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High-power and highly directional semiconductor microcylinder lasers based on an 
optical resonator with deformed cross section are reported. In the favorable directions 
of the far-field, a power increase of up to three orders of magnitude over the conventional 
circularly symmetric lasers was obtained. A "bow-tieM-shaped resonance is responsible 
for the improved performance of the lasers in the higher range of deformations, in 
contrast to "whispering-galleryN-type modes of circular and weakly deformed lasers. 
This resonator design, although demonstrated here in midinfrared quantum-cascade 
lasers, should be applicable to any laser based on semiconductors or other high- 
refractive index materials. 

Lasers  consist of two basic components. 
First, t he  active material in which light of a 
certain wavelength range is generated from 
a n  external energy source, such as electric 
current; second, the  laser resonator, which 
contains the  active material, provides feed- 
back for the  stimulated emission of light. 
T h e  resonator largely determines the  spe- 
cial features of the  emitted light-power, 
beam directionality, and spectral proper- 
ties-as well as the  laser's physical features 
such as size and shape. Semiconductor lasers 
are the  most widely used and versatile class 
of lasers. Their most corninon resonators are 
Fabry-Perot cavities, in which two cleaved 
seiniconductor crystal planes act as parallel 
mirrors, reflecting the  light back and forth 
through the  active material. 

There have been many attempts to im- 
prove resonator properties. In  particular, an  
increase in  the  reflectivity of the  resonator 
mirrors is highly desirable. This allon~s low 
thresholds for the  onset of laser action and 
a smaller volume of active material with 
concomitant moderate energy requirements 
and the  ability to pack the  lasers in a small 
suace. 

O n e  excellent example is the  develop- 
ment of microdisk seiniconductor lasers (1 ). 
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These lasers exploit total internal reflection 
of light to  achieve a mirror reflectivity near 
unity. Micro-disk, -cylinder, or -droplet la- 
sers form a class of lasers based o n  circularly 
symmetric resonators, which lase 011 "\vhis- 
pering-gallery modes" of the  electromagnet- 
ic field (2-4). I n  such a mode, light circu- 
lates around the  curved inner boundarv of 
the  resonator, reflecting from the  walls of 
the  resonator with an  angle of lllcide~lce 

u 

always greater than the  critical angle for 
total iilterilal reflection, thus remainine " 
trapped inside the  resonator. There are only 
inlllute losses of light caused bv evanescent 
leakage (tuil~lelin') and scatter'ing from sur- 
face roughness. This principle allowed the  
fabrication of the  \vorldls smallest lasers (2) .  
Besides potential applications in  optical 
computing and networking, ~nicrolasers are 
of strong interest for research problems of 
cavity quantum electrodynamics, such as 
resonator-enhanced spontaneous e~nissioil 
and thresholdless lasers (5). Small resona- 
tors may also s e n e  as model systems for the  
study of wave phenomena in  rnesoscopic 
systems, particularly in the  regime where 
lnotion is fully or partially chaotic. Recent 
examples are the quantuin mechanics of 
electrons conf~ned  111 asvmmetric "boxes." 
such as quantum-dots, stadia, and q a n t u k  
corrals ( 6 ) ,  and asymmetric microwave cav- 
ities with their strong coilnection to quan- 
tuin chaos theorv (7). , . ,  

However, as a serious disadvantage, the  
tiny \vhispering-gallery-type lasers lack 
high output power and directional emission 
because of the  high-reflectivity mirrors and 
the  circular symmetry. Attempts to  improve 
this deficiency by making gratings or small 
indelltations o n  the  clrculnferellce are so far 

not  very promising (8, 9) .  W e  now show In 
experlinent and theory how a resonator de- 
sign that  incorporates chaotic ray motion 
can substantially increase the  output power 
and directionality of such lasers. This effect 
is demonstrated in  seiniconductor auan- 
tum-cascade lasers emitting in the  mid- 
infrared wavelength region ( 10).  

Recent theoretical work has provided 
insight into the  behavior of "asymmetric 
resonant cavities" (ARCS),  whispering-gal- 
lerv resonators with smooth deformations 
froin cylllldrlcal or spherical symmetry (1 1- 
14).  T h e  rav dvnamics In these deformed , , 
resonators are either partially or fully cha- 
otic in the  generic case (13).  T h e  best- " , , 

studied example is a two-dimensional (2D) 
resonator wi th  a a~~adruuo la r  deformation 
of the  circular boundary, described in polar 
coordinates (r, +) by r(+) 5: [l + ~.cos(243)], 
where E is the  deformation parameter. Par- 
tially chaotic whi@ering-gallery modes in 
these resonators have shown directional las- 
ing emission in 10117-index materials (index 
of refraction n < 2, such as glass fibers or 
cylindrical dye jets) (1 2) .  T h e  origin of the  
directional emission is the  follol\ring (1 1) :  
T h e  deformed boundary causes the  angle of 
incidence of a ray in a whispering-gallery 
mode to fluctuate in time. Eventually, a ray 
trapped by total internal reflection imping- 
es o n  the  boundary below the  critical angle 
and escaues bv refraction. However, it was 
not recoinized i n  this earlier theoretical 
work that,  in high-index materials, aualita- " 

tively different inodes not of the  whisper- 
ing-gallery type might be relevant to the  
laslllg properties. 

Here we focus o n  semiconductor lasers 
that have a n  effective index of n - 3.3 
and a deformation of the  boundary best 
described by r (+)  [1 + 2~.cos(243)]"~, 
which we will refer to as a "flattened" quad- 
rupole. In  general, one call parameterize the  
boundary of any convex resonator by a n  
arbitrary Fourier series for r (+ ) ;  the  above 
para~neterizatioil is chosen for convenience, 
because it is simply analyzed and describes 
the  actual resonator shapes quite well (Fig. 
1). W e  show that for sinall defor~nations E, 
the  basic picture of chaotic whispering- 
gallery orbits escaping refractively, as de- 
scribed above, still holds for the  high-index 
semiconductor material. However, we also 
present strong experimental evidence that 
a t  larger deformations a different type of 
laser resonance emerges and is responsible 
for highly directional and high-power emis- 
sion. Unlike the  chaotic ~\~hispering-gallery 
modes of smaller deformations, these so- 
called "bo\\~-tie" resonances are stable reso- 
nator inodes surrounded o n  all sides ( in  
phase space) by chaotic motion. 

This new class of laser resonators, based 
o n  the  smooth deformation of a regularly 
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shaped monolithic cavity, is universally ap- 
plicable to semiconductor lasers or solid- 
state lasers based on high-refractive index 
material. It is to some extent related to ring 
lasers with resonators formed by assembly of 
several distinct flat or curved mirror surfac- 
es, such as the Ti:sapphire laser (15) or 
optically pumped monolithic solid-state la- 
sers (16). We chose the quantum cascade 
(QC) laser to demonstrate these resonators, 
because it is particularly suited for 2D whis- 
pering-gallery geometries as shown by a re- 
cent work on QC microdisk lasers (1 7). It is 
based on a transition between quantized 
conduction-band states of a cascaded In- 
GaAsIInAlAs-coupled quantum-well struc- 
ture (intersubband transition). As such, the 
selection rule of the optical transition al- 
lows light emission only in the 2D plane 
with polarization normal to the quantum 
well layers; that is, transverse magnetic 
(TM) polarization (18). Therefore, no light 
is lost vertical to the laser  lane. Further- 
more, the QC laser is a unipolar device 
based only on electron transport, unlike 
diode lasers. Thus, in contrast to most con- 
ventional semiconductor lasers, the surface 
cannot cause excess unwanted nonradiative 
recombination of electrons and holes. Fi- 
nally, the wavelength is comparatively large 
(several micrometers) and the material used 
is the well-understood InGaAsIInAlAs svs- 
tem. This choice reduces the importance of 
roughness (Rayleigh) scattering and makes 
it easier to fabricate complex shapes. 

Device structure and experimental pro- 
cedure. The lasers are slab-waveguide struc- 
tures made from a Gao,471no,,,As/A10~4,- 
In,,,As heterostructure grown by molecu- 
lar beam epitaxy (MBE) on InP substrate. 
The waveguide core contains the QC laser 
active material, designed to emit light of 
waveleneth A = 5.2 um. This active mate- " 
rial has been used previously (19) and can 
be considered a mature and o~timized de- 
sign for high-quality laser performance. 

The waveguide core is sandwiched be- 
tween two cladding layers (20-22). The 
entire waveguide is designed to be sym- 
metric and such that the lasing mode (the 
lowest order TM mode) has almost no 
(c0.5 %) over la^ with the InP substrate. 
This design prevents possible detrimen- 
tal effects from light coupling into the 
substrate. 

The cylinder lasers are fabricated by op- 
tical lithography and wet chemical etching. 
The quadrupolar-like shape is obtained 
starting from a resist pattern that is com- 
posed of two semicircles connected by a 
rectangle (stadium-shape). The samples are 
then etched until deep mesas are obtained 
(23). Because of the smoothing action of 
the etchant, the straight section of the etch 
mask bends toward the curved parts render- 

ing a quadrupole-like shape. Figure 1 shows 
the top and side view of a laser with defor- 
mation E - 0.16. The top view shows that 
the edge of the resonator follows very well 
the shape of an exact flattened quadrupole. 
Ohmic contacts are applied to the front 
and back surface of the lasers by means 
of nonalloyed Ti/Au and GelAulAglAu, 
respectively. 

Several sets of samules were fabricated. 
The deformation parameter E was varied in 
10 stem from 0 to -0.2. Two different sizes 
were investigated in order to quantify and 
rule out size-de~endent effects, one with the 
short diameterA-50 ym and the long diam- 
eter varying from =50 (E = 0) to -80 pm 
(E - 0.2), the second with the short diam- 
eter - 30 pm and the long diameter vary- 
ing from -30 to -50 ym (24). The mea- 
surements described below showed that ef- 
fects arising from the increase in cavity 
cross section with increasing E (by less than 
a factor of 2, for 0 5 E 5 0.2) are negligible 
compared with those introduced by the 
deformation. 

We performed the measurements mainly 
by contacting the individual cylinder laser 
with a microprobe in a cryogenically cooled 
micropositioner stage. To obtain the far- 
field pattern, we mounted the individual 

Fig. 1. Scanning electron microscope image of 
the side and  to^ view of a flattened auadru~olar- 
shaped cylinde; laser. The quadrupoiar deforma- 
tion parameter is E = 0.16. Side view: The laser 
waveguide and active material is entirely con- 
tained in the disk-with vertical side walls, total 
thickness d = 5.39 km-sitting on a sloped in- 
dium-phosphide pedestal. Light emission occurs 
in the plane of the disk. Top view: The top face of 
the laser is shown in medium gray, the electric 
contact in light gray. The laser boundary is very 
well described by an exact flattened quadrupole 
with E = 0.1 6, which is drawn as dashed red line 
over the circumference. The boundary of the top 
electrical contact is approximately parallel to the 
edge of the cylinder. 

laser on a samule holder that was rotated 
inside the probe stage. The lasers were 
driven with current pulses (duration 50 ns, 
repetition rate -40 kHz), and the light 
output was measured with a cooled 
HgCdTe detector and a lock-in technique. 
To improve power output and avoid excess 
current heating, we recorded the data pre- 
sented here at 40 to 100 K heat sink tem- 
perature. Nevertheless, the maximum pulsed 
operating temperature of the lasers is 270 K. 
The spectral properties were measured 
with a Fourier transform infrared (FTIR) 
suectrometer. 

The lasers emit light according to their 
symmetry into all quadrants of the 2D laser 
plane. The experimental set-up did not al- 
low measurement of the spatially integrated 
power. Therefore, we collected the laser 
output into an appropriate aperture. Its cen- 
ter angle is varied for the acquisition of the 
far-field pattern. The light output vertical 
to the laser plane is broadened by diffrac- 
tion and was measured integrated over the 
vertical extension. We introduce a polar 
coordinate system ( r ,  4 )  such that 4 = 0" 

- 
. . w r. ... I . . . . I . .4 

0.0 0.1 0.2 
Deformation 

Current (mA) 

Fig. 2. (A) Maximum peak optical power from 
various lasers as a function of their quadrupolar 
deformation Darameter E .  The aDerture with width 
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15" is centered around zero degrees. Data from 
two independent sets of lasers are given. The 
power output is normalized to the power of the 
respective circular cylinder laser. The scatter of 
the data is due to the varying number of lasing 
modes with increasing E .  (B) Light output versus 
current characteristics of a quadrupolar cylinder 
laser with deformation E -. 0.2. The collecting 
aperture ranges from +40° to +10O0 (the polar 
coordinate system is described in the text and in 
Fig. 3C). The kink around 400 mA indicates the 
onset of a second lasing mode. The measurement 
was performed at 100 K heat-sink temperature. 
The lasers were tested up to 270 K. 



indicates the direction along the elongated 
(major) axis. Accordingly, 9 = 90" denotes 
the direction of the compressed (minor) 
axis. Hence, a measurement taken at 9 = 
0" has the detector facing one point of 
highest curvature of the deformed laser. 

Power output and beam directionality. 
The deformed cylinder lasers provided a 
substantial increase both of the emitted 
power and directionality (Figs. 2 and 3). 

Light output measurements for various 
lasers as a function of their deformation E 
are shown in Fig. 2A. To generate this plot, 
we recorded the maximum obtainable peak 
power for each laser by optimizing the 
pulsed drive current (25). The collecting 
aperture (slit width corresponding to -15") 
was oriented around 9 = 0". This set-up 
precludes the observation of any changes in 
the far-field directionality with deforma- 
tion. Similar measurements were performed 
with the aperture oriented around 4 = 45" 
and 9 = 90". The striking result is the 
strong (quasi-exponential) increase of the 
collected optical power with deformation. 
For the largest deformation under consider- 
ation (E - 0.2), a power increase by a factor 
of - 50 with respect to the circular case is 

observed. Figure 2A shows a representative 
measurement taken at cb = 0". 

We measured the abeolute output power 
in some highly deformed laser devices by 
bonding and mounting them in a calibrated 
set-up usually used with Fabry-Perot-type 
lasers. One example, obtained from a laser 
with E - 0.2, is shown in Fig. 2B. The 
light-collecting aperture was increased to its 
maximum size, and the sample was tilted to 
detect roughly the optical power in an angle 
from +40° to + 100". The choice of this 
aperture, which exploits far-field anisotro- 
py, will become clear below. A peak output 
vower of -10 mW at 100 K was obtained. 
This value is about three orders of magni- 
tude greater than that obtained from the 
nondeformed (circular cylindrical) laser or 
previous conventional circular QC-disk la- 
sers (17). For a weakly deformed laser (E = 
0.06), we estimate a peak power output of 
2 5 0  p,W (when measured with comparable 
collection efficiency as in the laser of Fig. 
2B). - - 

A quasi-exponential increase of the col- 
lected power with increasing deformation 
(similar to the one shown in Fig. 2A) has 
been measured in numerous sets of lasers 

of various-flattened and less flattened- 
quadrupolar shapes and sizes, and with var- 
ious orientations of the aperture. Thus, it 
appears that the power increase is a reliable, 
universal effect. However, the increase in 
output power per unit angle is closely en- 
tangled with the actual variation of the 
far-field pattern with deformation. Indeed, 
in our lasers the vower increase with defor- 
mation results from the lasing of different 
types of modes in different ranges of E. 

There is a crossover at intermediate defor- 
mations (E 2 0.12) from emission via whis- 
pering-gallery modes, which dominates at 
smaller deformations, to laser emission from 
bow-tie modes, which do not exist below E - 0.10 but dominate the high-deformation 
regime. 

In addition to the strong increase in 
power output, the deformed lasers can also 
provide strong directionality. The results 
of the far-field measurements are summa- 
rized in Fig. 3, A and C. As expected, the 
circular cylinder laser displays no direc- 
tionality of the emission. At small defor- 
mations (E 5 0.10), the far-field is only 
weakly structured with an increased emis- 
sion in direction of the minor axis com- 

Fig. 3. (A) Peak output power of different lasers as a function of 15 . . . . . . . . . . . . . . .- ' A: deformation. The power is collected around 0" (open symbols) A 
and 90" (filled symbols) with a width of the fixed aperture of 15". 
Two independent sets of lasers are presented for each orienta- 
tion of the aperture. Both curves rise approximately exponential- 
ly, as indicated by the dashed line-fit (26). (Inset) Spectrum in 
linear scale obtained near peak optical power from a cylinder 5.1 5.2 
laser with low deformation (E .- 0.04). The close mode spacing (F) / 
observed in the spectrum is a result of several lasing whispering- i s; d 
gallery-type modes. The displayed linewidth is limited by the 
experimental set-up and data acquisition system. (B) False-color d 
representation of the radiation intensity pattern of achaotic whis- 
pering-gallery mode for a deformed cylinder with E = 0.06 and 0.05 0.10 
length of the minor axis of 50 pm. Red indicates high intensity, Deformation I - - 

dark blue indicates minimum intensity on a linear intensity scale. 
The computational technique is explained in the theory section 
of the main text. (C) Symbols indicate the measured angle- 
resolved far-field pattern (one quadrant) of a circular (4 and two 
deformed lasers with E = 0.14 (0) and e = 0.16 (0). The mea- 
surements presented here have been taken at a constant-cur- 
rent level, at which the (deformed) lasers displayed pure single- 
mode emission. However, the far-field shows qualitatively the 
same characteristic directionality at a current level correspond- 
inq to oeak ootical mwer. The data sets are normalized to the h ''. 
viue measured at zero degrees. The data points are connected 
by splines (solid lines) for clarity. The dashed line is the calculated 
far-field intensity pattern associated with the bow-tie mode 

i 0 t_ 
shown in Fig. 3D, averaged over the experimental aperture. The 
calculation has been scaled to match the peak emission at 
-45". The exact angular position of this maximum should be sensitive to the 
precise shape of the boundary near- the bow-tie impact points, and we 
attribute the off-set between the measured and calculated peak positions 
primarily to the small deviation between our model and the actual shape and 
some uncertainty in the precise measurement of the angle. Furthermore, at 
present, we do not fully understand the discrepancy in the intensities of the 
secondary peak between calculation and experiment. (Left inset) Logarith- 
mic plot of the measured spectrum at maximum power (power P versus 
wavelength X) of a laserwith E .- 0.16. Six equally spaced modes, with mode 
spacing AX = 40.4 nm, are observed. This mode separation is in good 

0 30 80 9 0 ~  
Far-tield angle (degree) 

agreement with the value of 39.5 nm calculated for a bow-tie orbit corre- 
sponding to the calculated intensity pattern of Fig. 3D. (Right inset) The 
polar coordinate system is oriented such that 4 = 0" indicates the direction 
along the elongated (major) axis, and 4 = 90" denotes the direction of the 
compressed (minor) axis. (D) False-color representation of the intensity pat- 
tern of a bow-tie-mode for E = 0.1 5 and length of the minor axis of 50 pm. 
The crossover to the asymptotic far-field pattern of Fig. 3C (dashed line) is 
relatively slow, and certain features such as the modulated intensity at 4 = 
90" vanish in the far-field. The linear color scale (red, high intensity; blue, low 
intensity) is unrelated to the color scale of Fig. 38. 
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pared with the major axis. Figure 3A 
shows the increase of the output power 
with E, collected around 0" and 90". Both 
curves rise approxitnately exponentially, 
as discussed in the previous section, but 
"faster" for 6 = 90": in this case the 
exponent is increased by a factor of -2 
with respect to the + = 0" case (26) .  

This observation is consistent with the 
expected behavior of deformed whispering 
gallery rnodes with an average angle of in- 
cidence near the critical angle defined by 
sin()(') = l/n, where n = 3.3 is the effective 
refractive index of the laser waveguide. At 
zero defortnation such a mode has a con- 
served angle of incidence and emits isotro- 
pically and ~~nifortnly via eL7anescent leak- 
age frotn all points at the boundary (ne- 
glecting disorder effects, such as surface 
roughness scattering). However when the 
boundary is deformed ( I  1 ), the angle of 
incidence of a ray associated with a lasing 
mode fluctuates and (at these deformations) 
is most likely to collide with the boundary 
below the critical anele of incidence at or u 

near a location of high curvature (+ = 0", 
180"). Figure 3B shows the calculated in- 
tensity pattern (the modulus squared of the 
electric field) for a typical whispering-gal- 
lery mode in a deformed cylinder laser with 
E = 0.06 (the calculational techniaue will 
be discussed below). The pattern sho~vs 
clearly the enhanced etnission intensity in 
the near-field in the vicinity of (+ = 0°, 
180"). The experiments are sensiti\,e to the 
far-field intensity distribution, which de- 
pends also on the angle of refraction at the 
points of high curvature. Both the ray and 
wave calculations discussed below indicate 
that at this defortnation all whispering-gal- 
lery modes with high output coupling have 
a minimum in emission intensity in the 
far-field around + = 0" and enhanced etnis- 
sion between 45" and 90". The observed 
experitnental intensity pattern has this gen- 
eral trend (Fig. 3A),  but a fully angle- and 
mode-resolved measurement of the far-field 
pattern and a detailed comparison with the- 
ory is difficult because of the generally low 
optical power and the tnany rnodes that 
contribute to the laser signal in this regime 
of deformations, iA detailed discussion of 
the spectral properties is gi\,en in the next 
section.) 

At higher deforlnations ( E  2 0.14) we 
detect a much stronger and qualitatively 
different directionality. Figure 3C shows the 
actual angle-resolved far-field Dattern (one 

u 

quadrant) of one circular and two deformed 
lasers. For the laser displayed in Flg. 1, we 
obtain a oower increase bv a factor of 30 
into an emission angle of + = 42" com- 
pared with + = 0". The angular width of 
this directional emission is ;= 23". Around 
0' we obser\,e a clear tninimum.of the emis- 

sion, and a smooth sloping plateau toward 
90". 

At  these large defortnatiotls, a typical ray 
characterizing a whispering-gallery mode 
escapes in less than 10 collisions with the 
boundarv as discussed in the theorv section. 
This ray escape is now approxitnately iso- 
trooic and would seem unlikelv to lead to 
th' increased emission anisotropy observed 
experimentally. Because the general ray 
motion is furthermore highly chaotic in 
most of the phase space, the only plausible 
scenario for generating directional emission 
is for the lasing modes to be associated with 
the stnall regions of stable, regular  notion 
that still remain. 

For the range of deformations E ;= 0.12 to 
0.23, there exist only two such regions. The 
first is in the vicinity of the basic diametral 
orbit running along the tninor axis of the 
resonator. The associated modes are the 
transverse modes of the stable, curved mir- 
ror Fabrv-Perot resonator. Howe\,er. these 
modes correspond to nortnal incidence at 
the boundary and, as such, would result in a 
peak emission at 90" in the far-field, in 
marked contrast to the observation. Further- 
more, the lo~v reflecti~~ity of the boundary .at 
normal incidence combined with the short 
length of the tninor axis result in a threshold 
too high for laser action. " 

The second region is in the vicinity of 
the stable four-bounce oeriodic orbit with 
the shape of a bow-tie in real space. The 
intensity pattern of a representative bow-tie 
tnode is shown in Fig. 3D. This orbit comes 
into existence by bifurcation from the di- 
a~netral orbit at E 0.10 and has four equal 
(in absolute value) angles of incidence on 
the boundary. At E ;= 0.12 this angle x = 
12.5" and is well below the critical angle, 
but as the defor~nation increases to E = 
0.15, this angle increases to approxi~nately 
the critical angle, X, - 17.5". This change 
results in a sufficiently high reflectivity of 
the boundary to allow for laser action. For E 

of 0.125, 0.14, and 0.15, values of the re- 
flectivity of 0.45, 0.59, and 0.72 are calcu- 
lated, respectively. In fact, this increase in 
reflectivitv with defor~nation should lead to 
a reductiok of the laser threshold. 

When the radiation intensity pattern of 
a bow-tie mode is averaged according to the 
experimental conditions, we find reason- 
able agreement between the experimental 
and theoretical far-field directionality (Fig. 
3C). We conclude that the laser e~nission at 
high deforlnations originates from the new- 
ly observed bow-tie tnodes. The spectral 
properties of the emission provide further 
confirmation of this fact, as discussed in the 
next section. 

The bow-tie orbit is just one of several 
orbits that 1noL.e around the minor axis in a 
librational motion (that is without a fixed 

sense of rotation) as opposed to the rota- 
tional motion of conventional whispering 
gallery orbits. With higher index of refrac- 
tion or different shape deformations, modes 
associated with other librational orbits may 
be relevant to lasing: hence we will refer to -, 

the bowtie as one of a class of "librational" 
modes. 

In general one would expect that the 
threshold current density jti, should have a 
tninitnutn for E = 0 (cmxlar case); increase 
with deformation until E ;= 0.1, because of 
the increase in outcoupling loss; and then 
decrease because of the gradually increasing 
reflectivity of the bow-tie modes. In the 
range of E = 0.12 to 0.2, the observed 
decrease in It,, from = 5 to 4 kA.cm-' is 
consistent with this expectation. However, 
in the whispering gallery range of defortna- 
tions E = 0 to E = 0.08, the measured 
decrease in Iti, from ;= 7 to 6 kA.cmp' is in 
contrast with the expectations. Several is- 
sues comolicate the interoretation of the 
threshold data. First, a finite lateral current 
spreading resistance effectively reduces the 
current density toward the edge of the disk 
outside the contact region. Second, the 
mode-confinement factor within the active 
region is expected to be reduced in the 
outermost parts of the waveguide because of 
the true 3D nature of the waveguide, in- - 
creasing locally the threshold current den- 
SKY. Conseauentlv, the actual threshold 
cuirent density fo; a given mode depends 
on its spatial distribution within the reso- 
nator. Our experimental .Irh, on the con- 
trary, is always calculated by dividing the 
value of the threshold current by the geo- 
metrical area of the actual device. 

The threshold current density of the QC 
laser is given by J,,, = (a ,vav + a ol,t )/gr, 
where a,,.,\ is the waveguide loss, gr is the 
average modal gain coefficietlt, and aout is 
the outcoupling loss, which strongly de- 
pends on the distributed reflectivity of the 
boundary, which in turn depends strongly 
on the defor~nation E and effective length of 
the resonator. From the laser threshold and 
the computed value of gr (6.72 x lop3 
c1n.A-I), the quality factor ("Q value") can 
be calculated as Q = (2~n)/[X(a,,.,,. + 
a,,,,)], where n is the effective refractive 
index and X the wavelength. The above- 
cited threshold current densities then result 
in Q values ranging from ;= 850 to 1500. 
Waveguide losses are usually dominant in 
Q C  lisers as a result of thk high doping 
levels that increase free-carrier absor~tion. 
Finally, lowering of the threshold current 
density will in general also lead to an in- 
crease in the maximum output power as a 
result of the higher available range of drive 
currents. 

Spectral properties. In addition to the 
increase in o u t p ~ t  power and directionality, 
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the increasing deformation also affects the 
spectral properties of the lasers. These ob- 
servations further confirm the existence of 
two different regimes, as manifested in the 
different types of far-field patterns. 

At low deformations we obtain a com- 
plex, dense modal spectrum. The lasers are 
multiple-mode starting from threshold, wi th 
close mode spacings, and show up to 10 
almost equally strong modes at the maxi- 
mum optical power (Fig. 3A, inset). T h i s  
close mode spacing cannot be understood 
from one fundamental set of longitudinal 

Fig. 4. (A to D) Poincare 
surface of section rep- 
resenting the motion of 
an ensemble of rays in 
phase space for the flat- 
tened quadrupolar bil- 
liard, neglecting the pos- 
sibility of refractive es- 
cape. Regions of stable 
or regular motion are in- 
dicated in green, and re- 
gions of chaotic motion 
are indicated in blue. + is 

("azimuthal") whispering-gallery modes 
only because fitting an integer number of 
wavelengths along a single closed ray path 
would result in a regular comb of modes 
wi th significantly larger spacings. We there- 
fore attribute the spectrum to the lasing of 
several different longitudinal ("azimuthal") 
and transverse ("radial") modes. 
- A t  large deformations the lasers are s in-  
gle-mode unt i l  approximately twice the 
threshold current and show at most two to 
three strong modes at maximum power. The 
onset of additional modes is accompanied 

right inset. (A)   he un- 
deformed (circular) cylin- 0.8 

der. Each trajectory col- 
lides with the boundary 3 66 
at a fixed value of the an- 
gle of incidence, sin()(), ,, . 
odic orbit, otherwise V'L 

passing arbitrarily close 
to any point on the 0- .D 

by a kink in the light output-current char- 
acteristic; one can be seen in Fig. 2B. The 
crossover between the two spectrally char- 
acteristic regimes again occurs around E - 
0.12. 

The multi~le-mode behavior of the 
highly deformed lasers i s  consistent wi th 
the emission from bow-tie modes. The loe- - 
arithmic plot of a spectrum in this regime 
(Fig. 3C, left inset) reveals six equally 
spaced modes, wi th mode spacing AX = 
40.4 nm. The expected theoretical value is 
calculated assuming that adjacent modes 

boundary and forming a 
line in the surface of sec- 
tion. Several members of 
the infinite families of 0 
period-2 (circles), peri- 
od-3 (triangles), and 2 0 
period-4 (squares, dia- 
monds) orbits are 
shown. These members 
survive to nonzero defor- 

0.4 I 
mation, filled symbols 0.2 
represent orbits that will 
give stable islands, open 
symbols those that will 0 -2 0 
be unstable and gener- 
ate regions of chaos. 
The red line represents the escape condition, sin()() = l ln; in the true reso- 
nator, rays below that line would rapidly escape by Fresnel refraction. (B) The 
phase space for deformation E = 0.06, corresponding to the calculation of 
Fig. 3B. The two major islands at polar angle + = 2 d 2  (290") correspond to 
motion around the stable diametral orbit. Just above these islands is the 
chaotic region generated by the unstable diametral orbit at + = 0, ?TI (0, 
21 80"). Th!s region contains the chaotic whispering-gallery modes. (C) The 
phase space for E = 0.1 25, somewhat after the bifurcation of the diametral 
orbit (at E = 0.10) that gives rise to the bow-tie orbits that are seen clearly as 
the four islands at sin()() = 0.22. These islands are sufficiently below the 
critical line that the corresponding modes would be too short-lived to lase. 
There are four symmetric islands for negative sin()() that are not shown; any 
one bow-tie orbit only visits four of the islands, two with positive and two with 
negative sin()(), but the same path is traced in either case. (D) The behavior at 

E = 0.1 5 orresponding to the dataand calculation of Fig. 3, C and D. Now the 
bow-tie islands have moved up to the critical line, increasing the lifetime of the 
corresponding modes and allowing them to lase. (E) Husimi function corre- 
sponding to the resonance of Fig. 3B at E = 0.06; this function clearly 
represents a chaotic whispering-gallery state localized in the chaotic region. 
The Husimi function translates the real-space electric field intensity pattern 
into a probability density in phase space. The resulting function is illustrated 
by a color scale, where red indicates high intensity. (F) The relation between 
the highly directional resonator mode shown in Fig. 3D and the islands shown 
in Fig. 4D can be demonstrated by means of the Husimi function shown in 
Fig. 4F. This function is centered on the bow-tie islands. The minimum at the 
very center indicates that this bow-tie mode has an oscillatory motion trans- 
verse to the bow-tie path; this is consistent with the intensity pattern of Fig. 
3D which exhibits four transverse oscillations. 
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Rsin(x), where R is the radius of the circle. 
The corresponding wave solutions are the 
ordinary Bessel functions indexed by the 
angular lnoinentuin quantum number. 

When the boundary conditions are 
changed to include refraction, then rays 
incident with x greater than the critical 
value X, given by sin(x,) = l/n will remain 
trapped by total internal reflection, whereas 
rays with sin(x) 5 l/n will rapidly escape by 
refraction according to Snell's law. 

To illustrate the circular and deformed 

differ by one wa\,elength along the path 
length of the bolv-tie. This analysis yields a 
spacing of 39.5 nm, in excellent agreement 
with the experiment, considering the un- 
certainty in the effective refractive index. 

The bow-tie modes can easilv be distin- 

the Schroedinger equation of quantuln 
mechanics. 

When the cross section of the cylinder is 
deformed from circularitv, the wave eaua- , , 
tion is no longer separable into three 1D 
differential eauations, and the solutioils in 

guished from transverse lnodes of the diam- 
etral curved mirror Fabrv-Perot resonator 

the plane transverse to the cylinder axis are 
no longer specified by pairs of quailtuin 

along the minor laser axis (length L). As 
noted above, thev originate from a ~er iod-  

numbers (or mode indices). 
One can still obtain a numerical solu- 

, , L -  

doubling bifurcation of the latter, as will be 
discussed below in greater detail, leadine to 

tion, that is, by representing the solution in 
a large basis set of states and diagonalizing 
the resulting matrix equations. However, if 
this a ~ ~ r o a c h  is used alone, it is difficult to 

about twice the oitical path length. "AS 
such, the bow-tie mode sDectrum dis~lavs 

case in a unified manner, we represent the 
ray motion in phase space using the surface 
of section (SOS) method (32, 32), in 
everv time a rav collides with the houndarv 

about half the mode spacing one would 
expect of the standard Fabry-Perot modes, 
AX = h2/(2nL) .= 82 nm. 

In summarv, the ex~er~menta l  data show 

L L 

extract any physical understanding of the 
bound states or resonances, now taking into 

L- 

account the electric field outside the reso- 
nator. Indeed, the solutions shown in Fio. 3. 

botll' the azirnlithal angle (+), at which i; 
hits, and its angle' of incidence (x)  with 
respect to the boundary are recorded. Fol- 
lowing an ensemble of a hundred traiecto- 

that imposing a flattked quadrupolar de- 
formation onto semiconductor ~nicrolasers 
substantially impro\,es their power output 
and directionality. I11 the favorable direc- 
tions of the far-field, a power increase of up 

- 
B and D, were predicted first by a complete- 
ly different theoretical approach, before 
they were found by nu~nerical search. This 
different approach, \vhich has been pio- 
neered in physics (28-30) and physical 
chelnistry (3 1 ) during the past two decades, 
is to studv the short-u~avelen~th limit 

ries f; 2@0 bounces then gives a good pic- 
ture of the global dynamics in phase space. 

The generic behavior of smoothly de- 
formed circular billiards in this representa- 
tion is shou~n in Fig. 4, where again we 

to three orders of magnitude was obtained. 
This dramatic result could be achieved bv 
exploiting the complex ray dynamics-first 
for chaotic whispering-gallery modes, then 
for ban-tie modes-of the deformed reso- 
nators. An  in-denth theoretical discussion 

of the prodlein (ray optics for tKe Helm- 
holtz equation, Newtonian mechanics for 

neglect the possibility of escape in calculat- 
ing the SOS. For the circle (Fig. 4A), the 
SOS is trivial, and each trajectory gives a 
straight line corresponding to the conserved 

Schroedinger's equation) and try to develop 
a svsteinatic understandine with semiclassi- 

of the subject is given in the next section. 
Theorv. The intensitv Datterns sholvn in 

cal'methods. The use of seyniclassical meth- 
ods is iustified in our svstem because the 

value of sin()(), except for trajectories with 
a chord angle ( 2 ~ )  equal to a rational frac- 
tion, p/q, of 2n.  Such trajectories will close 
after q bounces and are referred to as "peri- 
od-q" orbits. ,411 such orbits in the circle are 
marginallv stable and exist in infinite fam- 

, L 
Fig. 3, B and D, were obtained by numerical 
solutio~l of the Heln~holtz eauation for the 

wavele;lgth of light in the Inaterial (-1.6 
pm) is 1lluc11 smaller than any of the geo- 

TM polarization resonances at X - 5.2 pm 
of a deformed dielectric cylinder with the 

metric features of the resonators. Moreover, 
standard ~erturbation techniaues are not 

dimensions and index of refraction (n = 

3.3) corresponding to those of the experi- 
mental structures. These solutions are ob- 
tained bv matching the internal and exter- 

applicable because the deformation causes a 
shift in the resonance freauencies that is 

- ,  
ilies corresponding to arbitrary rotations of 
anv one orbit in the familv. Several ~er iod-  

large compared with the resonance spacing. 
When the o~t ica l  wave eauation is non- 

2, beriod-3, and period-4 Arbits are ikdicat- 
ed in the SOS of Fig. 4A; the period-2 

nal eleciric fields i n d  their deri\,ati\,es at 
the surface of the semiconductor, along 
with the additional constraint that there is 
no incoining wave from infinity. The latter 
constraint implies that the wavevector must 
be complex, with the imaginary part giving 
the decay rate or Q value of the resonance 
(27). 

To obtain a full theoretical understand- 
ing of these resonances, it is helpful to 
divide the problem into two parts. First, we 
consider the properties of the "bound 
states" of the system, corresponding to the 
discrete solutions that would exist if the 
cavity were com~letelv closed and the elec- 

separable, the corresponding ray motioil 
typically exhibits fully or partially chaotic 
dynamics, just as the classical limit of a 
nonseparable Schroedinger equation typi- 
cally gives a chaotic classical mechanics; 
this subfield has become known as "quan- 
tum or wave chaos theory." The stationary 
states of these so-called "quantum billiards" 
have been studied extensively in this con- 
text. Here we will discuss the ray-optics 
properties of the billiards corresponding to 
the laser resonators studied above, with the 
goal of understanding the crossover be- 

orbits, which are very important in the 
discussion below, just traverse the diameter 
of the circle. 

In all of the SOSs in Fig. 4 we have 
indicated in red the horizontal line corre- 
sponding to the critical angle, sin(x,) = 

l/n = 0.3@. Trajectories that fall below that 
line in the closed billiard will escape from 
the semiconductor. Trajectories above the 
line stay "forever" trapped withill the reso- 
nator [in this approxiination, which ne- 
glects weak evanescent leakage (tunneling) 
of photons (33)]. When the circle is de- 
formed, the ray dynamics in the billiard 
undergo a transition to ~artiallv chaotic 

tween emission from whispering-gallery to 
bow-tie modes that occurs in this svstem. 

tric fjeld were zeLo outside the cavity. Then, 
we must understand holv these states are 

The relevant billiards are smooth defor- 
mations of the circular billiard. Initiallv we 

motio;. If the cleformatioil is siiooth and 
the curvature of the houndarv is alwavs 

altered by the possibility of escape to infin- 
ity by refraction. 

The first point is precisely the issue of 
~lnderstanding the solutions of the wave 
equation within a "billiard." This problem 
corresponds to a resonator with a mirror 
reflectivity exactly equal to unity. With 
these "hard-wall" boundary conditions, the 
Helmholtz wave equation is identical to 

neglect the possibility of escape. Rays will 
simply propagate indefinitely within the 
billiard, satisfying the law of specular reflec- 
tion at collisions with the boundarv. When 

convex, it can be shou~n rigorokly that the 
phase space still has nonchaotic whisper- 
ing-gallery modes for values of sin(x) suffi- 
cientlv close to one 134). 

the circle is undeformed, angular komen- 
tum is conserved in this motion. The angle 
of incidence, X, is the same at each colli- 

 he specific form'of the deforination is 
unimportant for the qualitative physics; we 
use the flattened quadrupolar deformation, 
\vhich describes well the experiment. One 
sees the effect of a deformation of E = Q.06 

sion, and the orbit traces out an annulus 
bounded by a circular caustic of radius 
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in Fig. 4B. For sin(>() > 0.7, there remain 
many unbroken (continuous) curves tra- 
versing the full surface of section that cor- 
respond to whispering-gallery modes that 
survive only slightly deformed from the cir- 
cle. These are whispering-gallery orbits of 
the familiar type, which are confined near 
the rim of the resonator, have a true caustic, 
and will circulate in one sense indefinitelv. 
However, one also now sees the signature of 
isolated stable and unstable ~eriodic orbits 
in the motion. The deformation destroys 
the infinite number of periodic orbits in 
each family and leaves just an equal number 
of stable and unstable orbits. The stable 
orbits are surrounded by closed curves ("is- 
lands") that indicate the oscillatory motion 
of nearby trajectories around the stable pe- 
riodic orbit. The simplest example in Fig. 
4B is the two islands around the stable 
(short) diametral orbit that collides with 
sin()() = 0 at 4 = +90°. The unstable 
orbits generate regions of chaotic motion 
near the islands, which correspond to the 
grainy structureless regions of the SOS. The 
most visible example in Fig. 4B extends 
around the period-2 islands, reaching the 
sin()() = 0 axis at the location of the un- 
stable (long) diametral orbit [which has 
sin()() = 0 and 4 = 0, 180°]. The bow-tie 
modes that we have focused on in the Dre- 
vious sections would correspond to a four- 
bounce orbit centered on the diametral or- 
bit around 4 = +90°, but no such orbit 
exists at this low deformation. 

To confirm that the relevant resonances 
at this low deformation are of the whisper- 
ing-gallery type, one can generate a phase- 
space representation of the intensity pat- 

tern of Fig. 3B, called the Husimi function 
(35). For the resonance with deformation E 
= 0.06 shown in Fig. 3B, this function 
(shown in Fig. 4E) demonstrates that the 
ray motion corresponding to this state is 
spread out in the large chaotic region just 
mentioned. Because the chaotic region ex- 
tends through sin()() = 0, an orbit in this 
region of phase space will eventually 
change its sense of rotation and is not a 
whispering-gallery orbit, in the familiar 
sense. However, the Husimi function of Fig. 
4E does not have support near sin()() = 0, 
indicating that escape occurs before this 
reversal of circulation can happen; hence, 
the corresponding real-space intensity pat- 
tern (Fig. 3B) does have a minimum in the 
center bounded by an approximate caustic. 
This orbit lies entirely outside the influence 
of the central diametral orbit and collides 
with all regions at the boundary, and thus it 
may reasonably be termed a "chaotic whis- 
pering-gallery" orbit. 

At a deformation E = 0.10. the bow-tie 
orbit appears at a period-doubling bifurca- 
tion (32) of the stable diametral orbit. In 
this case, it is a nongeneric period-doubling 
bifurcation (36) in which a new stable orbit 
of twice the period is born (the "bow-tie"), 
while simultaneously two new unstable, V- 
shaped, period-2 orbits ("birds") are born 
(Fig. 5). Such period-doubling bifurcations 
are well. understood and can be described 
quantitatively within the general formalism 
of nonlinear Hamiltonian dynamics (32). 

Fig. 5. The three orbits born at the period-dou- 
bling bifurcation of the stable diametral orbit, the 
stable bow-tie (red) and the two unstable V- 
shaped "birds" (blue, green). The appearance of 
the orbits occurs at a deformation E = 0.10. The 
birds, being unstable, will not generate long-lived 
resonator modes; however, the stable bow-tie 
generates modes with directional properties and 
spectral spacing in excellent agreement with the 
experiment as discussed above. A key feature of 
the bow-tie is that it does not exist until the reso- 
nator is substantially deformed so that the confo- 
cal condition is reached for the stable diametral 
orbit, as discussed in the text. 

However, in this case one can also use a 
more elementary argument from resonator 
theory. The stable (vertical) diametral orbit 
supports standard Gaussian Fabry-Perot 
modes that are too low-Q to lase in this 
structure, because of the relatively low re- 
flectivity at normal incidence. When the 
radii of curvature at the two contact points 
of this orbit become equal to the distance 
between them (the minor axis L), we reach 
the confocal condition (37) at which mar- 
ginally stable families of bow-tie and V- 
shaped orbits, all of length 4L, come into 
existence. For the flattened quadrupole this 
occurs at E = 0.10. For slightly larger defor- 
mations these orbits leave the vicinity of 
the diametral orbit and do not correspond 
to small deformations of diametral orbits. 
Such orbits are not typically discussed in 
Fabry-Perot theory (38). But here, because 
the boundary creates a full 180' "mirror" 
with a reflectivity that increases at oblique 
incidence, the modes associated with the 
remaining stable bow-tie orbit are higher-Q 
than the simple Fabry-Perot modes and can 
lase when the latter do not. Because they 
require a doubling of the radius of curvature 
at the minor axis, they do not exist at small 
deformations. 

The SOS for E = 0.125 shown in Fig. 4C 
is taken just after the bifurcation of the 
diametral orbit, showing the emergence of 
the stable bow-tie, which has the feature 
that its angle of incidence is the same for all 
four bounces (see Fig. 4C legend). Howev- 

Fig. 6. Color representation of the directionality of escaping rays for the phase space of the flattened 
quadrupole at E = 0.15, Initial conditions leading to escape into the far-field at 0" (blue) and at 90" (red) 
are indicated. A clear demarcation is apparent between a pseudo-random region with rapidly fluctuating 
escape direction for initial angles sin()() > 0.70 and a regular region where the escape direction varies 
smoothly and relatively slowly. In the regular region, which primarily corresponds to librational motion, 
escape is so rapid that chaos cannot fully develop; in contrast, initial conditions in the whispering gallery 
region above sin()() = 0.70 must traverse more of the chaotic sea and cannot generate highly directional 
escape. This behavior is completely different from low-index resonators with the same magnitude of 
deformation (1 1). The regular region can generate directional emission, but only for states localized by 
islands, such as the bow-tie states. 
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er, for tliis deformation, s in(x)  = C . 2 2 ,  
which is still well below the  critical angle. 

W h e n  tlie deformation is further In- 
creased to E > 0.14, the  bow-tie orbit has 
moved upward in the  SOS so that it is 
centered near the  critical angle (Fig. 4D). 
T h e  reflectivity of the  corresponding modes 
will Increase to  a value comvarable to  tliat 
of the  whispering-gallery modes a t  tlie same 
s in(x)  in  the  circle. Therefore, we expect a 
turn-on of the  laser emission from this 
mode. T h e  bow-tie orbit now reoresents the  
only large stable island a t  or abo1.e the  
cr i t~cal  angle in the SOS. h~loreover, it is " 

now well separated in phase space by a 
chaotic region from the  fundamental diam- 
etral orbit from which it originated. T h e  
plot in Fig. 3 D  shows the  high-intensity 
regions c o ~ ~ c e n t r a t e d  o n  this orbit. I n  Fig. 
4F, me sliow tlie pliase-space projection of 
this mode, wliich is concentrated in  tlie 
vicinity of the islands corresponding to the  
box\.-tie orbit. 

T h e  modes corresponding to  tlie bowt ie  
orbit are not simply higher order transverse 
Fabry-Perot modes; tlie latter would corre- 
spond to  quantized oscillations within the  
island around the  d~amet ra l  orbit. More- 
o17er. as noted above. the  bow-tie orbit is 
rathLr different from ;he whispering-gallery 
orbits because the  sense of rotation of the  
bow-tie orbit is not  constant; it represents a 
librational rather than a rotational motion. 

T h e  existence and stability of the  b o w  
tie orbit is relativelv insensitive to the  ore- 
clse shape of the  boundary, so we expect 
tliese modes to  be generic to deformed cy- 

u 

lindrical resonators. For the  flattened quad- 
rupole, the  stable bow-tie exists in tlie range 
of deforinat~ons from E = 0.10 to E = 0.23. 
Its directions of peak emission, though, are 
indeed sensitive to the  precise shape of the  
resonator; the  degree of sensitivity will be 
the  subject of future studies (38). Neverthe- 
less, reasonable agreement between theory 
and experiment has been obtained for the  
far-field directionality with the  flattened 
quadrupolar shape (Fig. 3 C ) .  

As noted above, for the  range of defor- 
 nations at  u~liich tlie stable bowt ie  orbit 
exists, it represents the only substantial is- 
lands of stability in  tlie reglon of phase 
space close to  the  critical value of total 
i ~ ~ t e r n a l  reflection; thus, it is difficult to 
find a competitive meclianism for the  high- 
ly directional modes we observe. A t  lower 
deformations, otlier librational modes exist 
and mav be imoortant in the  crossover from 
whispering-gallery to b o w t i e  emission. 

Higlily directional emissio11 from lou7- 
refractive index resonators was discussed in 
earlier theoretical work by several of the  
authors and tested in exoeriments o n  lasinn - 
dye-jets (12) .  However, the  origin of direc- 
tionality a t  higli deformations in  tlie high- 

refractive index resonators discussed in the  
present study is qualitatively different from 
the  ineclianism studied in  tliis earlier work. 
In  resonators with indices of refraction n < 
2, the  escape l ~ n e  corresponding to s ~ n ( x )  = 

l l n  is much higher In the  surface of sec t~on .  
u 

Therefore, a ray escaping from a whisper- 
ing-gallerv mode must traverse a much - "  , 

smaller fraction of the  chaotic sea to escape. 
It has been shown (1 1,  12)  that  in  tliis case 
the  inotio11 is not  pseudo-random, and 
higlily directional emission from near the  
points of highest curvature results. Howev- 
er, in  the  liigh-index materials of the  
present work, it is necessary to reacli much 
lower angles of incidence witliin the  reso- 
nator to  escape, and we now find that the  
escape direct1011 for rays starting far from 
the  critical angle is indeed effectively ran- 
dom, at least for tlie deformations where the  
bow-tie orbit exists. This is demonstrated bv 
the  chaotic scattering map shown in Fig. 6. 
As is explained in  the  legend to Fig. 6, this 
map suggests strongly that  highly direction- 
al modes of the  u~hispering-gallery type are 
no t  easily achieved a t  liigh deformations in  
S L I C ~  resonators made from semiconductor 
materials, although such modes exist a'nd 
dominate tlie lasing properties at the  same 
range of defor~nations for lower index ma- 
terials. Conr7erselv, modes such as the  bow- 
tie resonance, wkich are related to libra- 
tional orbits, all reside well below s in(x)  = 

0.5 and as sucli u~ould experience too little 
reflectivity from the  boundary to reach laser 
threshold in  low-index materials. T h e  bow- - - 

tie modes are confined away from the  points 
of highest curvature in  the  resonator and 
thus display a minimum in  the near-field 
lntenslty a t  tliese points (Fig. 3D),  in  con- 
trast to the  u~liispering gallery modes (Fig. 
3B) ,  whicli have high intensity in  the  near- 
field a t  these points. Therefore, the  two 
types of modes should be easily distinguish- 
able if near-field measurements could be 
made. Tliis is a demandinn task for lasers in  " 
the  mid-infrared region of the  spectrum. 
Finally, it should be  emphasized that there 
1s n o  f ~ ~ n d a m e n t a l  reason tliat such resona- 
tors should not  be eaua1l.v effective as mi- . , 

crocavities a t  visible and near-infrared 
wavelengths. 
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familv, some members of vvh~ch are known Role of the CLOCK Protein i n to fL l~c t l on  as transcription 

the Mammalian Circadian mutant Cloclt allele acts genetically in a 
dominant-negative fashion (7 ,  9) and en- 
codes a protein with a 5 1-amino acid dele- 

Mechanism tion in its putative tra~~scriptional regulato- 
rv domain (CLOCK-119). How CLOCK 

Nicholas Gekakis," David Staknis," Hubert B. Nguyen, 
Fred C. Davis, Lisa D. Wilsbacher, David P. King, 

Joseph S. Takahashi, Charles J. Weitzt 

The mouse Clock gene encodes a bHLH-PAS protein that regulates circadian rhythms 
and is related to transcription factors that act as heterodimers. Potential partners of 
CLOCK were isolated in a two-hybrid screen, and one, BMALl, was coexpressed with 
CLOCK and PER1 at known circadian clock sites in brain and retina. CLOCK-BMAL1 
heterodimers activated transcription from E-box elements, a type of transcription factor- 
binding site. found adjacent to the mouseperl gene and from an identical E-box known 
to be important for per gene expression in Drosophila. Mutant CLOCK from the dom- 
inant-negative Clock allele and BMAL1 formed heterodimers that bound DNA but failed 
to activate transcription. Thus, CLOCK-BMAL1 heterodimers appear to drive the positive 
component of per transcriptional oscillations, which are thought to underlie circadian 
rhythmicity. 

Circadian clocks are e~ndogenous oscilla- 
tors that control dally rhythms in physlol- 
ogy and behavior (1).  Such clocks are phy- 
logenetically widespread (2)  and are likely 
to reflect evolutionarily ancient, f~mdamen- 
tal mechanisms of t i~nekeep~ng important 
for the antic~pation of daily variations in 

N. Gekak~s, D Stakns, H. B. Ngu)jen, C. J. \V!e~tz, De- 
partment of Neuroboloo~, Harvard M e c c a  School, Bos- 

environlnental cond~tions (3 ) .  I11 mammals, 
the circadian clock driving metabolic and " 
behavioral rhythms is located in the supra- 
chiasmatic nucleus (SCN)  of the hypothal- 
alnus (4) .  Ma~nlnals and other vertebrates 
also have an autonolnous circadian clock in 
each retina (5)  d r ~ v ~ n g  rhythms in local 
physiology that are likely to anticipate the 
transitions between daytime and n ~ g h t t i ~ n e  
viewing conditions. 

controls the periodicity and persistence of 
circadian rhvthms is unknon.11. 

~ l t l ~ o u ~ l ;  not formally de~nonstrated to 
encode circadian clock components, three 
~nalnlnalian orthologs of the Drosophila 
clock gene per, mperl ( l o ) ,  mper2 (1 l ) ,  and 
mper3 (1 2) ,  have been identified. All three 
are expressed in the SCN and retina, and, 
like Drosobhlla ber. the levels of their tran- 

A A ,  

scripts exhibit a c~rcadlan oscillation. Fly 
and ~nalnlnalian circadian clocks are thus 
l~kely to share a conserved molecular 
mechanism. 

In Drosophila, the clock mechanism is 
constituted in part bv a neeative feedback 
loop 111 which ;he PER pro;eln dlrectly or 
indirectly represses transcription of its own 
gene (1 3 .  14). Constitut~ve per mRNA ex- 
pression has been observed in mutants lack- 
ing functional PER protein (14, 1 5 ) ,  indi- 
cating that there is PER-independent posi- 
tive regulation of per transcript~on. A 69- 
base pair (bp) "clock control region" 
located upstream of the per gene confers 
c~rcadian cycling on reporter genes that is 
dependent on a functional PER protein 
(16). The  69-bp clock control region thus 
includes sequences sufficient for both PER- 
d e ~ e n d e n t  negative feedback and PER-in- -. - 

ton MA 021 15, USA The starting point for a molecular anal- dependent positive transcriptional regula- 
F. C. Davs, Department of Biology, Northeastern Unver- 
slty, Boston MA 321 15, USA, ysis of the ma~n~nal ian  circadian mecha- tion. \V~thin this sequence, an E-box ele- 
L. D lliisbacher, D. P. King, J. S.Takahasi?~, Department n i s ~ n  was the ident~fication of a mouse mu- ment (CACGTG),  a binding site for cer- 
o: Neurobioogy ant Physioogy' Hov~arc Hughes Med-  tant, Cloclt, which has a affect- tain transcription factors, 1s requ~red for the 
c a  nsttute and Natona Science Foundaton Center for 
Blooglcal T lmlng,  Northwestern Unlverslty, E,lanston, lL  ing both the periodicity and persistence of positi1.e colnponent of the transcriptional 
63238. USA. circad~an rhythms (6) .  CLOCK, the pre- regulation (16). 
-These authors contrbutec equay to t hs  work. dicted protein product of the mutated gene Precedents for heterodi1neri:ation be- 
?To whom correspondence s h o ~ ~ l d  be adcressed. (7,  8), is a nleinber of the bHLH-PAS tween bHLH-PAS proteins have suggested 
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