S). A complete inhibition of the response
to 25 nM Shh-N required doses of teratogen-
ic compounds twofold to fourfold higher
than those required to completely block the
2 nM response. In addition, at a drug con-
centration half of that required for complete
inhibition of 25 nM Shh-N treatment, Isl1
expression was retained or expanded (Fig. 3,
K to N). Inhibition of the response to higher
concentrations of Shh-N thus requires high-
er drug concentrations, and, at a fixed con-
centration of Shh-N, distinct degrees of
pathway activation can be produced by dis-
tinct inhibitor concentrations. Tomatidine,
in contrast, did not inhibit Pax7 repression
(Fig. 3]) and only partially inhibited HNF33
and Isll induction (Fig. 3, O and T), even at
concentrations 100- to 200-fold higher than
those required for complete inhibition by
jervine and cyclopamine.

In a test of the specificity of these com-
pounds, explants from the ventral neural
plate (Fig. 4A) responded to BMP7 protein
by formation of neural crestlike migratory
cells that express the HNK-1 surface anti-
gen (26) (compare Fig. 4, B and C), even in
the presence of jervine at 10 pM (Fig. 4D).
This concentration is 20-fold higher than
that required for a complete block of Shh-N
signaling. Similar results were obtained
with tomatidine and cyclopamine (27).

Given that these teratogens inhibit the
response of target tissues to Shh signaling
and that some of them affect distal choles-

A

VENTRAL NEURAL
PLATE EXPLANT

i A

terol biosynthesis (9, 13), it is noteworthy
that the Patched (Ptc) protein, which con-
trols the response to Shh signaling within
responding tissues (28), contains a sterol
sensing domain (SSD). The SSDs of two
other proteins, hydroxymethylglutaryl co-
enzyme A (HMG CoA) reductase and
SCAP (SREBP cleavage-activating protein),
confer differential responses to high and low
concentrations of intracellular sterols; a third
SSD-containing protein, NPC1 (Niemann-
Pick C1), is proposed to function in intra-
cellular transport. The possibility thus
emerges that these teratogens inhibit Shh
signaling through the Ptc SSD, either
through effects on Ptc protein stability, Ptc-
dependent activation of downstream catalyt-
ic events, or Ptc-dependent effects on trans-
port, as suggested by analogy to apparent
SSD functions in HMG CoA reductase,
SCAP, and NPCl1, respectively (29).

The teratogenic effects of these com-
pounds cannot simply be due to a reduction
of cholesterol synthesis or due to the accu-
mulation of an inhibitory sterol precursor
because none of the explant responses to
Shh-N were either blocked or restored by a
potent proximal inhibitor of cholesterol bio-
synthesis (30). It is thus important to note
that, in addition to its effects on distal cho-
lesterol biosynthesis, AY9944 inhibits cho-
lesterol esterification (31). This property is

- shared by a group of compounds termed class

2 transport inhibitors (32), which appear to

BMP7 + JER 10

Fig. 4. Jervine does not inhibit the response of neural ectoderm to BMP7. (A) Ventral neural plate
ectoderm was dissected as shown (dashed lines) from stage 9 to 10 chick embryos at a tevel just rostral
to Hensen's node (see Fig. 1F). (B) Ventral neural plate explants cultured for 24 hours in a collagen gel
matrix do not give rise to HNK-1-positive migratory cells unless BMP7 (100 ng/mi) is added (C). (D)
Induction of migratory HNK-1-positive cells by BMP7 (100 ng/ml) is not inhibited by the presence of 10
uM jervine (C and D, explant borders outlined by white dashed lines) nor by the addition of the other
plant-derived compounds (10 uM cyclopamine and 50 uM tomatidine) (37).
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act by reducing the flux of cholesterol and its
sterol precursors from the plasma membrane
(PM) to the endoplasmic reticulum (ER),
thus preventing action of acyl-CoA choles-
terol acyltransferase on exogenously deliv-
ered cholesterol and causing accumulation of
cholesterol biosynthetic precursors. Class 2
sterol transport inhibitors appear to increase
the activity of HMG CoA reductase and to
stimulate SCAP activity (33). Given the ER
localization of these two SSD-containing
proteins, it is possible that disruption of ste-
rol transport from PM to ER by class 2
compounds decreases sterol concentrations
within intracellular compartments, despite
normal or increased concentrations of cellu-
lar sterols overall. We have found that the
other teratogens studied here also inhibit
cholesterol esterification (34) and that other
structurally dissimilar class 2 compounds in-
hibit Shh signaling in our explant assays
(35). Because the Ptc protein is found at
intracellular locations (36), a teratogen-in-
duced defect in sterol transport could con-
ceivably perturb Ptc function through its
SSD. Further studies with these teratogenic
compounds may help elucidate the mecha-
nistic roles of Ptc and intracellular transport
in the Shh signaling pathway.
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Inhibition of a Mycobacterium tuberculosis
B-Ketoacyl ACP Synthase by Isoniazid

Khisimuzi Mdluli, Richard A. Slayden, YaQi Zhu,
Srinivas Ramaswamy, Xi Pan, David Mead, Deborah D. Crane,
James M. Musser, Clifton E. Barry III*

Although isoniazid (isonicotinic acid hydrazide, INH) is widely used for the treatment of
tuberculosis, its molecular target has remained elusive. In response to INH treatment,
saturated hexacosanoic acid (C26:0) accumulated on a 12-kilodalton acyl carrier protein
{AcpM) that normally carried mycolic acid precursors as long as C50. A protein species
purified from INH-treated Mycobacterium tuberculosis was shown to consist of a co-
valent complex of INH, AcpM, and a B-ketoacy! acyl carrier protein synthase, KasA.
Amino acid-altering mutations in the KasA protéin were identified in INH-resistant patient
isolates that lacked other mutations associated with resistance to this drug.

INH is a front-line drug of choice for the
treatment of tuberculosis (1). Despite the
apparent simplicity of its chemical struc-
ture, the mode of action of this drug is
complex. INH is a prodrug that requires
activation by the mycobacterial catalase-
peroxidase enzyme (KatG) to an active
form that then exerts a lethal effect on an
intracellular target or targets (2—4). Because
of physical and biochemical changes occur-
ring coincident with INH toxicity, it has
been proposed that the lethal effect lies in
the biosynthetic pathway for mycolic acids
(2, 5-7). The detrimental effect of INH on
mycolic acid synthesis exactly parallels the
time course of the loss of Mycobacterium
tuberculosis viability and is accompanied by
an accumulation of saturated hexacosanoic
acid (C26:0), implicating this fatty acid as
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an intermediate in the biosynthetic path-
way that produces mycolic acids (8-11).
The majority of INH-resistant clinical
isolates become resistant by losing or alter-
ing KatG activity, not by mutation of the
target of the activated prodrug (12, 13).
Despite considerable effort, identification
of the INH target in M. tuberculosis by
genetic approaches has not been accom-
plished (14). However, a library of DNA
fragments from a resistant strain of the fast-
growing saprophyte M. smegmatis was used
to isolate a putative target designated InhA
(15). InhA is an NADH-dependent enoyl-
[acyl carrier protein] (ACP) reductase with
a chain-length specificity centering at 16
carbons (16, 17). Reconciling the catalytic
function of InhA (reduction of an unsatur-
ated fatty acid) with the observed biochem-
ical correlate of toxicity (accumulation of a
saturated fatty,acid) has been extremely
difficult. Furthermore, although this target
is sufficient to induce resistance to 50 g of
INH per milliliter in M. smegmatis, the
same constructs induce only low levels of
resistance in M. tuberculosis (to 0.1 wg/ml,
while KatG wild-type clinical isolates resis-
tant to 1 to 2 pg/ml are commonly encoun-
tered) (14). Sequencing of clinical isolates
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