
cross-linking the material makes it possible 
to assemble com~osite  structures that differ 
by as little as a single monolayer (one 
monomer thick). In addition to uses as 
models of superabsorbing polymer networks 
(8) and in bioadsorption studies (9), these 
materials should be ideal for the flexible 
hydrophilic spacing layers needed between 
supported bilayers and solid substrates for 
biologically relevant studies of the physical 
properties of membranes (22). 
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The Biochemical Basis of an All-or-None Cell 
Fate Switch in Xenopus Oocytes 
James E. Ferrell Jr." and Eric M. Machleder 

Xenopus oocytes convert a continuously variable stimulus, the concentration of the 
maturation-inducing hormone progesterone, into an all-or-none biological response- 
oocyte maturation. Here evidence is presented that the all-or-none character of the 
response is generated by the mitogen-activated protein kinase (MAPK) cascade. Anal- 
ysis of individual oocytes showed that the response of MAPK to progesterone or Mos 
was equivalent to that of a cooperative enzyme with a Hill coefficient of at least 35, more 
than 10 times the Hill coefficient for the binding of oxygen to hemoglobin. The response 
can be accounted for by the intrinsic ultrasensitivity of the oocyte's MAPK cascade and 
a positive feedback loop in which the cascade is embedded. These findings provide a 
biochemical rationale for the all-or-none character of this cell fate switch. 

Fully grown Xenopus laevis oocytes are ar- 
rested in a state that resembles the G2 phase 
of the cell division cycle with inactive cy- 
clin-dependent kinase Cdc2 and an intact 
germinal vesicle. Exposure to the hormone 
progesterone induces oocytes to undergo 
maturation, during which they activate 
Cdc2, undergo germinal vesicle breakdown, 
complete the first meiotic division, and fi- 
nally arrest in metaphase of meiosis 2 ( 1 ) .  
Oocyte maturation is an example of a true 
cell fate switch: oocvtes can reside in either , , 
the G, arrest or the ~netaphase arrest state 
for extended periods of time, but can be in 
intermediate states only transiently. 

Progesterone-induced maturation is 
u 

thought to be triggered by activation of a 
cascade of protein kinases-Mos, Mek-1, 
and p42 or Erk2 MAP kinase (MAPK). 
Progesterone causes the accumulation of 
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Mos, which phosphorylates and activates 
Mek-I. Active Mek-1 in turn phospho- 
rylates and activates p42 MAPK, which 
brings about activation of the Cdc2-cyclin 
B complex. Interfering with the accumula- 
tion of Mos (2) or the activation of Mek-l 
(3) or p42 MAPK (4) inhibits progester- 
one-induced activation of Cdc2 and matu- 
ration, and microinjection of nondegrad- 
able Mos (5), constitutively active Mek-l 
(4,  6), or thiophosphorylated p42 MAPK 
(7) brings about Cdc2 activation and mat- 
uration in the absence of progesterone. A t  
some uoint in this chain of events, a con- 
tinuously variable stimulus-the progester- 
one concentration-is converted into an 
all-or-none biological response. 

Studies of the steady-state responses of 
the MAPK cascade in Xenopus oocyte ex- 
tracts indicate that the cascade might con- 
tribute to the all-or-none character of oo- 
cyte maturation. In extracts, the response of 
MAPK to recombinant malE-Mos (a  mal- 
tose-binding protein Mos fusion protein) is 
highly ultrasensitive ( B ) ,  meaning it resem- 
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bles that of a positively cooperative enzyme 
(9). The apparent Hill coefficient (n,, a 
measure of the ultrasensitivity) for the 
MAPK response is about 5 (8). This is a 
large Hill coefficient; the benchmark is the 
Hill coefficient for oxygen binding by he- 
moglobin, which is about 2.8 (10). The 
ultrasensitivity arises in part from the fact 
that MAPK requires the phosphorylation of 
two sites for activation (1 1 , 12). and it 

even if individual oocytes had perfectly 
switchlike responses, samples of oocytes 
would yield a graded response if the oocytes 
varied with resDect to the concentration of 

the MAPK cascade, or was passed down to 
the cascade by upstream signaling elements, 
we microinjected oocytes with purified 
malE-Mos, a direct activator of Mek-1 (17), 
and assessed the resulting MAPK phospho- 
rylation. The response of the population was 
steep (n, > 5, Fig. 2A), and only one Mos- 
injected oocyte was found with an interme- 
diate amount of MAPK phosphorylation 
(out of 89; Fig. 2, C and D). The Hill 
coefficient inferred for the oocytes' individ- 
ual responses was about 35, similar to that for 
the response to progesterone. Thus, the 
MAPK cascade can generate, not simply 
propagate, a highly switchlike response to a 
continuously variable stimulus. 

The responses seen in intact oocytes 
(Figs. 1 and 2) were much more switchlike 
than those seen in oocyte extracts (8). We 
hypothesized that a key difference could be 
a positive feedback loop known to operate 
in intact oocytes (4, 18-20), and known 
not to operate in extracts (8), whereby 
MAPK or something downstream from 
MAPK promotes the stabilization and ac- 
cumulation of Mos, at least in part through 
the phosphorylation of S e s  (Fig. 3A) (19). 
A positive feedback loop would markedly 
increase the abrupmess of the MAPK cas- 
cade's response (Fig. 3B) (21 ). 

If protein synthesisdependent positive 
feedback contributed to the highly switch- 
like responses seen in intact oocytes, then 
the protein synthesis inhibitor cyclohexi- 

progesterone required to switch them on 
(Fie. 1C). . -  , 

These two possibilities can be distin- 
guished by examining individual oocytes 
treated with intermediate concentrations of 
progesterone. If the individual responses are 
graded, each oocyte should have an inter- 
mediate amount of MAPK phosphorylation 
(Fig. 1B); if they are switchlike, the oocytes 
should have either very high or very low 
levels of MAPK phosphorylation (Fig. 1C). 
This argument can be translated into a 
mathematical formula (15) for inferring 
the steepness (value of n,) of the oocytes' 
individual resvonses from the observed 

. . . .  
increases nearly multiplicatively as the cas- 
cade is descended (13). An ultrasensitive 
system behaves more like a switch than a 
Michaelian (n, = 1) system does-the re- 
sponse to small stimuli is minimal, but once 
the system begins to respond, it switches 
from off to on over a narrower range of 
stimulus concentrations than does a 
Michaelian system (Fig. 1G). Thus, the 
MAPK cascade might contribute to the all- 
or-none character of oocvte maturation. 

distribution of responses in a sample of 
oocytes (Fig. ID). 

Accordingly, we examined the steady- 
state phosphorylation of MAPK in 190 in- 
dividual progesterone-treated oocytes and 
19 individual untreated oocytes. Every 00- 
cyte had either very high (>90% of maxi- 
mal) or very low (<lo% of maximal) 
amounts of MAPK phosphorylation (Fig. 1, 
E and F). Thus, the response of the individ- 
ual oocytes was essentially all-or-none; a 
lower bound for the Hill coefficient was 
calculated to be 42 (15, 16) (Fig. 1G). 

To determine whether the all-or-none 
character of the response was generated by 

provided ultrasensitivity is exhibited by 
MAPK in intact oocytes as well as extracts. 

We, therefore, assessed the phospho- 
rylation of p42 MAPK in groups of oocytes 
treated with different concentrations of pro- 
gesterone (14). The overall response ap- 
peared to be no more switchlike than that of 
a typical Michaelian system (n, - 1, Fig. 
1A). However, a problem arises in interpret- 
ing the response of a potentially heteroge- 
neous population. A graded overall response 
could mean that each of the individual 00- 
cytes had a graded response (Fig. IB), but 

Fig. 1. Responses of oo- 
cytes to progesterone. (A) 
Overall responses. Each 
point represents a sample of 
11 to 39 oocytes. Error bars 
denote two standard errors 
of the mean. MAPK-P, phos- 
phorylated MAPK. (B and C) 
Two possible origins of a 
graded response. (D) Calcu- 
lated distributions of oocytes 
incubated with a half-maxi- 
ma1 stimulus for various as- 
sumed values of the Hill 
coefficient (n,) for the individ- 
ual oocytes' responses. The 
oocyte-to-oocyte variability 
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mide should make the response of oocytes to 
malE-Mos more like that seen in extracts. In 
agreement with this prediction, a large pro- 
portion of cycloheximide-treated, Mos-in- 
jected oocytes had intermediate amounts of 
MAPK phosphorylation (Fig. 2, C and D). 
These results imply a Hill coefficient of 
about 3, similar to that seen in extracts (22). 

Thus, the MAPK cascade does exhibit some 
ultrasensitivity even when positive feedback 
is precluded, but protein synthesis allows a 
more highly switchlike response. 

The intrinsic ultrasensitivity of the 
MAPK cascade and the protein synthesis- 
dependent positive feedback loop together 
should produce a more satisfactory switch 

than either mechanism alone would. This 
can be seen through quantitative modeling 
(Fig. 3B) or simple graphical arguments (Fig. 
3, C and D). If positive feedback operated 
and the MAPK cascade exhibited a Michae- 
lian response to Mos, then the system would 
have a stable on state and an unstable off 
state (Fig. 3, B and C). Any nonzero level of 
Mos phosphorylation, added malE-Mos, or 
MAPK activity would trigger the feedback 
loop and drive the system to its on state. 
However. if the MAPK cascade exhibited an 

A C 
100%r w - cyclohexirnide + cyclohexirnide :z 1 - ~ l o h e x i m ~ d e /  

apparent 
40% n, 2 5.1 

-+ 2 nM Mos 

.I--------- 
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ultrasensitive response to Mos, then the sys- 
tem would have both a stable off state and a 
stable on state separated by a threshold (Fig. 
3, B and D) (23). The ultrasensitivity of the 
MAPK cascade essentially filters small stim- 
uli out of the feedback loop. 

In summary, the MAPK cascade is acti- 
vated in a highly ultrasensitive-essentially 
all-or-none-fashion during Xenopus oo- 
cyte maturation. This behavior is proposed 
to arise from two known properties of the 
oocyte's MAPK cascade: positive feedback, 
which ensures that the occyte cannot rest 
in a state with intermediate MAPK phos- 
~horvlation. and the cascade's intrinsic ul- 
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Positive feedback dbes not appear to Ije 
uncommon, and there are many mecha- 
nisms that can give rise to ultrasensitivity 
(8, 9, 11, 24). Thus, other biological 
switches mav be constructed from comDo- 
nents that are similar or analogous to those 
used by the oocyte. rors of the mean. (C) MAPK im- 200nM -1 -1 0 
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The exponent m defines the varabty of the oocytes; 
the larger the value of m,  the less varabity n the 
concentrat~on of stimulus at W ~ I C ~  the oocytes re- 

Role of Racl and Oxygen Radicals in 
spond half-maximally, The constant a represents the 
stimulus concentration by which half of the oocytes 

CoHagenase- 1 Expression Induced 
have responded at ieast haif-max~maily. The dstr~bu- 
t10n of oocytes among various values of the re- 

by Cell Shape Change 
sponse y IS gven by 

To evaluate Eq. 4, we solve fork n terms o fx  and y 
usng Eq. 1, and then substtute the result Into Eq. 3: 

Taking the derivatve of N wth respect t o y  to yields 
the desred formula: 

1 - y '"H 

-ma"'xr (7) 

Equation 7 descrbes how a popuiaton of oocytes is 
distrbuted among varous values of the response y 
for a aven ievei of stmuiusx and aven values of the 

Farrah Kheradmand, Erica Werner, Patrice Tremble," 
Marc Symons, Zena WerbJ- 

Integrin-mediated reorganization of cell shape leads to an altered cellular phenotype. 
Disruption of the actin cytoskeleton, initiated by binding of soluble antibody to a5pl 
integrin, led to increased expression of the collagenase-1 gene in rabbit synovial fibro- 
blasts. Activation of the guanosine triphosphate-binding protein Racl , which was down- 
stream of the integrin, was necessary for this process, and expression of activated Racl 
was sufficient to increase expression of collagenase-I . Racl activation generated re- 
active oxygen species that were essential for nuclear factor kappa B-dependent tran- 
scriptional regulation of interleukin-la, which, in an autocrine manner. induced colla- 
genase-1 gene expression. Remodeling of the extracellular matrix and consequent 
alterations of integrin-mediated adhesion and cytoarchitecture are central to develop- 
ment, wound healing, inflammation, and malignant disease. The resulting activation of 
Racl may lead to altered gene regulation and alterations in cellular morphogenesis, 
migration, and invasion. 

steepness of the oocytes' Individual responses (n,) M . . , 

and the tightness of the oocyte-to-oocyte variaton odlficatlons of cell shape are crucial for tion of cell adhesion. Changes in cell mor- 
(m). Ths equaton was used to calculate the dstri- tissue morphogenesis, cell migration, and phology lead to specific signaling frotn cell 

in F1g. ID and infer values Of the invasion. These alterations in cell morphol- adhesion receptors and a consequent 
coefficent n, for the expermentally determned oo- 
cyte distrbutions (Figs. 1 and 2). ogy are thought to rely on the organization change of gene expression (1 ), including 

16. Ths lower bound is calculated as the smaliest Hill of the actin cytoskeleton and the modula- genes encoding the matrix metalloprotein- 
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