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A Role for the AKT1 Potassium Channel in
Plant Nutrition

Rebecca E. Hirsch, Bryan D. Lewis, Edgar P. Spalding,
Michael R. Sussman*

In plants, potassium serves an essential role as an osmoticum and charge carrier. Its
uptake by roots occurs by poorly defined mechanisms. To determine the role of po-
tassium channels in planta, we performed a reverse genetic screen and identified an
Arabidopsis thaliana mutant in which the AKT7 channel gene was disrupted. Roots of this
mutant lacked inward-rectifying potassium channels and displayed reduced potassium
(rubidium-86) uptake. Compared with wild type, mutant plants grew poorly on media with
a potassium concentration of 100 micromolar or less. These results and membrane
potential measurements suggest that the AKT1 channel mediates potassium uptake from
solutions that contain as little as 10 micromolar potassium.

Potassium absorption by roots is essential
for plant growth. Current models, which are
elaborations of classic studies (1), state that
K™ absorption is mediated by cotransporters
at micromolar K* concentrations and
channels at higher concentrations (2-6).
This notion is supported by the finding that
plant genes encoding channels or cotrans-
porters could complement yeast K™ -uptake
mutants (6-8), but such experiments do
not address which mechanisms are operat-
ing in the plant. Here we report an in
planta genetic dissection of the role of the
AKT1 channel in the uptake of K* by a
root.

A transferred DNA (T-DNA) mu-
tagenized population of Arabidopsis was

R. E. Hirsch, Department of Horticulture and Program in
Cellular and Molecular Biology, University of Wisconsin,
Madison, WI 53706, USA.

B. D. Lewis, Department of Botany, University of Wiscon-
sin, Madison, W1 53706, USA.

E. P. Spalding, Department of Botany and Program in
Cellular and Molecular Biology, University of Wisconsin,
Madison, WI 53706, USA.

M. R. Sussman, Biotechnology Center, Department of
Horticulture and Program in Cellular and Molecular Biol-
ogy, University of Wisconsin, Madison, WI 53706, USA.

*To whom correspondence should be addressed.

screened for plants containing an insertion-
al mutation in the root-specific K*-channel
gene AKT] by using the polymerase chain
reaction (PCR)-based, reverse genetic
method of Krysan et al. (9, 10). From a
population of 14,200 different T-DNA
lines, containing about 20,000 independent
insertional events, we identified and isolat-
ed a single mutant plant (aktl-1) with a
T-DNA insertion in AKTI. Southern blot
analysis of the aktl-1 locus (11) revealed a
T-DNA insertion within the last exon of
the coding region (Fig. 1). Sequence anal-
ysis reveals the T-DNA insertion site to be
4071 bases downstream of the start codon,
and Northern blot analysis confirms that
the mutation truncates the transcript by
about 400 bases (12).

We examined the K* conductance of
the plasma membrane in root cells, where
high expression of AKTI was previously
found (13). Microelectrodes inserted into
cells approximately 150 um from the apex
of roots, which were bathed in 10 uM K™
(14), revealed very negative resting mem-
brane potentials (V) in both wild-type and
aktl-1 seedlings (Fig. 2B). A 10-fold in-

crease in the extracellular K* concentra-
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Fig. 1. Analysis of the AKT7 gene. (A) Southern
blot analysis of genomic DNA digested with Bam
HI (lanes B), Hind Ill (lanes H), or Eco Rl (lanes E)
and hybridized with radiolabeled DNA corre-
sponding to the AKT 1 coding region. (B) Restric-
tion map of AKT7 genomic DNA based on
Southern analysis (A) and sequence analysis
(72). Large and small boxes represent exons and
introns, respectively. Structure of the T-DNA in-
sertion 3’ to the Bam Hl site is undefined. T-DNA
is not drawn to scale.
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Fig. 2. Membrane potential (V,,,) in apical root
cells. (A) Representative recordings of shifts in
V., in response to the indicated changes in ex-
tracellular [K*] indicated a significant K* perme-
ability of the wild-type plasma membrane. The
much smaller shifts in akt7-1 roots indicate that
the K* permeability was greatly reduced by the
mutation. (B) The average steady-state V., in
millivolts (ordinate) obtained at each extracellular
[K*] (n = 10 for both wild type and akt1-7).
Qualitatively similar results were obtained in 25
additional experiments that are not included
here because of slight differences in the ionic
conditions used.

www.sciencemag.org ® SCIENCE ¢ VOL. 280 * 8 MAY 1998

tion significantly depolarized the membrane
in wild-type roots but had no effect on V
in aktl-1 seedlings (Fig. 2). These results
indicate that AKT1 is responsible for the
K" permeability of these apical root cells.
Also, using 80 mM as the cytoplasmic K*
concentration (4, 15) in the Nernst equa-
tion, it follows that a V of at least —230
mV is required for K* uptake to occur
passively through a channel. Twenty per-
cent of wild-type cells met this condition
without making corrections for the fact that
intracellular microelectrodes underestimate
V., (16). Our results indicate that in wild-
type seedlings passive uptake of K* by
AKT1 could occur from extracellular solu-
tions as dilute as 10 uM.

Whole-cell recording from wild-type
root protoplasts (Fig. 3A) showed that volt-
age steps from —10 mV to positive mem-
brane potentials elicited outward, time-de-
pendent currents (17). Steps to negative
voltages always elicited inward currents
that in some cells were largely time depen-

A wild type B

REPORTS

dent and in others were only partly so.
Evidence that the inward currents in Fig.
3A were carried by K™ was obtained by the
use of largely impermeant anions in the
patch pipette, by their disappearance when
extracellular K* was replaced by Cs* (18),
and by the analysis of tail currents shown in
Fig. 3B (19). The current-voltage (I-V) re-
lationship for the tail currents reversed
within 5 mV of the theoretical value for a
K*-selective channel exposed to a threefold
K* gradient (E¢x = —27 mV) (Fig. 3B).
Individual 16 pS K*-selective channels in
patches of membrane excised from wild-
type protoplasts (Fig. 3C) displayed a volt-
age dependence and activation threshold
consistent with their being responsible for
the inward currents (Fig. 3, A and B) and
the resting K* permeability determined in
planta (Fig. 2).

Consistent with the data in Fig. 2,
patch-clamp recordings of aktl-1 root cells
revealed no inward currents, although the
outward currents were normal (Fig. 3D).
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Fig. 3. K* currents in wild-
type and akt1-71 root cells.
(A) Whole-cell recording of
K* currents in wild-type root
protoplasts. Voltage-depen-
dent inward and outward
currents were observed. (B)
Tail current analysis of in-
ward currents in a wild-type
protoplast. The magnitude
of current flowing at each of
the test voltages was mea-
sured at the first point where
relaxation could be dis-
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cerned (asterisk) and was plotted versus the test voltage to construct the /-V curve shown. The close
agreement between the zero-current voltage (reversal potential) of the /-V curve and the equilibrium
potential for K* (E,) indicates that the inward-rectifying currents were carried by K*. The experiment
shown is representative of three independent trials. (C) Single K* channels in outside-out patches of
plasma membrane excised from wild-type root cells. Open-channel current amplitudes were measured
and plotted versus the clamped voltage to construct the /-V curve. The close agreement between the
reversal potential and E,. indicates that the inward-rectifying currents were carried by K*. The currents
were low-pass filtered at 0.5 kHz and digitized at 1 kHz. (D) Whole-cell recording of K* currents in akt71-1
root protoplasts. Inward currents were absent but outward currents were the same as in wild-type root
protoplasts. (E) Steady-state, whole-cell -V curves reveal the absence of inward currents in akt7-17. The
raw currents were normalized relative to the value at +120 mV, averaged (n = 10 for wild type and 6 for
akt1-1), and plotted versus the clamp potential. No leak subtraction or other manipulation of the currents
was performed. In (A), (D), and (E), voltage steps ranged from +120 to —180 mV in 20-mV increments.
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The normalized steady-state I-V relation-
ships shown in Fig. 3E illustrate that the
akt]l-1 mutation selectively abolished the
inward component of the K* conductance
of the membrane. From the electrophysio-
logical results presented in Figs. 2 and 3, we
conclude that AKTI encodes the inward-
rectifying channel responsible for the rest-
ing K* permeability of cells in the root
apex.

Growth of aktl-1 plants on many nutri-
ent media was indistinguishable from that
of wild type. However, growth of aktl-1
plants on media containing <100 uM K*
(20) was significantly inhibited compared
with wild type in the presence of NH,™*
(Fig. 4, A and B). At 10 uM, most aktl-1
seeds failed to fully emerge from the seed
coat (Fig. 4A), but they resumed normal
growth after transplantation to media with
high K* concentration (12). Growth of
aktl-1 seedlings on 1 mM K* was only
slightly reduced relative to wild type (Fig. 4,
A and B).

To determine whether the T-DNA in-

sertion cosegregated with the mutant phe-
notype, we crossed homozygous aktl-1
plants to wild-type Arabidopsis of the same
ecotype (WS). Self-crossed F, seedlings
were grown as described (20). The wild-
type (normal growth) or mutant (poor
growth) phenotype segregated as a single,
recessive gene (21). For cosegregation anal-
ysis, the genotype of segregating F, plants
was analyzed by PCR using AKT1- (10) and
T-DNA-specific primers (9). Twenty of 21
homozygous aktl-1 plants grew poorly, and
31 of 36 plants that were heterozygous or
homozygous wild type grew normally. Sev-
eral homozygous wild-type and homozygous
mutant F, plants were self-crossed; pheno-
typic analysis demonstrated that >90% of
the progeny from the aktl-1 homozygous
parents were phenotypically mutant, and
90% of the progeny from wild-type parents
were phenotypically wild type. This analysis
demonstrates that the mutant phenotype
shows >90% penetrance and is genetically
linked to the aktl-1 locus.

To determine the effect of the aktl-1

Table 1. Radioactive tracer flux analysis of Rb* uptake in akt7-7 and wild-type roots. The uptake
solution (22) contained Rb(8®Rb)CI at the concentrations indicated. Each value is the mean rate of

uptake (n = 4) = SEM.

10 uM RbClI
(nanomoles per gram
fresh weight per hour)

(nanomoles per gram
fresh weight per hour)

1 mM RbCl
(nanomoles per gram
fresh weight per hour)

100 uM RbCl

mutation on K* absorption by roots, we
performed 8Rb* tracer flux analysis in
roots obtained from plants grown in a high
concentration of external K* (22). Uptake
rates from media containing various
amounts of K* and NH,* are shown in
Table 1. The aktl-1 roots showed less
86Rb* uptake than wild type. Loss of chan-
nel activity in akel-1 root cells (Fig. 3) is
thus associated with reduced rates of 3Rb*
uptake from solutions containing only 10
pM Rb*.

The notion that a passive transporter
such as the AKT1 channel mediates what
has previously been termed high-affinity
uptake has been suggested (23). Our mea-
surements of membrane potential indicate
that it is energetically feasible in the root
cells studied here. Dependence of the aktI-1
growth phenotype on NH,™ suggests that
this cation inhibits parallel, non-AKT1 K*
uptake pathways, making growth dependent
on AKTI. This is consistent with our ob-
servation as well as that of others that
NH,* inhibited 3Rb™ uptake in wild-type
roots (12, 24). As reverse genetic strategies
identify plants with disruptions in other K*
transporters, analyses of double and triple
mutant combinations will directly test this
hypothesis.
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Knowing Where and Getting There: A Human
Navigation Network

Eleanor A. Maguire,” Neil Burgess, James G. Donnett,
Richard S. J. Frackowiak, Christopher D. Frith, John O’Keefe

The neural basis of navigation by humans was investigated with functional neuroimaging
of brain activity during navigation in a familiar, yet complex virtual reality town. Activation
of the right hippocampus was strongly associated with knowing accurately where places
were located and navigating accurately between them. Getting to those places quickly
was strongly associated with activation of the right caudate nucleus. These two right-side
brain structures function in the context of associated activity in right inferior parietal and
bilateral medial parietal regions that support egocentric movement through the virtual
town, and activity in other left-side regions (hippocampus, frontal cortex) probably
involved in nonspatial aspects of navigation. These findings outline a network of brain
areas that support navigation in humans and link the functions of these regions to
physiological observations in other mammals.

Where am I? Where are other places in the
environment? How do I get there? Ques-
tions such as these reflect the essential
functions of a navigation system. The neu-
ral basis of way-finding activity has been
extensively studied. Spatially tuned neurons
found in the hippocampal formation of free-
ly moving rats [place cells coding for the
rat’s location (1) and head direction cells
coding for its orientation (2)] support the
idea that this part of the brain provides an
allocentric (world-centered) representation
of locations, or cognitive map (3). The
posterior parietal lobe has been implicated
in providing complementary egocentric
representations of locations (centered on
patts of the body) (4). Other brain regions,
such as the dorsal striatum (5), have also
been identified as possible elements of a
navigation system. In humans, there has
been much evidence for the involvement of
the hippocampus in episodic memory; the
memory for events set in their spatio-tem-
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poral context (3, 6). By contrast, the role of
the hippocampus in human navigation has
remained controversial, and the wider neu-
ral network supporting human navigation is
even less well understood. We attack this
issue by combining functional neuroimag-
ing with a quantitative characterization of
human navigation within a complex virtual
reality environment.

We used positron emission tomography
(PET) (7) to scan subjects while they nav-
igated to locations in a familiar virtual re-
ality town using their internal representa-
tion of the town built up during a contin-
uous period of exploration immediately be-
fore scanning (Fig. 1A). In one navigation
condition, the subjects could head directly
toward the goal (navl), while in the other
(nav2), direct routes were precluded by
closing some of the doors and placing a
barrier to block one of the roads, forcing the
subjects to take detours. Navigation was
compared to a task in which subjects moved
through the town following a trail of arrows,
thus not needing to refer to an internal
representation of the town. An additional
task requiring the identification of features
in static scenes from the town was included
for contrast with the three dynamic tasks
(8).

We first investigated which brain re-
gions were involved in successful naviga-
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