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subunit also modulates substrate specificity 
(6, 7). For example, the protein subunit 
enhances processing of pre-4.5S RNA (7), 
an accessory molecule essential for ribosom-
al translocation (8). 

The RNase P ribonucleoprotein holoen-
zyme (or the RNA subunit by itself) is very 
much like a classic protein enzyme in that 
substrate association is mediated by nonco-
valent interactions (9) and multiple turn
overs are catalyzed (2). Catalysis requires 
divalent metal ions such as Mg2+ or Mn2 + , 
probably to provide nucleophilic metal-
bound hydroxide ion for catalysis (2, 10); 
additionally, at least one metal ion stabilizes 
the hydrolytic transition state (11). Metal 
ions also stabilize RNA tertiary structure 
(3, 12) and binding of the pre-tRNA sub
strate (11, 13). Metal ions increase protein-
RNA subunit affinity in the holoenzyme 
(14), but it is not known whether the pro
tein subunit interacts directly with metals. 
It is interesting to consider that as the 
protein world evolved from the hypotheti
cal RNA world, metal-dependent ribo-
nucleoproteins such as the RNase P holoen-

Ribonuclease P Protein Structure: Evolutionary 
Origins in the Translational Apparatus 
Travis Stams, S. Niranjanakumari, Carol A. Fierke, 

David W. Christianson* 

The crystal structure of Bacillus subtilis ribonuclease P protein is reported at 2.6 ang
stroms resolution. This protein binds to ribonuclease P RNA to form a ribonucleoprotein 
holoenzyme with optimal catalytic activity. Mutagenesis and biochemical data indicate 
that an unusual left-handed pap crossover connection and a large central cleft in the 
protein form conserved RNA binding sites; a metal binding loop may comprise a third 
RNA binding site. The unusual topology is partly shared with ribosomal protein S5 and 
the ribosomal translocase elongation factor G, which suggests evolution from a common 
RNA binding ancestor in the primordial translational apparatus. 
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zyrne may have been common evolutionary 
intermediates. Consequently, the RNase P 
protein subunit may have primordial origins 
early in the evolution of proteins. 

To understand RNase P function and 
evolutionary relationships more clearly, we 
have determined the x-ray crystal structure 
of the Bacillus subtilis RNase P protein sub- 
unit (RNase P protein). Protein was ex- 
pressed in Escherichia coli and purified as 
described (3, and two crystal forms were 
prepared by the hanging-drop vapor diffu- 
sion method (15). We determined the 
structure of RNase P protein in crystal form 
I by multiple isomorphous replacement 
with anomalous scattering information at 
3.0 A resolution; it was then refined in 
crystal form I1 at 2.6 A resolution (Table 1). 
The protein adopts the fold of an a-P  
sandwich with a globular structure of 
approximate dimensions 40 x 35 x 30 A 
(Fig. 1A). The overall topology is a P P P a P a  
and three likely RNA binding regions are 
evident, two of which are consistent with 
available mutagenesis and biochemical 
data. 

The first RNA binding region comprises 
a highly unusual topological feature: a left- 
handed P a p  crossover connection from P 
strand 3 to helix B to P strand 4. This 
connection violates the empirical rule of 
right-handed crossover connections be- 
tween parallel P strands (1 6). Notably, he- 
lix B and the preceding loop contain the 
single - 18-residue consensus sequence 
conserved among bacterial RNase P pro- 
teins ( 1 ), Lys-Xaa4-5-Ala-Xaa2-Arg-Asn- 
Xaa2-(Lys or Arg)-Arg-Xaa2-(Arg or Lys); 
we refer to this as the RNR motif (Fig. 1A). 
Because the unfavorable topology of this 
conserved motif persisted through evolu- 
tion, the functional importance of its se- 
quence and structure is amplified. Given 
the highly basic nature of the RNR motif, it 
is likely that it is precisely positioned to 
stabilize binding interactions with RNase P 
RNA. Helix B packs against helix C at the 
COOH-terminus of the protein, which con- 
tains five exposed basic residues; helix C 
may similarly interact with RNA. 

A second RNA binding region is adja- 
cent to helix B; a large central cleft is 
formed by helix A and the face pf the 
central fl sheet and it is about 20 A long 
and 10 A wide. The base of this cleft con- 
tains a row of three exposed aromatic resi- 
dues, Phe16 and Phe20 on helix A and Ty24 
on p strand 2 (Fig. 1B). Additional residues 
complete the bottom of the cleft: Ser49 on p 
strand 3, IleE6 on p strand 4, and Val32 on 
p strand 2. About 15 arginine and lysine 
residues surround the cleft. The spliceoso- 
ma1 protein U1A (which has a different 
overall structure) contains a central cleft of 
comparable dimensions in which exposed 

aromatic residues bind single-stranded A third possible RNA binding region is 
RNA (17). By analogy with UlA,  we ad- found at one edge of the P sheet, where 
vance that the central cleft of RNase P numerous aspartate and glutamate residues 
protein binds several nucleotides of single- are found in a large polypeptide loop con- 
stranded RNA, and exposed aromatic resi- necting P strands 2 and 3. Because of the 
dues may stack with RNA bases. highly basic nature of RNase P protein, this 

Fig. 1. (A) Ribbon plot (25) of RNase P protein; a helices and P strands are labeled sequentially by letters 
and numbers, respectively. The RNR consensus sequence is red, and the carboxylate-rich metal 
binding loop is green. (B) Electron density map of key aromatic residues in the central cleft, generated 
with Fourier coefficients I F,I - I FCI and phases calculated from the final model less the side chain 
atoms of Phe16, Phe20, and TyP (contoured at 3 .8~) .  

Table 1. Summaty of x-ray ctystal structure determination. Diffraction data were collected from flash- 
cooled RNase P protein crystals on an R-AXIS Ilc image plate area detector, and intensity data 
integration and reduction were done with DENZO and SCALEPACK, respectively (26). Phases were 
calculated in ctystal form I (space group f6,) by multiple isomorphous replacement (MIR) with anom- 
alous scattering AS) data from the SmC13 derivative using the program MLPHARE (26). The initial model 
was fit into a 3.0 h resolution electron density map calculated with MIR-AS phases solvent-flattened and 
NCS-averaged with SOLOMON (26). This model was then used as a molecular replacement probe and 
refined against higher resolution data collected at room temperature from ctystal form I I  (space group 
B 4 ) .  Iterative rounds of refinement and rebuilding of the native model were done with X-PLOR and 0, 
respectively (26). Individual B factors were refined and a bulk solvent correction was applied. Unob- 
served residues in the final model include Met1 (>95% cleaved off) and Lys115 to LysllQ at the 
COOH-terminus. The final model has excellent stereochemistry, with no residues adopting unfavorable 
backbone conformations. 

Data collection Native SmCI, &OsCI, Native 
- - -  - - 

Space group 
Resolution (A) 

'433 
2.8 

f63 
3.0 

f63 
2.8 

Total 17,810 22,694 41,492 
Unique 5,670 4,713 6,200 
Completeness (%) 90.6 91.7 99.7 
Rmorq,* 0.072 0.084 0.087 
Phas~ng (1 5 to 3.0 A) 

Number of sites 1 2 
R I S O ~  0.351 0.253 
Phasing power$ 0.70 1.37 
Figure of merit (3.0 A) 0.479 

Refinement statistics (crystal form 11, space group P6J 

Resolution (A) 20-2.6 Rc,§ 0.205 
Protein atoms 950 R f r d  0.31 7 
Solvent atoms 10 Root mean square deviations 
Zinc ions 2 Bonds (A) 0.01 1 
Sulfate ions 1 Angles (") 1.8 
Reflections (>3u) Dihedrals (") 25.5 

Work 3,361 Impropers (") 1.5 
Test 293 

*RmT = Lll, - (1,)1/Ll(l,fl;whxs I, isthe intensity measurement for reflection i ,  and (I,) is the mean intensity 
calcu ated for reflection i from replicate data. tR,, = LIIF,, I - I FpII/L I F,I calculated for 3.0 A data, where Fp, 
and Fp are the derivative and native structure factors, respectively. $Phasing power = (F, /E where (F,) is the 
Rns heavy-atom structure factor and E is the residual lack of closure error. R = ql~,I - lFc l l /L~Fo~.  where R 
and R, are calculated using the working and test reflection sets, respectively. 
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clustering of negatively charged residues is 
surprising. However, two Zn2+ ions bind to 
residues in this loop and mediate interlat- 
tice contacts (data not shown): hence. we 
designate this'the metal binding loop ( ~ i ~ .  
1A). Given that protein-RNA affinity in- 
creases in the presence of Mg2+ (14), it is 
tempting to speculate that Mg2+ not only 
stabilizes RNA conformation (3, 12) but 
also may associate with the metal binding 
loop, potentially mediating RNA contacts. 
Notably, Gln38, Glu4", and a solvent mole- 
cule provide one-half of an octahedral 
Zn2+, binding site (the other half is pro- 
vided by their symmetry mates), which is 
the precise geometry required for Mg2+ 
complexation. 

Although molecular details of RNA 
binding remain to be confirmed by x-ray 
crystal structure determinations of RNase P 
protein-RNA complexes, site-directed mu- 
tagenesis studies of E. coli RNase P protein, 
named C5 (18), illuminate functionally im- 
portant residues consistent with the first 
two RNA binding regions obsenred in the 
B. subtilis RNase P protein structure (Fig. 
2). First, substitution of consenred residues 
in the RNR motif in the left-handed PolP 
crossover connection significantly compro- 
mises holoenzyme activity and appears to 
affect substrate specificity. Second, substi- 
tution of conserved aromatic residues ex- 
posed in the central cleft severely compro- 
mises holoenzyme activity, consistent with 

Fig. 2. Space-filling model of B. subtilis RNase P protein. Site-directed mutagenesis studies with the E. 
coli C5 protein (18) identify residues important for holoenzyme function (yellow); B. subtilis numbering is 
used. Solvent-exposed residues in the central cleft (Phei6, Phe20), on helix B (the RNR moti kgw, 
Asnsl, L y P ,  Args5), or on p strand 3 (Arg45) most likely contact RNA. Interestingly, the Arg45 + His 
substitution in C5 protein (6. subtilis numbering) results in a temperature-sensitive phenotype defective 
in holoenzyme assembly (18); correspondingly, this substitution must alter a critical contact between the 
protein and RNA subunits. Substitution of a buried residue (Phelo7, which appears as tryptophan in C5 
protein) probably slightly perturbs the overall tertiary structure, thereby compromising the overall 
complementarity of protein and RNA subunits in the holoenzyme. Photocross-linking studies with the 6. 
subtilis holoenzyme (19) identify residues on the protein subunit that contact the RNA subunit (green), 
including residues at the NH2-terminus (Arg7) and helix C (Argio8, SerMi) that flank helix B. These 
studies also implicate S e P  (red) and the central~left for binding the 5' leader sequence of pre-tRNAASP 
in the holoenzyme-substrate complex. 

I S5 RNase P Protein EF-G 

a possible role in base stacking interactions 
with RNA. 

Photocross-linking studies of B. subtilis 
RNase P protein variants complexed with 
the RNA subunit and the pre-tRNA sub- 
strate (19) pinpoint regions of the protein 
important for RNA binding in the general 
proximity of functionally important regions 
identified in C5 mutagenesis studies (18) 
(Fig. 2). Biochemical studies show that 
RNase P protein interacts with the RNA 
subunit (4, 14). To date, in preliminary 
photocross-linking studies with RNase P 
protein variants labeled with an azido- 
phenacyl moiety at an.engineered cysteine 
residue, protein-RNA cross-links are made 
between the RNA subunit and either the 
NH2-terminus or helix C of the protein 
(1 9). Intriguingly, a strong photocross-link 
is obsenred between pre-tRNAh~ (but not 
tRNAA"p or the RNA subunit) and azido- 
phenacyl-labeled Ser49 + Cys RNase P pro- 
tein. Although these data must be cautiously 
interpreted in view of the 10A length of the 
cross-linker, they suggest that the central 
cleft binds the 5' leader sequence of pre- 
tRNA in the holoenzyme-substrate complex, 
possibly accounting for the increased affinity 
of the holoenzyme toward pre-tRNAb rel- 
ative to t R N A b  (5). 

The structure of RNase P protein reveals 
an unexpected topological relationship with 
two RNA binding proteins of the transla- 
tional apparatus despite insignificant se- 
quence identity (<13%): the 70-residue 
COOH-terminal domain of ribosomal pro- 
tein S5 (20) and the 11 7-residue domain IV 
of elongation factor G (EF-G) (21, 22). 
Even though both proteins lack a counter- 
part to helix A, and S5 has a P strand 3 so 
short that it nearly belies formal classifica- 
tion as a secondary structural element, both 
proteins share a core PPPolPol topology with 
RNase P protein (Fig. 3). This remarkable 
structural homology suggests that these pro- 
teins evolved from a common ancestor- 
most likely a primordial ribosomal protein- 
early in the evolution of the translational 
apparatus (22). Each protein has a left-hand- 
ed PolP crossover implicated in RNA bind- 
ing. The PolP crossover of RNase P protein 
contains the base-rich RNR motif, which 
suggests extensive RNA contacts. The PolP 
crossover of S5 contains a critical arginine 
residue that is believed to interact with 16s 
RNA (20), and the PolP crossover of EF-G 
interacts with ribosomal RNA during ribo- 
somal translocation (21, 23). Accordingly, 
the left-handed PolP crossover clearly should 
be considered an established RNA binding 
element. 

Fig. 3. Ribbon plots (25) of the COOH-terminal domain of ribosomal protein S5 (20) (PDB accession In it is instructive to consider 
code 1 PKP), RNase P protein, and domain IV of the ribosomal translocase, EF-G (21) (PDB accession how the catalytic fmction of P is 
code IDAR). Left-handed pup crossovers are highlighted in yellow. Topological similarities suggest specifically linked with the translocase 
evolutionary divergence from a primordial ribosomal ancestor. function of EF-G. The protein subunit of 
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RNase P plays a critical supporting role for 
the translational apparatus in E. coli by 
facilitating pre-4.5S RNA processing by the 
holoenzyme (7). In turn, mature 4.5S RNA 
binds to the ribosome after translocation 
and displaces EF-G from the 23S RNA of 
the large ribosomal subunit before gua-
nosine triphosphate hydrolysis (8). Thus, 
both the structures and the functions of 
RNase P protein and EF-G domain IV are 
specifically linked in the evolution of ribo
somal translocation. In view of this rela
tionship, the hypothesis that RNase P pro
tein plays a role in translational autoregu-
lation is rather intriguing (24)- With the 
structure of RNase P protein now in hand, 
we aim to continue the exploration of struc
ture-function relationships that will illumi
nate the chemistry and evolutionary biolo
gy of RNase P. 
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