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High-Power Directional
Emission from Microlasers with
Chaotic Resonators
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Deborah L. Sivco, Alfred Y. Cho

High-power and highly directional semiconductor microcylinder lasers based on an
optical resonator with deformed cross section are reported. In the favorable directions
of the far-field, a power increase of up to three orders of magnitude over the conventional
circularly symmetric lasers was obtained. A “bow-tie”"-shaped resonance is responsible
for the improved performance of the lasers in the higher range of deformations, in
contrast to “whispering-gallery”-type modes of circular and weakly deformed lasers.
This resonator design, although demonstrated here in midinfrared quantum-cascade
lasers, should be applicable to any laser based on semiconductors or other high—

refractive index materials.

Lasers consist of two basic components.
First, the active material in which light of a
certain wavelength range is generated from
an external energy source, such as electric
current; second, the laser resonator, which
contains the active material, provides feed-
back for the stimulated emission of light.
The resonator largely determines the spe-
cial features of the emitted light—power,
beam directionality, and spectral proper-
ties—as well as the laser’s physical features
such as size and shape. Semiconductor lasers
are the most widely used and versatile class
of lasers. Their most common resonators are
Fabry-Perot cavities, in which two cleaved
semiconductor crystal planes act as parallel
mirrors, reflecting the light back and forth
through the active material.

There have been many attempts to im-
prove resonator properties. In particular, an
increase in the reflectivity of the resonator
mirtrors is highly desirable. This allows low
thresholds for the onset of laser action and
a smaller volume of active material with
concomitant moderate energy requirements
and the ability to pack the lasers in a small
space.

One excellent example is the develop-
ment of microdisk semiconductor lasers (1).
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These lasers exploit total internal reflection
of light to achieve a mirror reflectivity near
unity. Micro-disk, -cylinder, or -droplet la-
sers form a class of lasers based on circularly
symmettic resonatots, which lase on “whis-
pering-gallery modes” of the electromagnet-
ic field (2—4). In such a mode, light circu-
lates around the curved inner boundary of
the resonator, reflecting from the walls of
the resonator with an angle of incidence
always greater than the critical angle for
total internal reflection, thus remaining
trapped inside the resonator. There are only
minute losses of light caused by evanescent
leakage (tunneling) and scattering from sur-
face roughness. This principle allowed the
fabrication of the world’s smallest lasers (2).
Besides potential applications in optical
computing and networking, microlasers are
of strong interest for research problems of
cavity quantum electrodynamics, such as
resonator-enhanced spontaneous emission
and thresholdless lasers (5). Small resona-
tors may also serve as model systems for the
study of wave phenomena in mesoscopic
systems, particularly in the regime where
motion is fully or partially chaotic. Recent
examples are the quantum mechanics of
electrons confined in asymmetric “boxes,”
such as quantum-dots, stadia, and quantum
corrals (6), and asymmetric microwave cav-
ities with their strong connection to quan-
tum chaos theory (7).

However, as a serious disadvantage, the
tiny whispering-gallery—type lasers lack
high output power and directional emission
because of the high-reflectivity mirrors and
the circular symmetry. Attempts to improve
this deficiency by making gratings or small
indentations on the circumference are so far

not very promising (8, 9). We now show in
experiment and theory how a resonator de-
sign that incorporates chaotic ray motion
can substantially increase the output power
and directionality of such lasers. This effect
is demonstrated in semiconductor quan-
tum-cascade lasers emitting in the mid-
infrared wavelength region (10).

Recent theoretical work has provided
insight into the behavior of “asymmetric
resonant cavities” (ARCs), whispering-gal-
lery resonators with smooth deformations
from cylindrical or spherical symmetry (11—
14). The ray dynamics in these deformed
resonators are either partially or fully cha-
otic in the generic case (13). The best-
studied example is a two-dimensional (2D)
resonator with' a quadrupolar deformation
of the circular boundary, described in polar
coordinates (r, &) by r(d) o [1 + ecos(2d)],
where € is the deformation parameter. Par-
tially chaotic whispering-gallery modes in
these resonators have shown directional las-
ing emission in low-index materials (index
of refraction n < 2, such as glass fibers or
cylindrical dye jets) (12). The origin of the
directional emission is the following (11):
The deformed boundary causes the angle of
incidence of a ray in a whispering-gallery
mode to fluctuate in time. Eventually, a ray
trapped by total internal reflection imping-
es on the boundary below the critical angle
and escapes by refraction. However, it was
not recognized in this earlier theoretical

.work that, in high-index materials, qualita-

tively different modes not of the whisper-
ing-gallery type might be relevant to the
lasing properties.

Here we focus on semiconductor lasers
that have an effective index of n ~ 3.3
and a deformation of the boundary best
described by r(¢) o« [1 + 2ecos(2d )2,
which we will refer to as a “flattened” quad-
rupole. In general, one can parameterize the
boundary of any convex resonator by an
arbitrary Fourier series for r(d); the above
parameterization is chosen for convenience,
because it is simply analyzed and describes
the actual resonator shapes quite well (Fig.
1). We show that for small deformations &,
the basic picture of chaotic whispering-
gallery orbits escaping refractively, as de-
scribed above, still holds for the high-index
semiconductor material. However, we also
present strong experimental evidence that
at larger deformations a different type of
laser resonance emerges and is responsible
for highly directional and high-power emis-
sion. Unlike the chaotic whispering-gallery
modes of smaller deformations, these so-
called “bow-tie” resonances are stable reso-
nator modes surrounded on all sides (in
phase space) by chaotic motion.

This new class of laser resonators, based
on the smooth deformation of a regularly
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shaped monolithic cavity, is universally ap-
plicable to semiconductor lasers or solid-
state lasers based on high—refractive index
material. [t is to some extent related to ring
lasers with resonators formed by assembly of
several distinct flat or curved mirror surfac-
es, such as the Tisapphire laser (15) or
optically pumped monolithic solid-state la-
sers (16). We chose the quantum cascade
(QC) laser to demonstrate these resonators,
because it is particularly suited for 2D whis-
pering-gallery geometries as shown by a re-
cent work on QC microdisk lasers (17). It is
based on a transition between quantized
conduction-band states of a cascaded In-
GaAs/InAlAs-coupled quantum-well struc-
ture (intersubband transition). As such, the
selection rule of the optical transition al-
lows light emission only in the 2D plane
with polarization normal to the quantum
well layers; that is, transverse magnetic
(TM) polarization (18). Therefore, no light
is lost vertical to the laser plane. Further-
more, the QC laser is a unipolar device
based only on electron transport, unlike
diode lasers. Thus, in contrast to most con-
ventional semiconductor lasers, the surface
cannot cause excess unwanted nonradiative
recombination of electrons and holes. Fi-
nally, the wavelength is comparatively large
(several micrometers) and the material used
is the well-understood InGaAs/InAlAs sys-
tem. This choice reduces the importance of
roughness (Rayleigh) scattering and makes
it easier to fabricate complex shapes.

Device structure and experimental pro-
cedure. The lasers are slab-waveguide struc-
tures made from a Gag4qIng 53As/Aly 46-
Ing 5,As heterostructure grown by molecu-
lar beam epitaxy (MBE) on InP substrate.
The waveguide core contains the QC laser
active material, designed to emit light of
wavelength N = 5.2 pm. This active mate-
rial has been used previously (19) and can
be considered a mature and optimized de-
sign for high-quality laser performance.

The waveguide core is sandwiched be-
tween two cladding layers (20-22). The
entire waveguide is designed to be sym-
metric and such that the lasing mode (the
lowest order TM mode) has almost no
(<0.5 %) overlap with the InP substrate.
This design prevents possible detrimen-
tal effects from light coupling into the
substrate.

The cylinder lasers are fabricated by op-
tical lithography and wet chemical etching.
The quadrupolar-like shape is obtained
starting from a resist pattern that is com-
posed of two semicircles connected by a
rectangle (stadium-shape). The samples are
then etched until deep mesas are obtained
(23). Because of the smoothing action of
the etchant, the straight section of the etch
mask bends toward the curved parts render-
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ing a quadrupole-like shape. Figure 1 shows
the top and side view of a laser with defor-
mation € =~ 0.16. The top view shows that
the edge of the resonator follows very well
the shape of an exact flattened quadrupole.
Ohmic contacts are applied to the front
and back surface of the lasers by means
of nonalloyed Ti/Au and Ge/Au/Ag/Au,
respectively.

Several sets of samples were fabricated.
The deformation parameter € was varied in
10 steps from 0 to ~0.2. Two different sizes
were investigated in order to quantify and
rule out size-dependent effects, one with the
short diameter ~50 pm and the long diam-
eter varying from ~50 (¢ = 0) to =80 pum
(e =~ 0.2), the second with the short diam-
eter =~ 30 um and the long diameter vary-
ing from ~30 to ~50 um (24). The mea-
surements described below showed that ef-
fects arising from the increase in cavity
cross section with increasing € (by less than
a factor of 2, for 0 = £ = 0.2) are negligible
compared with those introduced by the
deformation.

We performed the measurements mainly
by contacting the individual cylinder laser
with a microprobe in a cryogenically cooled
micropositioner stage. To obtain the far-
field pattern, we mounted the individual

side-view

top-view

Fig. 1. Scanning electron microscope image of
the side and top view of a flattened quadrupolar-
shaped cylinder laser. The quadrupolar deforma-
tion parameter is £ ~ 0.16. Side view: The laser
waveguide and active material is entirely con-
tained in the disk—with vertical side walls, total
thickness d = 5.39 pm—sitting on a sloped in-
dium-phosphide pedestal. Light emission occurs
in the plane of the disk. Top view: The top face of
the laser is shown in medium gray, the electric
contact in light gray. The laser boundary is very
well described by an exact flattened quadrupole
with ¢ = 0.16, which is drawn as dashed red line
over the circumference. The boundary of the top
electrical contact is approximately parallel to the
edge of the cylinder.

laser on a sample holder that was rotated
inside the probe stage. The lasers were
driven with current pulses (duration 50 ns,
repetition rate ~40 kHz), and the light
output was measured with a cooled
HgCdTe detector and a lock-in technique.
To improve power output and avoid excess
current heating, we recorded the data pre-
sented here at 40 to 100 K heat sink tem-
perature. Nevertheless, the maximum pulsed
operating temperature of the lasers is 270 K.
The spectral properties were measured
with a Fourier transform infrared (FTIR)
spectrometer.

The lasers emit light according to their
symmetry into all quadrants of the 2D laser
plane. The experimental set-up did not al-
low measurement of the spatially integrated
power. Therefore, we collected the laser
output into an appropriate aperture. [ts cen-
ter angle is varied for the acquisition of the
far-field pattern. The light output vertical
to the laser plane is broadened by diffrac-
tion and was measured integrated over the
vertical extension. We introduce a polar
coordinate system (r, &) such that $ = 0°
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Fig. 2. (A) Maximum peak optical power from
various lasers as a function of their quadrupolar
deformation parameter . The aperture with width
15° is centered around zero degrees. Data from
two independent sets of lasers are given. The
power output is normalized to the power of the
respective circular cylinder laser. The scatter of
the data is due to the varying number of lasing
modes with increasing e. (B) Light output versus
current characteristics of a quadrupolar cylinder
laser with deformation £ ~ 0.2. The collecting
aperture ranges from +40° to +100° (the polar
coordinate system is described in the text and in
Fig. 3C). The kink around 400 mA indicates the
onset of a second lasing mode. The measurement
was performed at 100 K heat-sink temperature.
The lasers were tested up to 270 K.
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indicates the direction along the elongated
(major) axis. Accordingly, ¢ = 90° denotes
the direction of the compressed (minor)
axis. Hence, a measurement taken at ¢ =
0° has the detector facing one point of
highest curvature of the deformed laser.
Power output and beam directionality.
The deformed cylinder lasers provided a
substantial increase both of the emitted
power and directionality (Figs. 2 and 3).
Light output measurements for various
lasers as a function of their deformation €
are shown in Fig. 2A. To generate this plot,
we recorded the maximum obtainable peak
power for each laser by optimizing the
pulsed drive current (25). The collecting
aperture (slit width corresponding to ~15°)
was oriented around ¢ = 0°. This set-up
precludes the observation of any changes in
the far-field directionality with deforma-
tion. Similar measurements were performed
with the aperture oriented around ¢ = 45°
and ¢ = 90°. The striking result is the
strong (quasi-exponential) increase of the
collected optical power with deformation.
For the largest deformation under consider-
ation (& ~ 0.2), a power increase by a factor
of =~ 50 with respect to the circular case is

observed. Figure 2A shows a representative
measurement taken at ¢ = 0°.

We measured the absolute output power
in some highly deformed laser devices by
bonding and mounting them in a calibrated
set-up usually used with Fabry-Perot-type
lasers. One example, obtained from a laser
with € =~ 0.2, is shown in Fig. 2B. The
light-collecting aperture was increased to its
maximum size, and the sample was tilted to
detect roughly the optical power in an angle
from +40° to +100°. The choice of this
aperture, which exploits far-field anisotro-
py, will become clear below. A peak output
power of =10 mW at 100 K was obtained.
This value is about three orders of magni-
tude greater than that obtained from the
nondeformed (circular cylindrical) laser or
previous conventional circular QC-disk la-
sers (17). For a weakly deformed laser (€ =
0.06), we estimate a peak power output of
~50 pW (when measured with comparable
collection efficiency as in the laser of Fig.
2B).

A quasi-exponential increase of the col-
lected power with increasing deformation
(similar to the one shown in Fig. 2ZA) has
been measured in numerous sets of lasers

of various—flattened and less flattened—
quadrupolar shapes and sizes, and with var-
ious orientations of the aperture. Thus, it
appears that the power increase is a reliable,
universal effect. However, the increase in
output power per unit angle is closely en-
tangled with the actual variation of the
far-field pattern with deformation. Indeed,
in our lasers the power increase with defor-
mation results from the lasing of different
types of modes in different ranges of €.
There is a crossover at intermediate defor-
mations (€ =~ 0.12) from emission via whis-
pering-gallery modes, which dominates at
smaller deformations, to laser emission from
bow-tie modes, which do not exist below €
~ (0.10 but dominate the high-deformation
regime.

In addition to the strong increase in
power output, the deformed lasers can also
provide strong directionality. The results
of the far-field measurements are summa-
rized in Fig. 3, A and C. As expected, the
circular cylinder laser displays no direc-
tionality of the emission. At small defor-
mations (¢ = 0.10), the far-field is only
weakly structured with an increased emis-
sion in direction of the minor axis com-

Fig. 3. (A) Peak output power of different lasers as a function of 15

deformation. The power is collected around 0° {open symbols)
and 90° (filled symbols) with a width of the fixed aperture of 15°.
Two independent sets of lasers are presented for each orienta-

tion of the aperture. Both curves rise approximately exponential- 10t
ly, as indicated by the dashed line-fit (26). (Inset) Spectrum in

linear scale obtained near peak optical power from a cylinder

laser with low deformation (e =~ 0.04). The close mode spacing 5

observed in the spectrum is a result of several lasing whispering-
gallery-type modes. The displayed linewidth is limited by the
experimental set-up and data acquisition system. (B) False-color
representation of the radiation intensity pattern of a chaotic whis- 0
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pering-gallery mode for a deformed cylinder with ¢ = 0.06 and
length of the minor axis of 50 um. Red indicates high intensity,
dark blue indicates minimum intensity on a linear intensity scale.
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The computational technique is explained in the theory section
of the main text. (C) Symbols indicate the measured angle-
resolved far-field pattern (one quadrant) of a circular (A) and two
deformed lasers with ¢ = 0.14 (O) and ¢ = 0.16 (@). The mea-
surements presented here have been taken at a constant-cur-
rent level, at which the (deformed) lasers displayed pure single-
mode emission. However, the far-field shows qualitatively the
same characteristic directionality at a current level correspond-
ing to peak optical power. The data sets are normalized to the
value measured at zero degrees. The data points are connected
by splines (solid lines) for clarity. The dashed line is the calculated
far-field intensity pattern associated with the bow-tie mode
shown in Fig. 3D, averaged over the experimental aperture. The
calculation has been scaled to match the peak emission at
~45°. The exact angular position of this maximum should be sensitive to the
precise shape of the boundary near the bow-tie impact points, and we
attribute the off-set between the measured and calculated peak positions
primarily to the small deviation between our model and the actual shape and
some uncertainty in the precise measurement of the angle. Furthermore, at
present, we do not fully understand the discrepancy in the intensities of the
secondary peak between calculation and experiment. (Left inset) Logarith-
mic plot of the measured spectrum at maximum power (power P versus
wavelength \) of a laser with £ = 0.16. Six equally spaced modes, with mode
spacing AN = 40.4 nm, are observed. This mode separation is in good
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agreement with the value of 39.5 nm calculated for a bow-tie orbit corre-
sponding to the calculated intensity pattern of Fig. 3D. (Right inset) The
polar coordinate system is oriented such that ¢ = 0° indicates the direction
along the elongated (major) axis, and ¢ = 90° denotes the direction of the
compressed (minor) axis. (D) False-color representation of the intensity pat-
tern of a bow-tie-mode for ¢ = 0.15 and length of the minor axis of 50 um.
The crossover to the asymptotic far-field pattern of Fig. 3C (dashed line) is
relatively slow, and certain features such as the modulated intensity at ¢ =
90° vanish in the far-field. The linear color scale (red, high intensity; blue, low
intensity) is unrelated to the color scale of Fig. 3B.
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pared with the major axis. Figure 3A
shows the increase of the output power
with €, collected around 0° and 90°. Both
curves rise approximately exponentially,
as discussed in the previous section, but
“faster” for ¢ = 90°% in this case the
exponent is increased by a factor of =2
with respect to the ¢ = 0° case (26).

This observation is consistent with the
expected behavior of deformed whispering
gallery modes with an average angle of in-
cidence near the critical angle defined by
sin(x.) = 1/n, where n = 3.3 is the effective
refractive index of the laser waveguide. At
zero deformation such a mode has a con-
served angle of incidence and emits isotro-
pically and uniformly via evanescent leak-
age from all points at the boundary (ne-
glecting disorder effects, such as surface
roughness scattering). However when the
boundary is deformed (11), the angle of
incidence of a ray associated with a lasing
mode fluctuates and (at these deformations)
is most likely to collide with the boundary
below the critical angle of incidence at or
near a location of high curvature (¢ = 0°,
180°). Figure 3B shows the calculated in-
tensity pattern (the modulus squared of the
electric field) for a typical whispering-gal-
lery mode in a deformed cylinder laser with
€ = 0.06 (the calculational technique will
be discussed below). The pattern shows
clearly the enhanced emission intensity in
the near-field in the vicinity of (¢ = 0°,
180°). The experiments are sensitive to the
far-field intensity distribution, which de-
pends also on the angle of refraction at the
points of high curvature. Both the ray and
wave calculations discussed below indicate
that at this deformation all whispering-gal-
lery modes with high output coupling have
a minimum in emission intensity in the
far-field around ¢ = 0° and enhanced emis-
sion between 45° and 90°. The observed
experimental intensity pattern has this gen-
eral trend (Fig. 3A), but a fully angle- and
mode-resolved measurement of the far-field
pattern and a detailed comparison with the-
ory is difficult because of the generally low
optical power and the many modes that
contribute to the laser signal in this regime
of deformations. (A detailed discussion of
the spectral properties is given in the next
section.)

At higher deformations (¢ = 0.14) we
detect a much stronger and qualitatively
different directionality. Figure 3C shows the
actual angle-resolved far-field pattern (one
quadrant) of one circular and two deformed
lasers. For the laser displayed in Fig. 1, we
obtain a power increase by a factor of 30
into an emission angle of ¢ = 42° com-
pared with ¢ = 0° The angular width of
this directional eémission is =~ 23°. Around
0° we observe a clear minimum of the emis-
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sion, and a smooth sloping plateau toward
90°.

At these large deformations, a typical ray
characterizing a whispering-gallery mode
escapes in less than 10 collisions with the
boundary as discussed in the theory section.
This ray escape is now approximately iso-
tropic and would seem unlikely to lead to
the increased emission anisotropy observed
experimentally. Because the general ray
motion is furthermore highly chaotic in
most of the phase space, the only plausible
scenario for generating directional emission
is for the lasing modes to be associated with
the small regions of stable, regular motion
that still remain.

For the range of deformations € =~ 0.12 to
0.23, there exist only two such regions. The
first is in the vicinity of the basic diametral
orbit running along the minor axis of the
resonator. The associated modes are the
transverse modes of the stable, curved mir-
ror Fabry-Perot resonator. However, these
modes correspond to normal incidence at
the boundary and, as such, would result in a
peak emission at 90° in the far-field, in
marked contrast to the observation. Further-
more, the low reflectivity of the boundary at
normal incidence combined with the short
length of the minor axis result in a threshold
too high for laser action.

The second region is in the vicinity of
the stable four-bounce periodic orbit with
the shape of a bow-tie in real space. The
intensity pattern of a representative bow-tie
mode is shown in Fig. 3D. This orbit comes
into existence by bifurcation from the di-
ametral orbit at € ~ 0.10 and has four equal
(in absolute value) angles of incidence on
the boundary. At € =~ 0.12 this angle x =~
12.5° and is well below the critical angle,
but as the deformation increases to € =
0.15, this angle increases to approximately
the critical angle, x. =~ 17.5°. This change
results in a sufficiently high reflectivity of
the boundary to allow for laser action. For €
of 0.125, 0.14, and 0.15, values of the re-
flectivity of 0.45, 0.59, and 0.72 are calcu-
lated, respectively. In fact, this increase in

“reflectivity with deformation should lead to

a reduction of the laser threshold.

When the radiation intensity pattern of
a bow-tie mode is averaged according to the
experimental conditions, we find reason-
able agreement between the experimental
and theoretical far-field directionality (Fig.
3C). We conclude that the laser emission at
high deformations originates from the new-
ly observed bow-tie modes. The spectral
properties of the emission provide further
confirmation of this fact, as discussed in the
next section.

The bow-tie orbit is just one of several
otbits that move around the minor axis in a
librational motion (that is without a fixed
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sense of rotation) as opposed to the rota-
tional motion of conventional whispering
gallery orbits. With higher index of refrac-
tion or different shape deformations, modes
associated with other librational orbits may
be relevant to lasing; hence we will refer to
the bow-tie as one of a class of “librational”
modes.

In general one would expect that the
threshold current density ], should have a
minimum for € = 0 (circular case); increase
with' deformation until € = 0.1, because of
the increase in outcoupling loss; and then
decrease because of the gradually increasing
reflectivity of the bow-tie modes. In the
range of € ~ 0.12 to 0.2, the observed
decrease in ], from =~ 5 to 4 kA-cm™? is
consistent with this expectation. However,
in the whispering gallery range of deforma-
tions € = 0 to € =~ 0.08, the measured
decrease in J;, from =~ 7 to 6 kA-cm™? is in
contrast with the expectations. Several is-
sues complicate the interpretation of the
threshold data. First, a finite lateral current
spreading resistance effectively reduces the
current density toward the edge of the disk
outside the contact region. Second, the
mode-confinement factor within the active
region is expected to be reduced in the
outermost parts of the waveguide because of
the true 3D nature of the waveguide, in-
creasing locally the threshold current den-
sity. Consequently, the actual threshold
current density for a given mode depends
on its spatial distribution within the reso-
nator. Our experimental J,, on the con-
trary, is always calculated by dividing the
value of the threshold current by the geo-
metrical area of the actual device.

The threshold current density of the QC
laser is given by J,, = (o, t o..)/80
where a,, is the waveguide loss, g is the
average modal gain coefficient, and o, is
the outcoupling loss, which strongly de-
pends on the distributed reflectivity of the
boundary, which in turn depends strongly
on the deformation € and effective length of
the resonator. From the laser threshold and
the computed value of g (6.72 X 1073
cmrA 1), the quality factor (“Q value”) can
be calculated as Q = (2wn)/[Ma,,, +
o)), where n is the effective refractive
index and N\ the wavelength. The above-
cited threshold current densities then result
in Q values ranging from ==. 850 to 1500.
Waveguide losses are usually dominant in
QC lasers as a result of the high doping
levels that increase free-carrier absorption.
Finally, lowering of the threshold current
density will in general also lead to an in-
crease in the maximum output power as a
result of the higher available range of drive
currents.

Spectral properties. In addition to the
increase in output power and directionality,
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the increasing deformation also affects the
spectral properties of the lasers. These ob-
servations further confirm the existence of
two different regimes, as manifested in the
different types of far-field patterns.

At low deformations we obtain a com-
plex, dense modal spectrum. The lasers are
multiple-mode starting from threshold, with
close mode spacings, and show up to 10
almost equally strong modes at the maxi-
mum optical power (Fig. 3A, inset). This
close mode spacing cannot be understood
from one fundamental set of longitudinal

(“azimuthal”)  whispering-gallery modes
only because fitting an integer number of
wavelengths along a single closed ray path
would result in a regular comb of modes
with significantly larger spacings. We there-
fore attribute the spectrum to the lasing of
several different longitudinal (“azimuthal”)
and transverse (“radial”) modes.

At large deformations the lasers are sin-
gle-mode until approximately twice the
threshold current and show at most two to
three strong modes at maximum power. The
onset of additional modes is accompanied

by a kink in the light output—current char-
acteristic; one can be seen in Fig. 2B. The
crossover between the two spectrally char-
acteristic regimes again occurs around £ ~
0.12.

The multiple-mode behavior of the
highly deformed lasers is consistent with
the emission from bow-tie modes. The log-
arithmic plot of a spectrum in this regime
(Fig. 3C, left inset) reveals six equally
spaced modes, with mode spacing AN =
40.4 nm. The expected theoretical value is
calculated assuming that adjacent modes

Fig. 4. (A to D) Poincaré 1

surface of section rep-

resenting the motion of 08

an ensemble of rays in
phase space for the flat-
0.6

tened quadrupolar bil-
liard, neglecting the pos-
sibility of refractive es-

sin(x)

0.4

cape. Regions of stable

or regular motion are in-

0.2

dicated in green, and re-

gions of chaotic motion

are indicated in blue. ¢ is
the polar angle in radians
as defined in Fig. 3C,
right inset. (A) The un-
deformed (circular) cylin-
der. Each trajectory col-
lides with the boundary
at a fixed value of the an-
gle of incidence, sin(x),
sometimes closing on it-
self and forming a peri-
odic orbit, otherwise
passing arbitrarily close
to any point on the
boundary and forming a
line in the surface of sec-
tion. Several members of
the infinite families of
period-2 (circles), peri-
od-3 (triangles), and
period-4 (squares, dia-
monds)  orbits  are
shown. These members
survive to nonzero defor-
mation, filled symbols
represent orbits that will
give stable islands, open
symbols those that wil
be unstable and gener-
ate regions of chaos.
The red line represents the escape condition, sin(x) = 1/n; in the true reso-
nator, rays below that line would rapidly escape by Fresnel refraction. (B) The
phase space for deformation ¢ = 0.08, corresponding to the calculation of
Fig. 3B. The two major islands at polar angle ¢ = /2 (+90°) correspond to
motion around the stable diametral orbit. Just above these islands is the
chaotic region generated by the unstable diametral orbit at & = 0, = (0,
+180°). This region contains the chaotic whispering-gallery modes. (C) The
phase space for ¢ = 0.125, somewhat after the bifurcation of the diametral
orbit (at e = 0.10) that gives rise to the bow-tie orbits that are seen clearly as
the four islands at sin(x) = 0.22. These islands are sufficiently below the
critical line that the corresponding modes would be too short-lived to lase.
There are four symmetric islands for negative sin(x) that are not shown; any
one bow-tie orbit only visits four of the islands, two with positive and two with
negative sin(x), but the same path is traced in either case. (D) The behavior at

sin(x)

sin(x)
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& = 0.15 orresponding to the data and calculation of Fig. 3, C and D. Now the
bow-tie islands have moved up to the critical line, increasing the lifetime of the
corresponding modes and allowing them to lase. (E) Husimi function corre-
sponding to the resonance of Fig. 3B at ¢ = 0.06; this function clearly
represents a chaotic whispering-gallery state localized in the chaotic region.
The Husimi function translates the real-space electric field intensity pattern
into a probability density in phase space. The resulting function is illustrated
by a color scale, where red indicates high intensity. (F) The relation between
the highly directional resonator mode shown in Fig. 3D and the islands shown
in Fig. 4D can be demonstrated by means of the Husimi function shown in
Fig. 4F. This function is centered on the bow-tie islands. The minimum at the
very center indicates that this bow-tie mode has an oscillatory motion trans-
verse to the bow-tie path; this is consistent with the intensity pattern of Fig.
3D which exhibits four transverse oscillations.
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differ by one wavelength along the path
length of the bow-tie. This analysis yields a
spacing of 39.5 nm, in excellent agreement
with the experiment, considering the un-
certainty in the effective refractive index.

The bow-tie modes can easily be distin-
guished from transverse modes of the diam-
etral curved mirror Fabry-Perot resonator
along the minor laser axis (length L). As
noted above, they originate from a period-
doubling bifurcation of the latter, as will be
discussed below in greater detail, leading to
about twice the optical path length. As
such, the bow-tie mode spectrum displays
about half the mode spacing one would
expect of the standard Fabry-Perot modes,
AN = N?/(2nL) ~ 82 nm.

In summary, the experimental data show
that imposing a flattened quadrupolar de-
formation onto semiconductor microlasers
substantially improves their power output
and directionality. In the favorable direc-
tions of the far-field, a power increase of up
to three orders of magnitude was obtained.
This dramatic result could be achieved by
exploiting the complex ray dynamics—first
for chaotic whispering-gallery modes, then
for bow-tie modes—of the deformed reso-
nators. An in-depth theoretical discussion
of the subject is given in the next section.

Theory. The intensity patterns shown in
Fig. 3, B and D, were obtained by numerical
solution of the Helmholtz equation for the
TM polarization resonances at A =~ 5.2 pm
of a deformed dielectric cylinder with the
dimensions and index of refraction (n =
3.3) corresponding to those of the experi-
mental structures. These solutions are ob-
tained by matching the internal and exter-
nal electric fields and their derivatives at
the surface of the semiconductor, along
with the additional constraint that there is
no incoming wave from infinity. The latter
constraint implies that the wavevector must
be complex, with the imaginary part giving
the decay rate or Q value of the resonance
(27).

To obtain a full theoretical understand-
ing of these resonances, it is helpful to
divide the problem into two parts. First, we
consider the properties of the “bound
states” of the system, corresponding to the
discrete solutions that would exist if the
cavity were completely closed and the elec-
tric field were zero outside the cavity. Then,
we must understand how these states are
altered by the possibility of escape to infin-
ity by refraction.

The first point is precisely the issue of
understanding the solutions of the wave
equation within a “billiard.” This problem
corresponds to a resonator with a mirror
reflectivity exactly equal to unity. With
these “hard-wall” boundary conditions, the
Helmholtz wave equation is identical to
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the Schroedinger equation of quantum
mechanics.

When the cross section of the cylinder is
deformed from circularity, the wave equa-
tion is no longer separable into three 1D
differential equations, and the solutions in
the plane transverse to the cylinder axis are
no longer specified by pairs of quantum
numbers (or mode indices).

One can still obtain a numerical solu-
tion, that is, by representing the solution in
a large basis set of states and diagonalizing
the resulting matrix equations. However, if
this approach is used alone, it is difficult to
extract any physical understanding of the
bound states or resonances, now taking into
account the electric field outside the reso-
nator. Indeed, the solutions shown in Fig. 3,
B and D, were predicted first by a complete-
ly different theoretical approach, before
they were found by numerical search. This
different approach, which has been pio-
neered in physics (28-30) and physical
chemistry (31) during the past two decades,
is to study the short-wavelength limit
of the problem (ray optics for the Helm-
holtz equation, Newtonian mechanics for
Schroedinger’s equation) and try to develop
a systematic understanding with semiclassi-
cal methods. The use of semiclassical meth-
ods is justified in our system because the
wavelength of light in the material (~1.6
pm) is much smaller than any of the geo-
metric features of the resonators. Moreover,
standard perturbation techniques are not
applicable because the deformation causes a
shift in the resonance frequencies that is
large compared with the resonance spacing.

When the optical wave equation is non-
separable, the corresponding ray motion
typically exhibits fully or partially chaotic
dynamics, just as the classical limit of a
nonseparable Schroedinger equation typi-
cally gives a chaotic classical mechanics;
this subfield has become known as “quan-
tum or wave chaos theory.” The stationary
states of these so-called “quantum billiards”
have been studied extensively in this con-
text. Here we will discuss the ray-optics
properties of the billiards corresponding to
the laser resonators studied above, with the
goal of understanding the crossover be-
tween emission from whispering-gallery to
bow-tie modes that occurs in this system.

The relevant billiards are smooth defor-
mations of the circular billiard. Initially we
neglect the possibility of escape. Rays will
simply propagate indefinitely within the
billiard, satisfying the law of specular reflec-
tion at collisions with the boundary. When
the circle is undeformed, angular momen-
tum is conserved in this motion. The angle
of incidence, Y, is the same at each colli-
sion, and the orbit traces out an annulus
bounded by a circular caustic of radius
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Rsin(x), where R is the radius of the circle.
The corresponding wave solutions are the
ordinary Bessel functions indexed by the
angular momentum quantum number.

When the boundary conditions are
changed to include refraction, then rays
incident with yx greater than the critical
value x, given by sin(x_) = 1/n will remain
trapped by total internal reflection, whereas
rays with sin(x) = 1/n will rapidly escape by
refraction according to Snell’s law.

To illustrate the circular and deformed
case in a unified manner, we represent the
ray motion in phase space using the surface
of section (SOS) method (30, 32), in which
every time a ray collides with the boundary
both the azimuthal angle (&), at which it
hits, and its angle” of incidence (x) with
respect to the boundary are recorded. Fol-
lowing an ensemble of a hundred trajecto-
ries for 200 bounces then gives a good pic-
ture of the global dynamics in phase space.

The generic behavior of smoothly de-
formed circular billiards in this representa-
tion is shown in Fig. 4, where again we
neglect the possibility of escape in calculat-
ing the SOS. For the circle (Fig. 4A), the
SOS s trivial, and each trajectory gives a
straight line corresponding to the conserved
value of sin(x), except for trajectories with
a chord angle (2x) equal to a rational frac-
tion, p/q, of 2. Such trajectories will close
after g bounces and are referred to as “peri-
od-q” orbits. All such orbits in the circle are
marginally stable and exist in infinite fam-
ilies corresponding to arbitrary rotations of
any one orbit in the family. Several period-
2, period-3, and period-4 orbits are indicat-
ed in the SOS of Fig. 4A; the period-2
orbits, which are very important in the
discussion below, just traverse the diameter
of the circle.

In all of the SOSs in Fig. 4 we have
indicated in red the horizontal line corre-
sponding to the critical angle, sin(x.) =
1/n = 0.30. Trajectories that fall below that
line in the closed billiard will escape from
the semiconductor. Trajectories above the
line stay “forever” trapped within the reso-
nator [in this approximation, which ne-
glects weak evanescent leakage (tunneling)
of photons (33)]. When the circle is de-
formed, the ray dynamics in the billiard
undergo a transition to partially chaotic
motion. If the deformation is smooth and
the curvature of.the boundary is always
convey, it can be shown rigorously that the
phase space still has nonchaotic whisper-
ing-gallery modes for values of sin(x) suffi-
ciently close to one (34).

The specific form of the deformation is
unimportant for the qualitative physics; we
use the flattened quadrupolar deformation,
which describes well the experiment. One
sees the effect of a deformation of € = 0.06
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in Fig. 4B. For sin(x) > 0.7, there remain
many unbroken (continuous) curves tra-
versing the full surface of section that cor-
respond to whispering-gallery modes that
survive only slightly deformed from the cir-
cle. These are whispering-gallery orbits of
the familiar type, which are confined near
the rim of the resonator, have a true caustic,
and will circulate in one sense indefinitely.
However, one also now sees the signature of
isolated stable and unstable periodic orbits
in the motion. The deformation destroys
the infinite number of periodic orbits in
each family and leaves just an equal number
of stable and unstable orbits. The stable
orbits are surrounded by closed curves (“is-
lands”) that indicate the oscillatory motion
of nearby trajectories around the stable pe-
riodic orbit. The simplest example in Fig.
4B is the two islands around the stable
(short) diametral orbit that collides with
sin(x) = 0 at & = *90°. The unstable
orbits generate regions of chaotic motion
near the islands, which correspond to the
grainy structureless regions of the SOS. The
most visible example in Fig. 4B extends
around the period-2 islands, reaching the
sin(x) = O axis at the location of the un-
stable (long) diametral orbit [which has
sin(x) = O and & = 0, 180°]. The bow-tie
modes that we have focused on in the pre-
vious sections would correspond to a four-
bounce orbit centered on the diametral or-
bit around ¢ = *+90° but no such orbit
exists at this low deformation.

To confirm that the relevant resonances
at this low deformation are of the whisper-
ing-gallery type, one can generate a phase-
space representation of the intensity pat-

Fig. 5. The three orbits born at the period-dou-
bling bifurcation of the stable diametral orbit, the
stable bow-tie (red) and the two unstable V-
shaped “birds” (blue, green). The appearance of
the orbits occurs at a deformation & = 0.10. The
birds, being unstable, will not generate long-lived
resonator modes; however, the stable bow-tie
generates modes with directional properties and
spectral spacing in excellent agreement with the
experiment as discussed above. A key feature of
the bow-tie is that it does not exist until the reso-
nator is substantially deformed so that the confo-
cal condition is reached for the stable diametral
orbit, as discussed in the text.
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tern of Fig. 3B, called the Husimi function
(35). For the resonance with deformation €
= 0.06 shown in Fig. 3B, this function
(shown in Fig. 4E) demonstrates that the
ray motion corresponding to this state is
spread out in the large chaotic region just
mentioned. Because the chaotic region ex-
tends through sin(x) = O, an orbit in this
region of phase space will eventually
change its sense of rotation and is not a
whispering-gallery orbit in the familiar
sense. However, the Husimi function of Fig.
4E does not have support near sin{x) = 0,
indicating that escape occurs before this
reversal of circulation can happen; hence,
the corresponding real-space intensity pat-
tern (Fig. 3B) does have a minimum in the
center bounded by an approximate caustic.
This orbit lies entirely outside the influence
of the central diametral orbit and collides
with all regions at the boundary, and thus it
may reasonably be termed a “chaotic whis-
pering-gallery” orbit.

At a deformation € = 0.10, the bow-tie
orbit appears at a period-doubling bifurca-
tion (32) of the stable diametral orbit. In
this case, it is a nongeneric period-doubling
bifurcation (36) in which a new stable orbit
of twice the period is born (the “bow-tie”),
while simultaneously two new unstable, V-
shaped, period-2 orbits (“birds”) are born
(Fig. 5). Such period-doubling bifurcations
are well’ understood and can be described
quantitatively within the general formalism
of nonlinear Hamiltonian dynamics (32).

However, in this case one can also use a
more elementary argument from resonator
theory. The stable (vertical) diametral orbit
supports standard Gaussian Fabry-Perot
modes that are too low-Q to lase in this
structure, because of the relatively low re-
flectivity at normal incidence. When the
radii of curvature at the two contact points
of this orbit become equal to the distance
between them (the minor axis L), we reach
the confocal condition (37) at which mar-
ginally stable families of bow-tie and V-
shaped orbits, all of length 4L, come into
existence. For the flattened quadrupole this
occurs at € = 0.10. For slightly larger defor-
mations these orbits leave the vicinity of
the diametral orbit and do not correspond
to small deformations of diametral orbits.
Such orbits are not typically discussed in
Fabry-Perot theory (38). But here, because
the boundary creates a full 180° “mirror”
with a reflectivity that increases at oblique
incidence, the modes associated with the
remaining stable bow-tie orbit are higher-Q
than the simple Fabry-Perot modes and can
lase when the latter do not. Because they
require a doubling of the radius of curvature
at the minor axis, they do not exist at small
deformations.

The SOS for € = 0.125 shown in Fig. 4C
is taken just after the bifurcation of the
diametral orbit, showing the emergence of
the stable bow-tie, which has the feature
that its angle of incidence is the same for all
four bounces (see Fig. 4C legend). Howev-

Polar Angle ¢

Fig. 6. Color representation of the directionality of escaping rays for the phase space of the flattened
quadrupole at & = 0.15. Initial conditions leading to escape into the far-field at 0° (blue) and at 90° (red)
are indicated. A clear demarcation is apparent between a pseudo-random region with rapidly fluctuating
escape direction for initial angles sin(x) > 0.70 and a regular region where the escape direction varies
smoothly and relatively slowly. In the regular region, which primarily corresponds to librational motion,
escape is so rapid that chaos cannot fully develop; in contrast, initial conditions in the whispering gallery
region above sin(x) = 0.70 must traverse more of the chaotic sea and cannot generate highly directional
escape. This behavior is completely different from low-index resonators with the same magnitude of
deformation (77). The regular region can generate directional emission, but only for states localized by

islands, such as the bow-tie states.
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er, for this deformation, sin(yx) = 0.22,
which is still well below the critical angle.

When the deformation is further in-
creased to € = (.14, the bow-tie orbit has
moved upward in the SOS so that it is
centered near the critical angle (Fig. 4D).
The reflectivity of the corresponding modes
will increase to a value comparable to that
of the whispering-gallery modes at the same
sin(y) in the circle. Therefore, we expect a
turn-on of the laser emission from this
mode. The bow-tie orbit now represents the
only large stable island at or above the
critical angle in the SOS. Moreover, it is
now well separated in phase space by a
chaotic region from the fundamental diam-
etral orbit from which it originated. The
plot in Fig. 3D shows the high-intensity
regions concentrated on this orbit. In Fig.
4F, we show the phase-space projection of
this mode, which is concentrated in the
vicinity of the islands corresponding to the
bow-tie orbit.

The modes corresponding to the bow-tie
orbit are not simply higher order transverse
Fabry-Perot modes; the latter would corre-
spond to quantized oscillations within the
island around the diametral orbit. More-
over, as noted above, the bow-tie orbit is
rather different from the whispering-gallery
orbits because the sense of rotation of the
bow-tie orbit is not constant; it represents a
librational rather than a rotational motion.

The existence and stability of the bow-
tie orbit is relatively insensitive to the pre-
cise shape of the boundary, so we expect
these modes to be generic to deformed cy-

lindrical resonators. For the flattened quad- -

rupole, the stable bow-tie exists in the range
of deformations from € = 0.10 to € ~ 0.23.
Its directions of peak emission, though, are
indeed sensitive to the precise shape of the
resonator; the degree of sensitivity will be
the subject of future studies (38). Neverthe-
less, reasonable agreement between theory
and experiment has been obtained for the
far-field directionality with the flattened
quadrupolar shape (Fig. 3C).

As noted above, for the range of defor-
mations at which the stable bow-tie orbit
exists, it represents the only substantial is-
lands of stability in the region of phase
space close to the critical value of total
internal reflection; thus, it is difficult to
find a competitive mechanism for the high-
ly directional modes we observe. At lower
deformations, other librational modes exist
and may be important in the crossover from
whispering-gallery to bow-tie emission.

Highly directional emission from low—
refractive index resonators was discussed in
earlier theoretical work by several of the
authors and tested in experiments on lasing
dye-jets (12). However, the origin of direc-
tionality at high deformations in the high—
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refractive index resonators discussed in the
present study is qualitatively different from
the mechanism studied in this earlier work.
In resonators with indices of refraction n <
2, the escape line corresponding to sin(y) =
1/n is much higher in the surface of section.
Therefore, a ray escaping from a whisper-
ing-gallery mode must traverse a much
smaller fraction of the chaotic sea to escape.
It has been shown (11, 12) that in this case
the motion is not pseudo-random, and
highly directional emission from near the
points of highest curvature results. Howev-
er, in the high-index materials of the
present work, it is necessary to reach much
lower angles of incidence within the reso-
nator to escape, and we now find that the
escape direction for rays starting far from
the critical angle is indeed effectively ran-
dom, at least for the deformations where the
bow-tie orbit exists. This is demonstrated by
the chaotic scattering map shown in Fig. 6.
As is explained in the legend to Fig. 6, this
map suggests strongly that highly direction-
al modes of the whispering-gallery type are
not easily achieved at high deformations in
such resonators made from semiconductor
materials, although such modes exist and
dominate the lasing properties at the same
range of deformations for lower index ma-
terials. Conversely, modes such as the bow-
tie resonance, which are related to libra-
tional orbits, all reside well below sin(x) =
0.5 and as such would experience too little
reflectivity from the boundary to reach laser
threshold in low-index materials. The bow-
tie modes are confined away from the points
of highest curvature in the resonator and
thus display a minimum in the near-field
intensity at these points (Fig. 3D), in con-
trast to the whispering gallery modes (Fig.
3B), which have high intensity in the near-
field at these points. Therefore, the two
types of modes should be easily distinguish-
able if near-field measurements could be
made. This is a demanding task for lasers in
the mid-infrared region of the spectrum.
Finally, it should be emphasized that there
is no fundamental reason that such resona-
tors should not be equally effective as mi-
crocavities at visible and near-infrared
wavelengths.
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Role of the CLOCK Protein in
the Mammalian Circadian
Mechanism
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The mouse Clock gene encodes a bHLH-PAS protein that regulates circadian rhythms
and is related to transcription factors that act as heterodimers. Potential partners of
CLOCK were isolated in a two-hybrid screen, and one, BMAL1, was coexpressed with
CLOCK and PER1 at known circadian clock sites in brain and retina. CLOCK-BMAL1
heterodimers activated transcription from E-box elements, a type of transcription factor—
binding site, found adjacent to the mouse per7 gene and from an identical E-box known
to be important for per gene expression in Drosophila. Mutant CLOCK from the dom-
inant-negative Clock allele and BMAL1 formed heterodimers that bound DNA but failed
to activate transcription. Thus, CLOCK-BMALT heterodimers appear to drive the positive
component of per transcriptional oscillations, which are thought to underlie circadian

rhythmicity.

Circadian clocks are endogenous oscilla-
tors that control daily rhythms in physiol-
ogy and behavior (1). Such clocks are phy-
logenetically widespread (2) and are likely
to reflect evolutionarily ancient, fundamen-
tal mechanisms of timekeeping important
for the anticipation of daily variations in
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environmental conditions (3). In mammals,
the circadian clock driving metabolic and
behavioral thythms is located in the supra-
chiasmatic nucleus (SCN) of the hypothal-
amus (4). Mammals and other vertebrates
also have an autonomous circadian clock in
each retina (5) driving rthythms in local
physiology that are likely to anticipate the
transitions between daytime and nighttime
viewing conditions.

The starting point for a molecular anal-
ysis of the mammalian circadian mecha-
nism was the identification of a mouse mu-
tant, Clock, which has a phenotype affect-
ing both the periodicity and persistence of
circadian rhythms (6). CLOCK, the pre-
dicted protein product of the mutated gene

(7, 8), is a member of the bHLH-PAS
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restabilizes. This is consistent with the Poincaré in-
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family, some members of which are known
to function as transcription factors. The
mutant Clock allele acts genetically in a
dominant-negative fashion (7, 9) and en-
codes a protein with a 51-amino acid dele-
tion in its putative transcriptional regulato-
ry domain (CLOCK-A19). How CLOCK
controls the periodicity and persistence of
circadian rhythms is unknown.

Although not formally demonstrated to
encode circadian clock components, three
mammalian orthologs of the Drosophila
clock gene per, mperl (10), mper2 (11), and
mper3 (12), have been identified. All three
are expressed in the SCN and retina, and,
like Drosophila per, the levels of their tran-
scripts exhibit a circadian oscillation. Fly
and mammalian circadian clocks are thus
likely to share a conserved molecular
mechanism.

In Drosophila, the clock mechanism is
constituted in part by a negative feedback
loop in which the PER protein directly or
indirectly represses transcription of its own
gene (13, 14). Constitutive per mRNA ex-
pression has been observed in mutants lack-
ing functional PER protein (14, 15), indi-
cating that there is PER-independent posi-
tive regulation of per transcription. A 69—
base pair (bp) ‘“clock control region”
located upstream of the per gene confers
circadian cycling on reporter genes that is
dependent on a functional PER protein
(16). The 69-bp clock control region thus
includes sequences sufficient for both PER-
dependent negative feedback and PER-in-
dependent positive transcriptional regula-
tion. Within this sequence, an E-box ele-
ment {CACGTG), a binding site for cer-
tain transcription factors, is required for the
positive component of the transcriptional
regulation (16). _

Precedents for heterodimerization be-
tween bHLH-PAS proteins have suggested
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