tion is likely to destroy actin binding of
Myol5, creating a loss-of-function allele.
Myol5 led to identification of the human
homolog, MYO15, and to the discovery of a
nonsense mutation and two missense muta-
tions in three unrelated human families
with nonsyndromic, congenital deafness,
DFENB3 (9).

Mutations in three different unconven-
tional myosins, Myol5*?, Myo6*, and
Myo7a™, cause deafness (13). Morphology
and histology of severe loss-of-function al-
leles in the mouse suggest that each of these
myosins has a unique function in the hair
cells of the inner ear. Our results show that
Myol5 is involved in the maintenance of
actin organization in the hair cells of the
organ of Corti. Loss of Myo7a causes disor-
ganization of the characteristic pattern of
the stereocilia early in development, where-
as loss of Myo6 function causes fusion of the
stereocilia and loss of the inner hair cells
and support cells by 6 weeks of age (14). In
contrast, the inner hair cells of sh2 mutants
survive longer (15) and the abnormally
short stereocilia are arranged in a nearly
normal pattern on the hair cell surface.
These features make shaker-2 mice a good
model for examining the role of a unique
unconventional myosin in the auditory sys-
tem and for the exploration of mechanisms
for the delivery of functional proteins to
surviving mutant hair cells.
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Association of Unconventional Myosin MYO15
Mutations with Human Nonsyndromic
Deafness DFNB3

Aihui Wang, Yong Liang, Robert A. Fridell, Frank J. Probst,
Edward R. Wilcox, Jeffrey W. Touchman, Cynthia C. Morton,
Robert J. Morell, Konrad Noben-Trauth, Sally A. Camper,
Thomas. B. Friedman*

DFNB3, a locus for nonsyndromic sensorineural recessive deafness, maps to a 3-cen-
timorgan interval on human chromosome 17p11.2, a region that shows conserved
synteny with mouse shaker-2. A human unconventional myosin gene, MYO15, was
identified by combining functional and positional cloning approaches in searching for
shaker-2 and DFNB3. MYO15 has at least 50 exons spanning 36 kilobases. Sequence
analyses of these exons in affected individuals from three unrelated DFNB3 families
revealed two missense mutations and one nonsense mutation that cosegregated with

congenital recessive deafness.

Nonsyndromic recessive deafness accounts
for about 80% of hereditary hearing loss (1).
To date, 20 loci responsible for this form of
deafness have been mapped and three have
been identified (2—4). DENB3, first identi-
fied in families from Bengkala, Bali, initially
was mapped to a 12-centimorgan (cM) re-
gion near the centromere of chromosome 17
(5) and subsequently was refined to a 3-cM
region of 17p11.2 (6). Congenital hereditary
deafness in two unrelated consanguineous
families from India is also linked to DFNB3
(6), indicating that the contribution of
DFNB3 alleles to hereditary deafness is likely
to be geographically widespread.

On the basis of conserved synteny and
similar phenotypes, we proposed that the

autosomal recessive mouse mutation shak-
er-2 was the homolog of DFNB3 (5, 6). In
the accompanying paper, we describe the
bacterial artificial chromosome (BAC)—me-
diated transgene correction of the deafness
and circling phenotype of homozygous shak-
er-2 mice (7). DNA sequence analyses of
this BAC revealed an unconventional my-
osin gene, Myol5. Myosins are a family of
actin-based molecular motors that use en-
ergy from hydrolysis of adenosine triphos-
phate (ATP) to generate mechanical force.
The classic, two-headed filament-forming
myosins that provide the basis for muscle
contraction are referred to as conventional
myosins. Other members of the myosin su-
perfamily, the unconventional myosins,
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Fig. 1. (A) Predicted amino acid sequence of
MYO15. A partial MYO15 cDNA (4757 bp) is pre-
dicted to encode 1585 amino acids with a motor
domain (blue), two 1Q motifs (green), and a tail
region containing a MyTH4 and a talin-like domain
(red). A consensus ATP binding site and two pu-
tative actin binding sites within the motor domain
are indicated (red and pink, respectively). Mini-
exon 6 in the motor domain is also shown (red).
The corresponding mouse Myo15 sequence is
shown below the human sequence. Amino acid
identities are indicated by dots. The three DFNB3
mutations (N890Y, 1892F, and K1300X) are high-
lighted in yellow above the sequence, and the
shaker-2 mutation (C610Y ) is highlighted in yellow
pelow the sequence. (B) Genomic structure of
MYO15. Relative positions of 50 MYO175 exons in
35.9 kb of genomic DNA sequence are indicated.
Intronic sequences are drawn to scale but exons
are not. Solid black or red vertical lines represent
exons that have been identified in cDNA clones.
Dashed vertical lines represent exons that are pre-
dicted based on GENSCAN, GRAIL, and conser-
vation between human and mouse sequences.
Alternative exon 24 (red vertical line) was found in
a brain cDNA clone. Exon 24 has stop codons in
all three reading frames and, if included in a tran-
script, would result in a MYO15 isoform with a
shorter tail. The three DFNB3 mutations and the
domain organization of the encoded MYO15 pro-
tein are also shown.

have functions that are less well understood
but in some cases are thought to mediate
intracellular trafficking events (8). All my-
osins share a common structural organiza-
tion consisting of a conserved NH,-termi-
nal motor domain followed by a variable
number of light-chain binding (IQ) motifs
and a highly divergent tail. In the shaker-2
mouse, an amino acid substitution was
found in a conserved residue in the motor
domain of Myol5 (7). Here we report the
identification of human MYOI5 (9) and
describe three mutations of this gene that
cause hereditary deafness in three DFNB3
families (10).

To isolate MYO15, we used primers to
predict exons of the mouse homolog to
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amplify human genomic DNA. Sequence
analyses of four polymerase chain reaction
(PCR) products showed 99% identity to
Myol5 at the amino acid level (11), indi-
cating that the isolated PCR products were
derived from MYO15. When these human
sequences were used as starting points, a
partial MYOI5 ¢cDNA sequence of ~2.3
kilobases (kb) was identified by RACE

(rapid amplification of cDNA ends) and
reverse transcription—-PCR (RT-PCR) (12).
To obtain additional MYO15 sequences, we
isolated genomic clones from a human
chromosome 17-specific cosmid library,
and the 35.9-kb insert from one clone was
completely sequenced (13) (GenBank ac-
cession number AF051976). Coding regions
were identified by means of gene structure
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Fig. 2. (A) MYO15 muta- A
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normal allele is indicated by
an arrow and an asterisk. (B) Cosegregation of 1I892F, N890Y, and K1300X
point mutations of MYO15 with deafness in three Bengkala nuclear fami-
lies and two Indian families (M21 and |-1924, respectively). Genomic DNA
from individuals in these families was PCR amplified with primer pairs
specific for normal (N) or mutant (M) alleles (37). Amplification products in
each lane correspond to numbered individuals directly above in the
pedigrees. In each family, all deaf individuals are homozygous for the
mutant MYQO715 allele. Their hearing parents are heterozygotes. Coseg-
regation of the mutant allele with deafness in the second Indian family
I-1924 was demonstrated by RFLP analysis. Genomic NA was PCR
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normal alleles are digested ith Xmn | to yield fragments of 143 and 136 bp,
whereas PCR products from the mutant alleles are not digested, yielding
a 279-bp fragment only. All deaf individuals in family 1-1924 are homozy-
gous for the mutant allele and show the 279-bp fragment only. Obligate
carriers have Xmn |-digested and undigested fragments. Each member of
the three DFNB3 families gave consent to publish unaltered family relation-
ships, which are excerpted from the complete pedigrees published else-

amplified and digested with Xmn |.

prediction programs (14), homology search
(BLASTX) (I5), and Pustell DNA matrix
analysis (MacVector 6.0) (16), which to-
gether predicted the presence of 49 exons in
this cosmid. Of these, 45 MYOI5 exons
have thus far been identified in cDNA
clones (12, 17). A 6-base pair (bp) exon 6
was not predicted but is present in a
MYOI15 cDNA clone (18). The longest
MYOI5 open reading frame deduced from
the overlapping ¢cDNAs is 4757 bp, which
comprises 45 exons (Fig. 1A) (19).

To determine whether MYOI5 maps to
the DFNBS3 critical region, we used a primer
pair derived from MYQI15 intron 15 to am-
plify DNA from somatic cell hybrid lines
containing various deletions of chromosom-
al region 17pll.2 (6). The results demon-
strated that MYOI5 maps to the 3-cM
DFNBS3 critical region (20).

Searches of public nucleotide and pro-
tein databases with the MYOI5 cDNA se-
quence (4757 bp) revealed no exact match-
es, and the highest significant matches were
to actual or predicted unconventional my-
osins (21). In MYOI15, a motor domain
from codon 21 to 696 was identified by
alignment against chicken skeletal muscle
myosin Il (GgFSK) (Fig. 1, A and B) (22).
Alignments with other myosins reveal a
consensus ATP binding site (GESGSGKT)
{exon 5) (23) and two putative actin bind-
ing sites (exon 15 and 19) (24). Two IQ
motifs adjacent to the motor domain are
encoded in exon 22 (25). The tail region of
MYOL5 contains a myosin tail homology 4
(MyTH4) domain (26), encoded in exons
27 and 28, similar to those present in un-
conventional myosins of Acanthamoeba
(Myo4), Caenorhabditis elegans (Myol2/
HUM-4 and HUM-6), Bos taurus (Myo10),
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PCR products obtained from the

where (6).

and human (MYO7A) (27). A talin-like
sequence was also found in the MYO15 tail
region spanning exons 42 to 47 (26).
Myosins are classified on the basis of
sequence divergence of their motor do-
mains. To date, 14 classes have been de-
fined (28). In a ClustalW alignment with
the motor domains of MYOL5 and other
myosins, the highest amino acid identity
was 42% with C. elegans HUM-6 (Gen-
Bank accession number U80848) and 41%
with MYO7A (GenBank accession number
U39226) (29). The extent of sequence di-
vergence of MYO15 motor domain from

Fig. 3. Expression of A M 1 2 3 4
MYO15. (A) Expression bp
of MYO15 in human fetal
cochlea by RT-PCR
analysis. RNA from hu-
man fetal cochlea and
human placenta was re-
verse transcribed from
an oligo(dT) primer and
a portion of the first-
strand cDNA was PCR
amplified with primers derived from MYO15 exons
21 and 27 (37). Lane 1, RT-PCR product from 10
ng of fetal cochlea poly (A)* RNA; lane 2, RT-PCR
product from 20 ng of fetal cochlea poly (A)* RNA,

1500

other reported myosins qualifies MYOI5 as
a new branch of the myosin superfamily
(myosin-XV) (7).

To search for MYOI15 mutations in the
Bengkala kindred and the two unrelated
consanguineous ‘Indian families (M21 and
1-1924), we amplified and sequenced the 50
identified MYOI5 exons and flanking in-
tronic sequences from DNA of affected in-
dividuals (30). In each of the families, a
single mutation was identified that cosegre-
gates with deafness (Fig. 2, A and B) (31).
These mutations were not found in 390
chromosomes from 95 unrelated Indians

B 12345678

9101112

-
3 Myors

lane 3, RT-PCR product from 1 g of total placenta RNA,; lane 4, PCR amplification of a mock reverse
transcription reaction (no RNA). The primers will amplify a 688-bp product from cDNA and a 2903-bp
product from genomic DNA. The identity of the 688-bp RT-PCR products from fetal cochlea and
placenta was confirmed by sequence analysis. The PCR was run in a 1% agarose gel with 100-bp
markers (lane M) (Gibco-BRL). (B) Northern blot analysis using a MYO15 RT-PCR product from exons
29 to 47 as a probe. Each lane contains approximately 2 g of poly (A)* RNA from a human adult (left,
lanes 1 to 8) or from fetal tissue (right, lanes 9 to 12) (MTN blots 7760-1 and 7756-1; Clontech
Laboratories). Lane 1, heart; lane 2, brain; lane 3, placenta; lane 4, lung; lane 5, liver; lane 6, muscle; lane
7, kidney; lane 8, pancreas; lane 9, brain; lane 10, lung; lane 11, liver; lane 12, kidney. The most intense
hybridization signals (4.2 to 5.5 kb) were observed in poly (A)* BNA from adult and fetal brains (lanes 2
and 9). The same filters were rehybridized to a B-actin control probe for assessment of equal poly (A)*
RNA loading and transfer efficiency and are shown in the lower panel. Hybridization conditions are
described in (73).
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and 100 unrelated Caucasians (31). In the
Bengkala kindred, an A-to-T transversion
(2674 A — T) in codon 892 (exon 28) is
predicted to result in an lle-to-Phe (I892F)
substitution at a conserved position within
the MyTH4 domain. The mutation identi-
fied in Indian family M21 (2668 A — T,
exon 28) also is predicted to result in a
substitution within the MyTH4 domain
(Asp-to-Tyr; N890Y) and is found just two
codons upstream of the murtation in the
Bengkala families. Although a function for
a MyTH4 domain is not known, the pres-
ence of these mutations suggests a critical
role of this region of MYOI15 in sensory
transduction within the human inner ear.
In contrast to these two missense muta-
tions, the mutation identified in the other
Indian family (I-1924) is a nonsense muta-
tion in exon 39 (3898 A — T; K1300X)
and is predicted to result in either a trun-
cated protein or no protein at all (32).

MYOI5 is expressed in human fetal and -

adult brain as evaluated by Northern blot
analysis (Fig. 3B). As shown by dot-blot
analysis of poly (A)* RNA from a variety of
tissues, MYOI5 is expressed in ovary, testis,
kidney, and pituitary gland (33, 34). We
also observed expression of MYOI5 by RT-
PCR of poly (A)" RNA from cochlea of
18- to 22-week fetuses (Fig. 3A). Sequenc-
ing of the RT-PCR product confirmed that
it corresponds to MYOIS5.

Our data show that MYOI15 may be ex-
pressed in a number of tissues in addition to
the inner ear. However, there is no obvious
consistent clinical abnormality other than
profound deafness in affected individuals
from these three DFNB3 families. A possi-
ble explanation for the absence of pleiotro-
py of these MYO!5 mutations is the pres-
ence of functional redundancy provided by
unconventional myosins expressed in other
tissues. Alternatively, the region where the
three DFNB3 mutations occurred may be
functionally significant only in the auditory
system. The isoform of MYO!5 in the inner
ear identified by RT-PCR does not contain
exon 24, although this exon has been ob-
served in cDNA clones derived from other
tissues (35). Exon 24 contains translation
stop codons in all three reading frames.
Therefore, DENB3 missense and nonsense
mutations in exons 28 and 39 are not likely
to have a functional consequence for
MYOIS5 isoforms that include exon 24.

We have identified three mutations of
MYOI5 in two geographically and ethnical-
ly diverse populations and are now in a
position to evaluate the contribution of
DFNB3 to hereditary deafness worldwide.
Additionally, our findings demonstrate that
MYOI5 encodes an essential mechanoen-
zyme of the auditory system. Mutations in
two other unconventional myosins, Myo6
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and MYOT7A, also cause hereditary deafness
(4, 36). This implies that unconventional
myosins play crucial and nonredundant
roles in auditory hair cell function. The
discovery of MYOI5 provides another entry
point toward an integrated understanding
of auditory signaling pathways.
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Continuity in Evolution: On the
Nature of Transitions

Walter Fontana and Peter Schuster

To distinguish continuous from discontinuous evolutionary change, arelation of nearness
between phenotypes is needed. Such a relation is based on the probability of one
phenotype being accessible from another through changes in the genotype. This near-
ness relation is exemplified by calculating the shape neighborhood of a transfer RNA
secondary structure and provides a characterization of discontinuous shape transfor-
mations in RNA. The simulation of replicating and mutating RNA populations under
selection shows that sudden adaptive progress coincides mostly, but not always, with
discontinuous shape transformations. The nature of these transformations illuminates
the key role of neutral genetic drift in their realization.

A much-debated issue in evolutionary bi-
ology concerns the extent to which the
history of life has proceeded gradually or has
been punctuated by discontinuous transi-
tions at the level of phenotypes (1). Our
goal is to make the notion of a discontinu-
ous transition more precise and to under-
stand how it arises in a model of evolution-
ary adaptation.

We focus on the narrow domain of RNA
secondary structure, which is currently the
simplest computationally tractable, yet re-
alistic phenotype (2). This choice enables
the definition and exploration of concepts
that may prove useful in a wider context.
RNA secondary structures represent a
coarse level of analysis compared with the
three-dimensional structure at atomic reso-
lution. Yet, secondary structures are empir-
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ically well defined and obtain their biophys-
ical and biochemical importance from be-
ing a scaffold for the tertiary structure. For
the sake of brevity, we shall refer to second-
ary structures as “shapes.” RNA combines
in a single molecule both genotype (repli-
catable sequence) and phenotype (select-
able shape), making it ideally suited for in
vitro evolution experiments (3, 4).

To generate evolutionary histories, we
used a stochastic continuous time model of
an RNA population replicating and mutat-
ing in a capacity-constrained flow reactor
under selection (5, 6). In the laboratory, a
goal might be to find an RNA aptamer
binding specifically to a molecule (4). Al-
though in the experiment the evolutionary
end product was unknown, we thought of
its shape as being specified implicitly by the
imposed selection criterion. Because our in-
tent is to study evolutionary histories rather
than end products, we defined a target
shape in advance and assumed the replica-
tion rate of a sequence to be a function of

product is expected from amplification of the human
MYO15 cDNA. Amplification of human genomic
DNA with this primer pair would result in a 2903-bp
fragment.
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the similarity between its shape and the
target. An actual situation may involve
more than one best shape, but this does not
affect our conclusions.

An instance representing in its qualita-
tive features all the simulations we per-
formed is shown in Fig. 1A. Starting with
identical sequences folding into a random
shape, the simulation was stopped when the
population became dominated by the tar-
get, here a canonical tRNA shape. The
black curve traces the average distance to
the target (inversely related to fitness) in
the population against time. Aside from a
short initial phase, the entire history is
dominated by steps, that is, flat periods of
no appatent adaptive progress, interrupted
by sudden approaches toward the target
structure (7). However, the dominant
shapes in the population not only change at
these marked events but undergo several
fitness-neutral transformations during the
periods of no apparent progress. Although
discontinuities in the fitness trace are evi-
dent, it is entirely unclear when and on the
basis of what the series of successive phe-
notypes itself can be called continuous or
discontinuous.

A set of entities is organized into a (to-
pological) space by assigning to each entity
a system of neighborhoods. In the present
case, there are two kinds of entities: se-
quences and shapes, which are related by a
thermodynamic folding procedure. The set
of possible sequences (of fixed length) is
naturally organized into a space because
point mutations induce a canonical neigh-
borhood. The neighborhood of a sequence
consists of all its one-error mutants. The
problem is how to organize the set of pos-
sible shapes into a space. The issue arises
because, in contrast to sequences, there are

1451



