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Many of aspirin’s therapeutic effects arise from its acetylation of cyclooxygenase-2
(COX-2), whereas its antithrombotic and ulcerogenic effects result from its acetylation
of COX-1. Here, aspirin-like molecules were designed that preferentially acetylate and
irreversibly inactivate COX-2. The most potent of these compounds was o-(acetoxy-
phenyl)hept-2-ynyl sulfide (APHS). Relative to aspirin, APHS was 60 times as reactive
against COX-2 and 100 times as selective for its inhibition; it also inhibited COX-2 in
cultured macrophages and colon cancer cells and in the rat air pouch in vivo. Such
compounds may lead to the development of aspirin-like drugs for the treatment or
prevention of immunological and proliferative diseases without gastrointestinal or he-

matologic side effects.

Anti-inﬂammatory agents date to ancient
times, when a variety of plant extracts con-
taining salicylates were used for the treat-
ment of inflammation, fever, and pain (I).
The acetylated derivative of salicylic acid
(aspirin) was introduced in 1897 (2). The
unique properties of aspirin derive from its
ability to acetylate and irreversibly inacti-
vate COX-1 and COX-2, the in vivo targets

for its action:
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(3, 4). Aspirin is the only nonsteroidal anti-
inflammatory drug that covalently modifies
cyclooxygenases. It acetylates a serine resi-
due positioned in the arachidonic acid bind-
ing channel (Ser”*® of COX-1 and Ser®'¢ of
COX-2), thereby blocking the approach of
the fatty acid substrate to the active site for
its oxygenation (5, 6). Although aspirin
acetylates both isoforms of cyclooxygenase,
it is 10 to 100 times as potent against COX-1
as against COX-2 (7, 8). Attempts have
been made to alter the selectivity of aspirin
for the two different cyclooxygenases by
varying the length of the acyl group attached
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to the salicylate moiety, but the compounds
retain COX-1 selectivity (9).

The potential utility of a selective, cova-
lent inactivator of COX-2 prompted our cur-
rent investigations. We synthesized a series
of acetoxybenzenes substituted in the ortho
position with alkylsulfides. o-(Acetoxyphe-
nyl)methyl sulfide was identified as a com-
pound that exhibited moderate inhibitory
potency and selectivity for COX-2 (Table
1). Systematic variation of acyl group, alkyl
group, aryl substitution pattern, and heteroa-
tom identity led to the synthesis of o-(ace-
toxyphenyl)hept-2-ynyl sulfide (APHS), the
most potent inhibitor in the series (Table 1).

APHS was a time- and concentration-
dependent inactivator of COX-2 (k; .../K; ~
0.18 min~! uM™!) and was about 60 times as
potent as aspirin in enzyme inhibition (k, .../
K, ~ 0.003 min~! uM™1) (10). The hydro-
lysis product of APHS was inactive. COX-2
treated with APHS produced no prostaglan-
din endoperoxide-derived products, but it
generated 15-hydroxyeicosatetraenoic acid
(15-HETE) in a fashion similar to the aspi-
rin-inhibited enzyme (11, 12).

When [M*Clacetyl-APHS was tested, the

degree of incorporation of the [M*Clacetyl
moiety into COX-2 and COX-1 correlated
well with the relative inhibitory activity
against the two enzymes (ratio of *C incor-
porated into COX-2 vs. COX-1 = 154)
(13). Tryptic digestion and peptide map-
ping of acetylated COX-2 indicated that
the radioactivity was incorporated into a
single major peptide that included the
serine acetylated by aspirin. The electro-
spray mass spectrum of this peptide revealed
a pair of high-mass ions at mass/charge ra-
tios (m/z) of 389 and 391, corresponding to
the molecular ions of a tripeptide contain-
ing [!?Clacetate and ['“Clacetate (14). Col-
lision-induced dissociation of the ion at m/z
389 allowed its mass spectrum to be deter-
mined (Fig. 1). Sequence ions were detect-
ed at m/z 260, 147, 129, 102, and 86, cor-
responding to the acetylated tripeptide Ser-
Leu-Lys (S-L-K). The presence of an ion at
m/z 86 identified the peptide as N-acetyl-
S-L-K by comparison to authentic standards
of N- and O-acetyl-S-L-K. This peptide is
present in the COX-2 sequence at positions
516 to 518 and contains the Ser residue
acetylated by aspirin (15).

Site-directed mutagenesis provided an
opportunity to probe the molecular basis for
the interaction of APHS with COX-2.
Three different site-directed mutants were
constructed that represent regions of the
arachidonic acid binding site that are im-
portant for the binding of various cycloox-
ygenase inhibitors (Fig. 2A). Foremost
among these is Arg!®, which is the only
positively charged residue in the substrate
access channel and is important for direct-
ing the salicylic acid portion of aspirin to
the vicinity of Ser’'® (16). Murine COX-2
containing the mutation Arg'®— Gln was
expressed in SF-9 insect cells from baculo-
virus vectors (17), and membrane prepara-
tions were used for enzyme assay. APHS was
more active against Arg'°®— Gln COX-2
than against the wild-type enzyme (Fig.
2B), which is opposite to the effect of this

Table 1. Inhibition of cyclooxygenases by o-(acetoxyphenyl)alkyl sulfides (32). Each IC, value corre-
sponds to an average of at least two independent determinations. Incubations of inhibitors with human
COX-2 (88 nM) or ovine COX-1 (22 nM) were conducted at 25°C for 3 hours. See (10) for details.
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mutation on the inhibitory potency of aspi-
rin and other carboxylic acid—containing
inhibitors (16). Similarly, the Tyr’*!— Ala
mutant, which is juxtaposed to Arg!® at
the mouth of the substrate access channel
and appears to be important in the binding
of carboxylic acid—containing inhibitors,
was more sensitive than wild-type murine
COX-2 to inhibition by APHS.

Comparison of the crystal structures of
murine COX-2 and ovine COX-1 indicates
that the major difference in the substrate
access channel between the two isoforms is
a side pocket off the channel in the vicinity
of Val®® (18-20). Previous mutagenesis ex-
periments have verified that differences in
this region account for the selectivity of
certain compounds for inhibition of COX-2
(19-22). Therefore, we constructed a triple
mutant, Val’®— Ile:Arg**°— His:Val*°—
Ile, that incorporates the major amino acid
changes between COX-2 and COX-1 in
this side pocket region. Unlike other COX-
2-selective inhibitors that show reduced
potency when this side pocket is mutated
(21, 22), APHS was more potent against
the triple mutant than against wild-type
COX-2. Thus, the selectivity of inhibition
of COX-2 by APHS appears to result from
novel protein-inhibitor interactions.

The ability of APHS to inhibit COX-2
in intact cells was assayed in two systems,
one in which COX-2 activity is induced by
pathologic stimuli and a second in which
COX-2 is constitutively overexpressed.
RAW?264.7 macrophages were exposed to
lipopolysaccharide and vy-interferon to in-
duce COX-2 and were then treated with
APHS (23, 24). The concentration of
APHS necessary to inhibit prostaglandin
D, (PGD,) synthesis by 50% (ICs,) was
0.12 pM, indicating that this agent is an
effective inhibitor of COX-2 activity in cul-
tured inflammatory cells (Fig. 3A). In par-
allel experiments, aspirin inhibited PGD,
synthesis at an 1C,, of 100 pM.

We also examined the relative effects of
APHS on the growth in soft agar of two
types of colon cancer cells: HCA-7 cells,
which express large amounts of COX-2 and
are sensitive to COX-2 inhibitors, and HCT-
15 cells, which do not express COX-2 and
are resistant to the effects of COX-2 inhibi-
tors (25, 26). HCA-7 cells were sensitive to
growth inhibition by APHS, whereas HCT-
15 cells were insensitive (Fig. 3B). The IC,,
for growth inhibition of HCA-7 cells was 2
uM, which is lower than the published IC,
for inhibition of the growth of HCA-7 cells
by the COX-2-selective inhibitor SC-58125
(25). These experiments indicate that the
(acetoxyphenyl)alkylsulfide pharmacophore
is comparable or superior to the previously
described diarylheterocycle pharmacophore
for COX-2 inhibition in cellular systems.

The results also confirm that COX-2 is
important for the growth of colon cancer
cells that express the enzyme (25, 27, 28).

1004

80+

Relative Intensity

20

601

40

& REPORTS

The in vivo activity of APHS was as-
sessed using the rat air pouch model (29).
Subcutaneous air cavities were produced in

Fig. 1. Mass spectrum
of the molecular ion of
the acetylated peptide
isolated from COX-2
treated with ['“C]JAPHS
(13, 74). Chromato-
graphic and spectro-
scopic comparison  to
chemically synthesized
standards indicates that
the isolated peptide is N-
acetyl-S-L-K, which re-
sults from O-to-N acetyl
migration from the initial
product O-acetyl-S-L-K.
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Fig. 2. (A) Active-site residues in
COX-2 mutated to the corresponding
residues in COX-1 (pink). For illustrative
purposes, substitutions of COX-2 resi-
dues were made at the appropriate po-
sitions of COX-1 using the COX-1 co-
ordinates. (B) Inhibition of wild-type
and site-directed mutants of murine
COX-2 by APHS. Membranes from

SF-9 insect cells expressing wild-type (O), Arg'°— Gin (), Tyr®*1— Ala (@), or Val*?°— lig:Arg*99—
His:Val®®®*— lle (A) murine COX-2 were treated with APHS for 1 hour at 37°C and then assayed for

COX-2 activity (17).
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Fig. 3. (A) Effect of APHS on PGD,, biosynthesis in RAW264.7 macrophages (24) (@, APHS; O, aspirin).
(B) Effect of APHS on the growth of human colon cancer cell lines in soft agar. Colony diameters were
measured and volumes calculated for triplicate wells in duplicate experiments (26).
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Table 2. Effect of APHS and indomethacin on
PGE, and TxB, synthesis in rat air pouch and
blood platelets. Protocols are described in (29).
Each group contained six animals.

Pouch Platelet
Treatment (er]Oie ) PGE, TxB,
K hg/ml)  (hg/ml)
Vehicle - 826 108=x12
APHS 5 4 =1 118 = 19
APHS 50 0 96 = 14
Indomethacin 2 0 11.3 =06

Lewis rats, and carrageenan was injected into
the cavities to induce COX-2 expression and
prostaglandin biosynthesis (29, 30). APHS
or indomethacin was administered 3 hours
after carrageenan administration, the ani-
mals were killed, and the concentration of
prostaglandin E, (PGE,) in the pouch exu-
date was determined by enzyme-linked im-
munosorbent assay (ELISA). Blood samples
were removed and the concentration of
thromboxane B, (TxB,) was determined by
ELISA to assess the effect of APHS or
indomethacin on platelet COX-1. A dose of
APHS (5 mg/kg) lowered PGE, concentra-
tions in the pouch exudate by 95 = 1% but
did not affect serum TxB, concentrations
(Table 2). Increasing the dose to 50 mg/kg
completely inhibited PGE, in the air pouch
but decreased TxB, concentrations by only
11%. In contrast, a dose of indomethacin (2
mg/kg) inhibited PGE, synthesis in the air
pouch by 100% and TxB, synthesis in blood
platelets by 90%. Thus, APHS exhibits se-
lective inhibition of COX-2 in vivo.

Our results show that potent, irreversible
inhibitors of COX-2 can be designed that
may provide a therapeutic equivalent for
aspirin in inflammatory and proliferative
diseases without the deleterious effects on
stomach mucosa, which limit aspirin’s use
in long-term therapy. The efficacy of APHS
in lipopolysaccharide- and +y-interferon—
treated inflammatory cells, its selectivity in
attenuating the growth of COX-2—express-
ing colon cancer cells, and its selectivity for
inhibition of COX-2 over COX-1 in vivo
indicate that this class of covalent binding
inhibitor may serve as a paradigm for novel
therapeutic interventions in inflammatory
and proliferative disorders.

Note added in proof: The COX-2 inhibi-
tor, celecoxib, was recently shown to be a
powerful inhibitor of colon carcinogenesis
induced by azoxymethane in Fischer rats

(31).
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