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Mutations in the SMAD4/DPC4 Gene in 
Juvenile Polyposis 

James R. Howe," Stina Roth, John C. Ringold, 
Robert W. Summers, Heikki J. Jarvinen, Pertti Sistonen, 
Ian P. M. Tomlinson, Richard S. Houlston, Steve Bevan, 

Frank A. Mitros, Edwin M. Stone, Lauri A. Aaltonen 

Familial juvenile polyposis is an autosomal dominant disease characterized by a pre- 
disposition to hamartomatous polyps and gastrointestinal cancer. Here it is shown that 
a subset of juvenile polyposis families carry germ line mutations in the gene SMAD4 (also 
known as DPC4), located on chromosome 18q21 . I ,  that encodes a critical cytoplasmic 
mediator in the transforming growth factor-p signaling pathway. The mutant SMAD4 
proteins are predicted to be truncated at the carboxyl-terminus and lack sequences 
required for normal function. These results confirm an important role for SMAD4 in the 
development of gastrointestinal tumors. 

Familial juvenile polyposis (JP) is an auto- 
soma1 dominant disease in which individu- 
als are predisposed to hamartomatous pol- 
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yps and gastrointestinal cancer. Gastro111- 
testinal malignancy develops in 9 to 68% of 
JP patlents ( 1 ) .  Two groups have reported 
that a subset of JP  patients harbor muta- 
tions in the protein phosphatase gene 
PTEN, located on chromosome 10q23 (2) .  
PTEN is somatically mutated in many hu- 
man tumor types and is the gene responsible 
for Cowden disease and Bannayan-Ruval- 
caba-Riley syndrome (3). Other groups 
have found no evidence of linkage to mark- 
ers on 1Oq or PTEN mutations in JP faml- 
lies (4). These results suggest that there IS 

genetlc heterogeneity in JP families, or that 
JP patients previously described with 1Oq 
abnormalities may have actually been Cow- 
den disease or Bannayan-Ruvalcaba-Riley 
syndrome patients (5). 

We  recently mapped a gene predisposing 
to JP  to chroinosome 18q21.1, between 
markers D18S1118 and D18S487 (6),  an 
interval that contains the two putative tu- 
mor suppressor genes DCC and SMAD4 
(7). The high incidence of colorectal call- 
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Fig. 1. Sequences of the wild-type (upper) and 
mutant (lower) alleles of SMAD4 exon 9 (nucleo- 
tides 1365 to 1382) from an affected member of 
the lowa JP kindred. The rectangle indicates the 4 
bp deleted in the mutant allele (arrow). 

cer (as well as one case of pancreatic can- 
cer) in affected members of the JP kindred 
displaying 18q21 linkage (the Iowa JP kin- 
dred) (8) led us to hv~othesize that one of . . .  , . 
these tumor suppressor genes could be the 
gene predisposing to JP. Because of the 
complexity of DCC [29 exons spanning 1.4 
Mb (9)], we initially searched for germ line 
mutations by single-strand conformation 
polymorphism (SSCP) analysis of five fam- 
ily members (three affected, two unaffect- 
ed) (1 0). Shifts were detected in exons 1,8, 
and 16. but these did not coseereeate with 

L, L, 

the disease. We then changed our mutation 
screening strategy and began sequencing 
genomic polymerase chain reaction (PCR) 
products generated from one affected indi- 
vidual for each exon of DCC and SMAD4 
(I  1 ). After sequencing 14 DCC exons and 
all 11 SMAD4 exons, we detected a 4-base 
pair (bp) deletion in exon 9 of SMAD4. 
The ~atient's affected brother had the same 
heterozygous deletion and his unaffected 
mother had the wild-type sequence for exon 
9. To confirm this mutation, we subcloned 
the exon 9 PCR ~roduct  from this ~ a t i e n t  
into a plasmid vector and sequenced the 
individual alleles (12). One allele was the 
wild type and the other had a 4-bp deletion 
(Fig. 1) between nucleotides 1372 and 1375 
(codons 414 to 416) of the cDNA sequence 
[GenBank accession number U44378 (1 3)]. 
This deletion causes a frameshift that cre- 
ates a new stop codon at the end of exon 9 
(nucleotides 1432 to 1434 of the wild-type 
sequence, codon 434). 

We next analyzed exon 9 of SMAD4 
from all 46 members of the Iowa JP kindred 

Fig. 2. (A) Denaturing and (B) nondenaturing gels 
of lowa JP kindred family members showing the 
SMAD4 exon 9 PCR product. Affected individuals 
4,5,6, and 1 1, as well as one at risk (8), all have an 
extra band [arrow in (A)] on denaturing gels that is 
produced by the 4-bp deletion. The mutant allele is 
also seen as a shift by SSCP analysis [arrows in (B)]. 

by PCR amplification and denaturing poly- 
acrylamide gel electrophoresis. The altered 
allele was present in all 13 affected individ- 
uals, none of 7 spouses, and 4 of 26 indi- 
viduals at risk [two-point lod score of 5.79, 
8 = 0 (the lod score is the logarithm of the 
odds favoring linkage and 8 is the recombi- 
nation fraction)]. This altered allele was 
also readily observed on SSCP gels (Fig. 2). 
To exclude the possibility that this alter- 
ation represented a polymorphism, we am- 
plified exon 9 from 242 unrelated individ- 
uals (484 chromosomes). The altered allele 
was not observed in this population. DNA 
extracted from gastrointestinal polyps was 
also used to amplify SMAD4 exon 9. This 
analysis revealed loss of the wild-type allele 
in 1 of 11 tumors derived from five affected 
individuals (Fig. 3). 

Eight additional unrelated JP patients 

Fig. 3. PCR amplification of SMAD4 exon 9 from 
microdissected polyps. Pedigree numbers corre- 
spond to affected individuals as described (6). 
Loss of the wild-type allele (arrow) is seen in a 
juvenile polyp from patient IV-17 (fourth lane from 
the left). DNA was extracted from paraffin-embed- 
ded polyps after microdissection (28). Amplifica- 
tion of exon 9 was performed with the primers 
5'-TAGGCAAAGGTGTGCAGTTG-3' and 5'-TG- 
CACTTGGGTAGATCTTATGAA-3', which gener- 
ate a 152-bp product from within the exon. C, 
colon; S, stomach; VA, villous adenoma; AP, ad- 
enomatous polyp; JP, juvenile polyp. 

were subsequently analyzed for mutations of 
all exons of SMAD4 by SSCP and genomic 
sequencing (Table 1). Two JP kindreds 
were found that segregated a similar 4-bp 
deletion in exon 9. Because of the nature of 
the sequence in this region, these deletions 
can begin at any of four consecutive nucle- 
otides and result in the same mutant se- 
quence and new stop codon. The three 
kindreds segregating these deletions were 
all Caucasian and originated from Iowa, 
Mississi~~i. and Finland. There was no .- . 
common ancestral haplotype, as assessed by 
analysis of microsatellite markers close to 
SMAD4. Sequencing did not reveal any 
intragenic polymorphisms that would be 
useful in evaluating common ancestry, and 
it is unclear whether this defect is an an- 
cestral founder mutation or a mutational 
hotspot. A patient with colonic and gastric 
JP (whose father has a history of gastroin- 

Table 1. Analysis of SMAD4 mutations in nine unrelated JP patients. Under "Type," F refers to familial 
and S to sporadic JP. wt, wild type. 

Patient Type (exon) Nucleotide change Predicted effect Controls 

4-bp deletion 
4-bp deletion 
4-bp deletion 
2-bp deletion 
1 -bp insertion 

Frameshift, stop at codon 434 0/242 
Frameshift, stop at codon 434 01242 
Frameshift, stop at codon 434 0/242 
Frameshift, stop at codon 350 011 01 
Frameshift, stop at codon 235 0/107 

*Sequence variant segregates with JP phenotype in respective family (13, 5, and 2 affected individuals with the 
mutation in the lowa, Mississippi, and JP 5 Finnish kindreds, respectively), tJP 1/1 has a brother with colon cancer 
but no family members with documented JP. *Multipoint lod score of 1 .OO with chromosome 18q21 markers in this 
family (6 affected and 11 normal individuals). 
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testinal symptoms but has not been evalu- 
ated clinically) was found to have a 2-bp 
deletion in exon 8 of SMAD4, at nucleo- 
tides 1170 to 1171 (codon 348). This dele- 
tion causes a frameshift that creates a stop 
codoil at nucleotides 1178 to 1180 (codon 
350). Another patient diagnosed w ~ t h  30 to 
40 colonic juvenile polyps at age 6 but with 
no family history of JP (four siblings and 
both parents unaffected) was found to have 
a 1-bp insertion between nucleotides 815 
and 820 of exon 5; this change added a 
guanine to a stretch of six sequential gua- 
nines in the wild-type sequence and created 
a frameshift and a new stop codon at nu- 
cleotides 830 to 832 (codon 235). No 
SMAD4 mutations were found in four other 
unrelated JP patients. 

Somatic mutations in SMAD4 have 
been reported in up to 50% of human pan- 
creatic tumors ( 1  3 ,  14) and 15% of colo- 
rectal tumors (1 5). The occasional develop- 
ment of pancreatic cancer and the high 
incidence of colorectal cancer (40% in the 
Iowa JP kindred) in JP families is consistent 
with these findings in sporadic tumors. It 
remains to be determined whether the locus 
on 18q21 involved in the development of 
sporadic colorectal cancers is SMAD4, 
DCC, another closely linked gene, or a 
combination of these genes. 

SMAD4 is a member of the SMAD family 
of genes, which code for cytoplasmic medi- 
ators in the transforming growth factor-p 
(TGF-p) signaling pathway (1 6). This path- 
way mediates growth inhibitory signals from 
the cell surface to the nucleus. Upon activa- 
tion by TGF-P or related ligands, serine- 
threonine kinase receptors phosphorylate 
various SMAD proteins, which then form 
heteromeric complexes with SMAD4 in the 
cytoplastn (17). These complexes then tni- 
grate to the nucleus, where they are thought 
to regulate transcription through association 
with various DNA binding proteins (1 8). 
The growth inhibitory effect of TGF-P on 
pancreatic cancer cell lines requires f~unc- 
tional SMAD4 ( 1 9).  

SMAD4 is a 552-amino acid protein 
(1 3). Its COOH-terminus appears to be im- 
portant for the formation of SMAD4 ho- 
motrimers, which then complex with other 
SMAD proteins. Mutations that disrupt ho- 
motrimer formation lead to loss of TBF-p 
signaling (2L1). A SMAD4 mutant lacking 
38 COOH-terminal amino acids has a dom- 
inant negative effect on SMAD2-mediated 
mesoderm induction in Xenopus etnbryos 
and forms oligomers with wild-type SMAD4 
that may be responsible for this loss of activ- 
ity (17). The majority of somatic mutations 
described in SMAD4 map to the COOH- 
terminus between codons 330 and 526 (13, 
14, 21 , 22) within several highly conserved 
domains. The 4-bp deletion detected in 

three JP families is predicted to produce a 
COOH-terminally truncated protein of 433 
amino acids. with loss of reeioils critical for - 
normal f~~nction.  The 1-bp insertion and 
2-bu deletion seen in two other uatients are 
~redicted to result in truncated proteins of 
234 and 349 amino acids, res~ectivelv. Al- 
though deletion of the wild-t;pe allele was 
seen in only one of 11 polyps, some of these 
may have been contaminated with normal 
cells during tnicrodissection. Alternatively, 
other somatic SMAD4 mutations may have 
been present in these samples, or germ line 
mutation of SMAD4 may induce tumors 
through a dominant negative effect. 

One of the features of the gastrointesti- 
nal polyps seen in compound Apc-Smad4 
mutant heterosygote mice is the increased 
proliferation of stromal cells (23), which is 
one of the characteristic features of iuvenile 
polyps seen in humans. It has also been 
sho l~n  in Xenopus embryos that wild-type 
SMAD4 induces mesodermal markers and 
that mixtures of mutant and wild-type 
SMAD4 inhibit this response (1 7). In JP 
patients, it v,,ould appear that germ line 
SMAD4 mutations predispose to focal ab- 
normalities of mesenchvmal develo~ment 
(hamartomas) and cancer through iisrup- 
tion of the TGF-P signaling pathway. JP 
may be a genetically heterogeneous condi- 
tion, as evidenced by the fact that not all 
families are linked to 18q markers (24) and 
not all families st~tdied had germ line 
SMAD4 mutations. It is possible that germ 
line mutations in genes encoding different - - 
components of the TGF-p signaling path- 
way may be present in these other JP kin- 
dreds. The roles of the Cowden disease gene 
(PTEN) and Peutz-Jeghers syndrome gene 
[LKBI (25)] in cell growth control remain 
unclear, although PTEN tnay be down-reg- 
ulated by TGF-P (26). Further studies on 
the cotnponents of the TGF-P pathway tnay 
add to our understanding of these hamar- 
tomatous polyposis syndromes. 
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