ingly, Wnt3a is neither expressed in the
AER nor implicated in its formation during
mouse limb development (15, 30). Several
other Wnt genes have also been shown to
be expressed differentially between mouse
and chick embryos, both in the developing
central nervous system and in limb buds,
including some in the murine AER (15,
32). Different Wnt genes could substitute
for one another as long as they activate the
same intracellular signaling pathway medi-
ated by B-catenin/LEF1. It is therefore
probable that another species of Wnt that is
expressed in the mouse AER plays the same
role as Wnt3a in the chick.

Both WNT3a and WNT7a proteins act,
at least in part, on the mesoderm, where
they activate distinct targets; WNT3a in-
duces Lefl whereas WNT7a induces Lmx!,
which implies that receptors for both fac-
tors must be present on the surface of mes-
enchymal cells. In spite of previous data
suggesting that all members of the highly
transforming class of Wnt genes act through
B-catenin, our results indicate that the in-
duction of LmxI expression by WNT7a sig-
naling is not mediated by B-catenin and
LEF1. Precedent exists for more divergent
Wnt genes, such as Wnt5a, to act through
distinct signaling cascades (33). Transcrip-
tional activation of downstream genes by
distinct WNT pathways allows for their
different inductive roles in the same tissue
during development.
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X-ray Crystal Structure of C3d: A C3 Fragment
and Ligand for Complement Receptor 2

Bhushan Nagar,* Russell G. Jones,* Russell J. Diefenbach,t
David E. Isenman, James M. Rini#

Activation and covalent attachment of complement component C3 to pathogens is the
key step in complement-mediated host defense. Additionally, the antigen-bound C3d
fragment interacts with complement receptor 2 (CR2; also known as CD21) on B cells
and thereby contributes to the initiation of an acquired humoral response. The x-ray
crystal structure of human C3d solved at 2.0 angstroms resolution reveals an «-a barrel
with the residues responsible for thicester formation and covalent attachment at one end
and an acidic pocket at the other. The structure supports a model whereby the transition
of native C3 to its functionally active state involves the disruption of a complementary
domain interface and provides insight into the basis for the interaction between C3d and

CR2.

Serum complement protein C3 is a central
component of host defense because its pro-
teolytic activation is the point of conver-
gence of the classical, alternative, and lec-
tin pathways of complement activation. C3
cleavage products mediate many of the ef-
fector functions of humoral immunity, in-
cluding inflammation, opsonization, and

Department of Biochemistry and Department of Molecu-
lar and Medical Genetics, University of Toronto, Toronto,
Ontario, M5S 1A8, Canada.

*These authors contributed equally to this work.
tPresent address: Centre for Virus Research, Westmead
Hospital, University of Sydney, Westmead, NSW 2145;
Australia.

1To whom correspondence should be addressed at the
Department of Molecular and Medical Genetics, Univer-
sity of Toronto, Toronto, Ontario, Canada, M5S 1A8.
E-mail: james.rini@utoronto.ca

cytolysis. Proteolytic cleavage of C3 into
(C3a and C3b exposes an internal thioester
bond that through transacylation mediates
covalent attachment of C3b to the surface
of foreign pathogens (1). Although surface-
bound C3b is itself a ligand for complement
receptor 1 (CR1; also known as CD35), it
can subsequently be degraded into the suc-
cessively smaller fragments iC3b and C3dg,
tagging the pathogen for recognition by
other receptors, including the B cell com-
plement receptor CR2 (CD21) (I). The
interaction between B cell CR2 and anti-
gen-bound iC3b or C3dg is an essential
component of a normal antibody response
(2), making an important link between the
innate and adaptive arms of the immune
system (3). The C3d fragment (a CR2-
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binding, 35-kD, protease-resistant fragment
of C3dg), when conjugated to a soluble
antigen, is a potent molecular adjuvant (4).

A Cys!®0 — Alal®® mutant form of
human C3d (C3 residues 996 through 1303;
prepro-C3 numbering used throughout) was
expressed in Escherichia coli in both its na-
tive and selenomethionyl-labeled forms.
The alanine mutation was introduced to
ensure correct disulfide bonding between
Cys''! and Cys!'*® (Cys!®® contributes
the thiol moiety of the thioester, which
would only be expected to form in native
C3). A rosette inhibition assay confirmed
that the recombinant C3d fragment was
functionally active and bound CR2 to an
extent comparable to that of serum-derived
C3dg (5). Crystals were grown and the
structure was determined by multi-wave-
length anomalous diffraction (MAD) phas-
ing from data collected at the selenium
absorption edge (6). The structure was re-
fined to an R, of 19.3% and an R, of
23.3% for the data in the 5.0 to 1.8 A
resolution range (Table 1). The final model
contains residues 1 through 294 (vector

Fig. 1. C3d structure. (A)
Ribbon representation of
C3d. The single intra-
chain disulfide bond is
shown in green here and
in (B). (B) Ribbon repre-
sentation viewed into the
side of the a-a barrel.
Shown are the residues
responsible for covalent
attachment to antigen:
Ala'" (Cys'” in wild-type
C3d), GIn®°, and His'*®
on the convex end of the
molecule. Additional res-
idues have been labeled
to serve as reference
points. Red and blue
label oxygen and nitro-
gen atoms, respectively,
here and in (C). (C) The

residues methionine and leucine plus C3
residues 996 through 1287) of the 310-
amino acid construct, as well as 110 solvent
molecules.

C3d is an a-a barrel with overall dimen-
sions of approximately 30 A X 30 A X 50
A (Fig. 1, A and B). This a-barrel structure,
although uncommon, has been seen in glu-
coamylase, endoglucanase, and the B sub-
unit of protein farnesyltransferase (7). C3d
shows no significant sequence similarity
with these proteins. The topology of the
molecule is such that consecutive helices
alternate from outside to inside, resulting in
a core of six parallel helices (al, a3, a5, a8,
«10, and a12), surrounded by a second set
of six parallel helices (T1, a2, a4, a7, a9,
and all) running antiparallel to those of
the core (Fig. 1A). The most NH,-terminal
helix (T1) is one of five (T1 through T5)
short segments of 3, helix found in the
structure. Although the core of the protein
is formed mainly by apolar side chains,
there are several polar residues pointing
into the core, hydrogen bonded to buried
water molecules. The two opposing ends of

thicester region. Superimposed in green are the modeled Cys'7 and GInZ° with
an intact thioester bond. The loop containing the thioester residues is stabilized
by helix a2, well packed within the core of the protein, as well as stacking
interactions with Phe®®, making it unlikely that it undergoes much movement
relative to the a-a barrel framework. In contrast, His'*® is located at the
midpoint of a long surface-exposed loop (residues 119 through 145 connect-
ing helices a4 and a5), which caps the barrel. The conformational change
required to bring about the open conformation seen in this structure is more
likely to occur in this region. Apolar interactions with lle'#2, located on the tip of
the His'33-containing loop, suggest a direct means of influencing the confor-
mation of this loop in native C3. Glu'® forms the base of a pocket (see also Fig
2B) that may accommodate the His'3® side chain in the closed conformation.
Although C3 and C4B share a similar reaction mechanism (9), the former reacts
primarily with hydroxyl nucleophiles, whereas the latter shows considerable
reactivity with aminc nucleophiles as well. These differences have been pro-
posed to reflect an increased rate of acyl-imidazole formation in C3 (7). Such a
rate increase could be explained by the fact that His3® is hydrogen bonded to
negatively charged Glu'#% in C3, rendering it a stronger nucleophile; in C4B, the
residue equivalent to Glu'3® is a serine, which is probably unable to perform a

similar function. [The figure was prepared with MOLSCRIPT (33) and RASTERSD (34).]

the barrel are structurally distinct (Fig. 1B):
One is a convex surface presenting the ami-
no acid side chains responsible for covalent
attachment to antigen, whereas the other is
a more concave surface containing an ex-
tended acidic pocket.

C3 attaches to pathogens covalently (8),
predominately through ester linkages. To
ensure covalent attachment to only nonself
elements, an activated short-lived form of
C3 is generated in close proximity to the
cell surface of pathogenic microorganisms
(1). Mechanistically, activation is triggered
by proteolytic cleavage of C3, which ini-
tiates a series of steps (9) that closely par-
allel those elucidated for the B isotype of
human C4 (10). Key among these steps is
nucleophilic attack on the buried thioester
linkage (formed by the side chains of
Cys'919 and GIn'®'3) by His!'?%. The acyl-
imidazole-activated GIn!°"3 side chain is
then exposed to solvent, where it can be
attacked by cell surface nucleophiles (for
example, hydroxyl groups from glycolipids
or glycoproteins of pathogens), leading to
covalent attachment of C3b to antigen. In
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: » Gin 20
His 133
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a competing reaction, the acyl-imidazole
intermediate is rapidly hydrolyzed, thereby
limiting the lifetime of the transacylation-
competent state. The residues involved in
forming the thioester bond [Cys!” (1010 in
C3; here mutated to Ala'?) and GIn®°
(1013 in C3)] and the acyl-imidazole inter-
mediate [GIn*°® and His'3? (1126 in C3)]
are surface-exposed in C3d and located on
the convex surface of the molecule (Fig. 1,

B and C). The Ala'7 residue is situated on
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as the putative domain interface residues, are hig
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calculation], which suggests that it will adopt a similar fold and possess the
analogous domain interface. The helical segments in human C3d are indi-

cated by blue cylinders. [ The figure was prepared
Mapping of residue conservation as determined i

C3d; white (not conserved) to progressively darker red (highly conserved).

[The figure was prepared with GRASP (36).] The ¢
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Fig. 3. Stereo view of an electrostatic surface rendition of C3d, showing the acidic pocket on the
concave end of the molecule. Acidic and basic residues are colored red and blue, respectively. Labeled
are the surface-exposed residues that form the pocket. The contour level is at =10 KT. [ The figure was
prepared with GRASP (36).]

Table 1. Structure determination and refinement. The structure was determined by the MAD phasing
method. Three data sets were collected at the Se absorption edge corresponding to the peak, edge,
and a remote wavelength. Atomic positions for the 8 Se atoms were obtained by means of Patterson
methods, with the aid of the program HEAVY (24), and difference Fourier maps. The three data sets were
then treated as a multiple isomorphous replacement problem, using the remote wavelength as “native”
and the peak and edge wavelengths as “derivatives.” The selenium positions were refined and phases
were calculated with the program PHASES (25). The resulting experimental map was of very high quality,
with an overall figure of merit of 0.8 to 2.0 A (0.9 after solvent flattening) and was traced with the program
O (26). The initial Rye and Ry, values (7% of the reflections set aside for the test set) of the model
before refinement were 37.1 and 37.4%, respectively, in the 8.0 to 1.8 A resolution range against the
native data set. The model was then refined with the program X-PLOR (27). rsmd, root mean square
deviation. After the model was subjected to simulated annealing, successive rounds of manual rebuild-
ing, and positional/B-factor refinement, as well as the application of an overall anisotropic B factor to the
data, the R, and Ry, Values were reduced to 19.3 and 23.3%, respectively (the 5.0 to 1.8 Arange).
The final model contained 294 residues, 104 water molecules, and six glycerol molecules. Electron
density for the six NH,-terminal residues (1 through 6), residues 42 through 46, residue 143, and
residues 166 through 171 was weak. No electron density was present for residues 295 through 310.
Relative residue accessibility was calculated with the program NACCESS (28), secondary structure was
assigned with the use of the program PROMOTIF (29), and structural similarity was searched for with the
program DAL (30). The multiple sequence alignment was performed with ClustalW (27), and conser-
vation indices were calculated with AMAS (32).

MAD (SeMet)
Native
Remote Edge Peak
Diffraction data _
Wavelength (A) 0.993 0.9678 0.9794 0.9792

Resolution (A) 1.8 2.0 2.0 2.0

Temperature (°C) —-160 —-160 -160 —-160
Measured reflections (n) 103308t 128694 125648 130972
Unique reflections (n) 29818% 41245 40622 407H
Completeness (%) 80.48 91.2 89.3 89.8
Rsym” 0.046 0.052 0.054 0.055
Sites (n) - 8 8 8
Phasing powert
Dispersive - - 2.5 1.8
Anomalous - 3.4 4.8 5.0
Figure of merit (before 0.801
solvent flattening)
Refinement statistics
Resolution (&) 5.0-1.8 rmsd bond length (A) 0.006
Reflections (n) (F > 20) 24149 rmsd bond angle (°) 1.203
Reryst 0.193 rmsd B values (A?) 2.01
Rieo 0.233

*Rgym = 2 |1 = @ 175] 1, where I is the observed intensity and (/) is the average intensity obtained from multiple
observations of symmetry-related reflections, TPhasing power, root mean square (rms) F,,/rms &, where ¢ is lack
of closure and £, is the calculated heavy atom structure factor. {Bijvoet mates were averaged for the native data
set.  §91% complete in the 2.07 to 2.02 A shell; 59% complete in the 2.02 to 1.79 A shell.
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chain would be required to bring the thio-
ester linkage and histidine side chain into
position for nucleophilic attack and cova-
lent bond formation (see Fig. 1C). We see
no evidence of disorder or alternate confor-
mations in the polypeptide segments con-
taining these residues, which suggests that
in native C3 this region must be held in a
strained conformation capable of forming
the acyl-imidazole intermediate, termed
here the “closed” conformation. This struc-
ture showing the large separation between
the histidine and glutamine residues (see
Fig. 1C) would then represent the relaxed
or “open” conformation.

A number of surface-exposed apolar res-
idues, including Ile??, Phe®, Phe’®, Ile!3?,
and Tyr?”® (Fig. 1C), flank the thioester
region. Sequence comparisons of the C3d
region from diverse species show that these
residues are also highly conserved (Fig. 2A).
In fact, when the degree of similarity for
each position in the sequence (Fig. 2) is
mapped onto the structure, we find a large,
contiguous, surface-exposed patch, includ-
ing the apolar residues, whose degree of
conservation is as high as that of residues in
the core (Fig. 2B). We interpret the con-
servation of this patch to be a reflection of
an important structural role, namely, that of
a domain interface in native C3. We further
suggest that the domain interface not only
serves to protect the thioester from solvent
hydrolysis but, in addition, provides some, if
not all, of the strain energy required to hold
this region in the closed conformation. At
the same time, interactions with His'3?
must prevent nucleophilic attack on the
thioester in native C3. Upon C3 cleavage
and subsequent disruption of this interface,
the strain energy would be transferred to
the covalent bond formed between His!3?
and GIn®, enhancing the reactivity of the
acyl-imidazole intermediate while holding
the structure in the closed conformation.
After nucleophilic attack and relief of the
strain, conversion to the open conforma-
tion would occur, precluding the possibility
of reforming the acyl-imidazole linkage. It
has been shown (10) that the Cys!” thiolate
anion released after acyl-imidazole forma-
tion serves to base catalyze the subsequent
nucleophilic attack, an observation sup-
ported by the relative dispositions of Ala!?,
GIn?, and His'*? (Fig. 1C).

The presence of a domain interface
burying the thioester region and providing
the strain energy to hold native C3 in the
closed conformation is consistent with a
number of chemical inactivation experi-
ments. Even in the absence of proteolytic
activation, small nucleophiles such as
methylamine and ammonia are known to
cleave the thioester linkage, resulting in a
slow (~10-hour) conformational change to
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the so-called C3b-like state (12). The asso-
ciated increase in volume and polarity of
the cysteine and modified glutamine side
chains (spontancous hydrolysis by water
would lead to glutamic acid) would be ex-
pected to disrupt the steric and chemical
complementary of the domain interface,
thermodynamically destabilizing the mole-
cule. Furthermore, mildly denaturing agents
are known to promote covalent attachment
of C3 to hydroxyl-bearing nucleophiles or
the competing thioester hydrolysis reaction
(13), again presumably by disrupting the
domain interface. Mutations of Cys'?,
Glu'®, GIn®, and His'*? show, however,
that variations in the interface, including
those leading to the loss of the thioester
linkage (Cys'” — Ala'?, Glu’® — GIn'®,
and GIn®® — Asn?®), do not necessarily
preclude a C3-like conformation (14).
These results are consistent with the ability
of proteins to accommodate changes in core
packing or protein-protein interfaces while
still retaining function (15). In any case,
steric clashes associated with increased
bulk, as with methylamine addition, would
be expected to be the most destabilizing.
Efforts have been made to identify C3d
residues involved in binding the CR2 re-
ceptor, and a peptide segment has been
proposed (residues 228 through 239 in our
structure) (16). However, no consensus has
yet been reached, because extensive mu-
tagenesis of this segment (in part located on
the convex surface) did not substantially
affect binding (17). The CR2 receptor itself
consists of 15 to 16 short consensus repeats
of 60 to 70 amino acids, only the two
NH,-terminal repeats of which are involved
in C3d binding (18). Because C3d interacts
with pathogen surfaces through a covalent
link at GIn®®, it is unlikely that the thio-
ester-containing end of the a-a barrel
would be involved in CR2 interactions.
The structure shows that the opposite end
of the barrel (the concave surface in Fig.
1B), which would be completely accessible
for receptor interactions even when bound
to cell surfaces, presents a potential site of
interaction—that of an extended pocket
formed primarily by acidic residues (Fig. 3).
A number of the residues found in the
pocket are highly conserved among diverse
C3d sequences (Asp?®, Glu'®®, and Tyr*°!).
This pocket corresponds in location to the
substrate binding sites in the a-a barrels of
glucoamylase, endoglucanase, and farnesyl-
tranferase. With respect to the receptor,
inhibition studies have identified CR2-de-
rived peptides, containing basic residues,
that are important in C3d binding (19).
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Homology modeling [based on the structure
of a two-domain fragment of human factor
H (20)] shows that these basic residues,
among others, form an extensive positively
charged surface on the two NH,-terminal
repeats of human CR2. These observations
make the negatively charged pocket, on the
concave end of the barrel, an attractive
candidate for the site of CR2 interaction.
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