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Many of aspirin's therapeutic effects arise from its acetylation of cyclooxygenase-2 
(COX-2), whereas its antithrombotic and ulcerogenic effects result from its acetylation 
of COX-1. Here, aspirin-like molecules were designed that preferentially acetylate and 
irreversibly inactivate COX-2. The most potent of these compounds was o-(acetoxy- 
phenyl)hept-2-ynyl sulfide (APHS). Relative to aspirin, APHS was 60 times as reactive 
against COX-2 and 100 times as selective for its inhibition; it also inhibited COX-2 in 
cultured macrophages and colon cancer cells and in the rat air pouch in vivo. Such 
compounds may lead to the development of aspirin-like drugs for the treatment or 
prevention of immunological and proliferative diseases without gastrointestinal or he- 
matologic side effects. 

Anti-inflammatory agents date to ancient 
times, when a variety of plant extracts con- 
taining salicylates were used for the treat- 
ment of inflammation, fever, and pain (1). 
The acetylated derivative of salicylic acid 
(aspirin) was introduced in 1897 (2). The 
unique properties of aspirin derive from its 
ability to acetylate and irreversibly inacti- 
vate COX-1 and COX-2, the in vivo targets 
for its action: 

(3, 4). Aspirin is the only nonsteroidal anti- 
inflammatonl drug that covalentlv modifies , " 

cyclooxygenases. It acetylates a serine resi- 
due positioned in the arachidonic acid bind- 
ing channel (Serj3%f COX-1 and Ser5'%f 
COX-2), thereby blocking the approach of 
the fattv acid substrate to the active site for 

to the salicylate moiety, but the compounds 
retain COX-1 selectivity (9). 

The potential utility of a selective, cova- 
lent inactivator of COX-2 prompted our cur- 
rent investieations. We svnthesized a series 
of acetoxybLnzenes substiiuted in the ortho 
position with alkylsulfides. o-(Acetoxyphe- 
ny1)methyl sulfide was identified as a corn- 
pound that exhibited moderate inhibitory 
Dotencv and selectivitv for COX-2 (Table 
1). Systematic variation of acyl group, alkyl 
group, aryl substitution pattern, and heteroa- 
tom identity led to the synthesis of o-(ace- 
toxypheny1)hept-2-ynyl sulfide (APHS), the 
most Dotent inhibitor in the series (Table I ) .  

APHS was a time- and concentration- 
dependent inactivator of COX-2 (k,,,,,,/K, - 
0.18 min-' ~LM-') and was about 60 times as 
potent as aspirin in enzyme inhibition (It,,,,,i 
KL - 0.003 min-' p,M-l) (10). The hydro- 
lysis product of APHS was inactive. COX-2 
treated with APHS produced no prostaglan- 
din endoperoxide-derived products, but it 
generated 15-hydroxyeicosatetraenoic acid 
(15-HETE) in a fashion similar to the aspi- 
rin-inhibited enzyme (1 1, 12). 

When [14C]acetyl-APHS was tested, the 

degree of incorporation of the [14C]acetyl 
moiety into COX-2 and COX-1 correlated 
well with the relative inhibitory activity 
against the two enzymes (ratio of 14C incor- 
porated into COX-2 vs. COX-1 = 15.4) 
(13). Tryptic digestion and peptide map- 
ping of acetylated COX-2 indicated that 
the radioactivity was incorporated into a 
single major peptide that included the 
serine acetylated by aspirin. The electro- 
spray mass spectrum of this peptide revealed 
a pair of high-mass ions at mass/charge ra- 
tios ( rn l~ )  of 389 and 391, corresponding to 
the molecular ions of a tripeptide contain- 
ing [12C]acetate and [14C]acetate (14). Col- 
lision-induced dissociation of the ion at r n / ~  
389 allowed its mass spectrum to be deter- 
mined (Fig. 1). Sequence ions were detect- 
ed at rn/z 260, 147, 129, 102, and 86, cor- 
responding to the acetylated tripeptide Ser- 
Leu-Lys (S-L-K). The presence of an ion at 
r n / ~  86 identified the peptide as N-acetyl- 
S-L-K by comparison to authentic standards 
of N- and 0-acetyl-S-L-K. This peptide is 
present in the COX-2 sequence at positions 
516 to 518 and contains the Ser residue 
acetylated by aspirin (15). 

Site-directed mutagenesis provided an 
opportunity to probe the molecular basis for 
the interaction of APHS with COX-2. 
Three different site-directed mutants were 
constructed that represent regions of the 
arachidonic acid binding site that are im- 
portant for the binding of various cycloox- 
ygenase inhibitors (Fig. 2A). Foremost 
among these is Argl", which is the only 
positively charged residue in the substrate 
access channel and is important for direct- 
ing the salicylic acid portion of aspirin to 
the vicinity of Ser5l"16). Murine COX-2 
containing the mutation Argl"+ Gln was 
expressed in SF-9 insect cells frotn baculo- 
virus vectors (1 7), and membrane prepara- 
tions were used for enzyme assay. APHS was 
more active against Argl"+ Gln COX-2 
than against the wild-type enzyme (Fig. 
2B), which is opposite to the effect of this 

its oxyienation (5, 6). Although aspirin 
acetylatis both isoforms of cyclooxygenase, 
it is to times as potent against COX-l Table 1. nhibltlon Of cyclooxygenases by o-(acetoxyphenyl)alky sufldes (32). Each C,, value corre- 

sponds to an average of at least two Independent determlnatlons. Incubations of lnhlbitors with human 
as against ('I Attempts have COX-2 (88 n M )  or ovlne COX-1 (22 nM) were conducted at 25°C for 3 hours. See (10) for detalls. 
been made to alter the selectivity of aspirin 
for the two different cyclooxygenases by 
varying the length of the acyl group attached R, X 

IC5, (pM) IC,, (COX-I)/ 
R2 cox.2 COX.1 C" "OX-2) 
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mutation on the inhibitory potency of aspi- 
rin and other carboxylic acid-containing 
inhibitors (1 6). Similarly, the T$41+ Ala 
mutant, which is juxtaposed to Arglo6 at 
the mouth of the substrate access channel 
and appears to be important in the binding 
of carboxylic acid-containing inhibitors, 
was more sensitive than wild-type murine 
COX-2 to inhibition by APHS. 

Comparison of the crystal structures of 
murine COX-2 and ovine COX-1 indicates 
that the major difference in the substrate 
access channel between the two isoforms is 
a side pocket off the channel in the vicinity 
of Va1509 (1 8-20). Previous mutagenesis ex- 
periments have verified that differences in 
this region account for the selectivity of 
certain compounds for inhibition of COX-2 
(19-22). Therefore, we constructed a triple 
mutant, Va1509+ Ile:Arg499+ His:Val4,'+ 
Ile, that incorporates the major amino acid 
changes between COX-2 and COX-1 in 
this side pocket region. Unlike other COX- 
2-selective inhibitors that show reduced 
potency when this side pocket is mutated 
(21, 22), APHS was more potent against 
the triple mutant than against wild-type 
COX-2. Thus, the selectivity of inhibition 
of COX-2 by APHS appears to result from 
novel protein-inhibitor interactions. 

The ability of APHS to inhibit COX-2 
in intact cells was assayed in two systems, 
one in which COX-2 activity is induced by 
pathologic stimuli and a second in which 
COX-2 is constitutively overexpressed. 
RAW264.7 macrophages were exposed to 
lipopolysaccharide and y-interferon to in- 
duce COX-2 and were then treated with 
APHS (23, 24). The concentration of 
APHS necessary to inhibit prostaglandin 
D2 (PGD,) synthesis by 50% (IC,,) was 
0.12 FM, indicating that this agent is an 
effective inhibitor of COX-2 activity in cul- 
tured inflammatory cells (Fig. 3A). In par- 
allel experiments, aspirin inhibited PGD, 
synthesis at an IC,, of 100 FM. 

We also examined the relative effects of 
APHS on the growth in soft agar of two 
types of colon cancer cells: HCA-7 cells, 
which express large amounts of COX-2 and 
are sensitive to COX-2 inhibitors, and HCT- 
15 cells, which do not express COX-2 and 
are resistant to the effects of COX-2 inhibi- 
tors (25, 26). HCA-7 cells were sensitive to 
growth inhibition by APHS, whereas HCT- 
15 cells were insensitive (Fig. 3B). The IC,, 
for growth inhibition of HCA-7 cells was 2 
FM, which is lower than the published IC5, 
for inhibition of the growth of HCA-7 cells 
by the COX-2-selective inhibitor SC-58125 
(25). These experiments indicate that the 
(acetoxyphenyl)alkylsulfide pharmacophore 
is comparable or superior to the previously 
described diarylheter~c~cle pharmacophore 
for COX-2 inhibition in cellular systems. 

The results also confirm that COX-2 is The in vivo activity of APHS was as- 
important for the growth of colon cancer sessed using the rat air pouch model (29). 
cells that express the enzyme (25, 27, 28). Subcutaneous air cavities were produced in 

APHS @MI 

Fig. 1. Mass spectrum 
of the molecular ion of 
the acetylated peptide 
isolated from COX-2 

YI treated with [14C]APHS 

Fig. 2. (A) Active-site residues in 
COX-2 mutated to the corresponding 
residues in COX-1 (pink). For illustrative 
purposes, substitutions of COX-2 resi- 
dues were made at the appropriate po- 
sitions of COX-l using the COX-l co- 
ordinates. (B) Inhibition of wild-type 
and site-directed mutants of murine 
COX-2 by APHS. Membranes from 

SF-9 insect cells expressing wild-type (0). ArglOG+ Gln (+), TyP4'+ Ala (O), or lle:Arg499+ 
Hi~ :Val~~+ Ile (A) murine COX-2 were treated with APHS for 1 hour at 37°C and then assayed for 
COX-2 activrty (1 7). 
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Fig. 3. (A) Effect of APHS on PGD, biosynthesis in RAW264.7 macrophages (24) (0, APHS; 0, aspirin). 
(B) Effect of APHS on the growth of human colon cancer cell lines in soft agar. Colony diameters were 
measured and volumes calculated for triplicate wells in duplicate experiments (26). 
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(73, 74). Chromato- 
graphic and spectro- 
scopic comparison to 
chemically synthesized 
standards indicates that 
the isolated peptide is N- 
acetyl-S-L-K, which re- 

y2 sults from 0-to-N acetyl 
196.7 

260.0 migration from the initial 
product 0-acetyl-S-L-K. 
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Table 2. Effect of APHS and ~ndomethacin on 
PGE, and TxB, synthesis in rat air pouch and 
blood platelets. Protocols are described in (29). 
Each group contained six animals. 

Pouch Platelet 
Treatme 11 Dose PGE, TxB, 

(mg/kg) ing/ml) jng/ml) 

Vehicle - 82 2 6 108 = 12 
APHS 5 4=1 118=19 
APHS 50 0 96 -t 14 
lndomethacin 2 0 11.3 = 0.6 

Lervis rats, and carrageenan was injected into 
the cavities to induce COX-2 expression and 
prostaglandin biosynthesis (29, 30). APHS 
or indomethacin was administered 3 hours 
after carrageenan administration, the ani- 
mals were killed, and the concentration of 
prostaglandin E, (PGE;) in the pouch exu- 
date rvas determined by enzyme-linked im- 
munosorbent assay (ELISA). Blood samples 
were removed and the concentration of 
thromboxane B, (TxB,) was deterlnined by 
ELISA to assess the effect of APHS or 
indomethacin on platelet COX-1. '4 dose of 
APHS (5 ingikg) lowered PGE, concentra- 
tions in the pouch exudate by 95 i 1% but 
did not affect serum TxB, concentrations 
(Table 2). Increasing the dose to 50 ingikg 
completely inhibited PGE, in the air pouch 
but decreased TxB, concentrations by only 
11%. In contrast, a dose of indoinethacin (2 
mgikg) inhibited PGE, synthesis in the air 
pouch by 100% and TxB, synthesis in blood 
platelets by 90%. Thus, APHS exhibits se- 
lective inhibition of COX-2 in vivo. 

Our results show that potent, irreversible 
inhibitors of COX-2 can be designed that 
may provide a therapeutic equivalent for 
aspirin in inflatnmatory and proliferative 
diseases without the deleterious effects on 
stomach mucosa, which limit aspirin's use 
in long-term therapy. The efficacy of APHS 
in lipopolysaccharide- and y-interferon- 
treated inflammatory cells, its selectivity in 
attenuating the growth of COX-2-express- 
ing colon cancer cells, and its selectivity for 
inhibition of COX-2 over COX-1 in vivo 
indicate that this class of covalent binding 
inhibitor may serve as a paradigm for novel 
therapeutic interventions in inflammatory 
and proliferative disorders. 

Note added in prooJ: The COX-2 inhibi- 
tor, celecoxib, was recently shown to be a 
porverf~ll inhibitor of colon carcinogenesis 
induced by azoxymethane in Fischer rats 
(31). 
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