where bison were excluded, there was a
negative relation between abundance of
forbs and fire frequency. In contrast, there
was a positive relation between fire frequen-
cy and forb abundance on watersheds that
were grazed by bison (Fig. 1). Thus, grazing
increased the abundance of forbs under
conditions that would otherwise promote
dominance by C, grasses and lower species
diversity.

Although burning is essential to main-
tain tallgrass prairie (15), fire alone is not a
sufficient management solution for restor-
ing prairie biodiversity as some have pro-
posed (16). More frequent fires are now
needed to resist invasion by exotics and
woody species in remaining grassland frag-
ments (16), but as shown here frequent
burning dramatically increases the domi-
nance of C, grasses and reduces plant spe-
cies diversity (17). Whereas fire is used as a
conservation tool throughout much of the
tallgrass region, the use of grazing by bison
or cattle as a management tool for main-
taining species diversity is less common
(18). Yet herbivores such as bison histori-
cally served as keystone species in tallgrass
ecosystems because they reduced the com-
petitive dominance of the C, grasses, in-
creased habitat heterogeneity, and in-
creased species diversity (19).

One consequence of anthropogenically
driven global change has been the extinc-
tion or dramatic reduction in populations of
keystone species (20). The role that key-
stone species play in community structure
and ecosystem functioning is now widely
recognized (21). In some systems, loss of a
keystone species may decouple the critical
interplay between trophic interactions and
community structure (20). Our research
demonstrates that by adding or maintaining
top-down forces such as grazing, at least in
ecosystems like grasslands that were affect-
ed historically by keystone herbivores (22),
diversity in native vegetation can be re-
tained under conditions that would other-
wise lead to a decline in species richness.
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Anterior Cingulate Cortex, Error Detection, and
the Online Monitoring of Performance

Cameron S. Carter,* Todd S. Braver, Deanna M. Barch,
Matthew M. Botvinick, Douglas Noll, Jonathan D. Cohen

An unresolved gquestion in neuroscience and psychology is how the brain monitors
performance to regulate behavior. It has been proposed that the anterior cingulate cortex
(ACC), on the medial surface of the frontal lobe, contributes to performance monitoring
by detecting errors. In this study, event-related functional magnetic resonance imaging
was used to examine ACC function. Results confirm that this region shows activity during
erroneous responses. However, activity was also observed in the same region during
correct responses under conditions of increased response competition. This suggests
that the ACC detects conditions under which errors are likely to occur rather than errors

themselves.

It has been proposed that the ACC plays a
prominent role in the executive control of
cognition (1). This hypothesis is based, in
part, on functional neuroimaging studies
that show ACC activity during tasks that
engage selective attention, working memo-
ry, language generation, and controlled in-
formation processing (2). Disturbances in
this brain region have been reported in
disorders associated with cognitive impair-
ment, including schizophrenia and depres-
sion (3). This account of ACC function is

consistent with the rich anatomical con-
nectivity of this region with association,
limbic, and motor cortices (4). However, it
is lacking in detail regarding the precise
contribution of the ACC to cognitive
control.

To date, the most explicit hypothesis
regarding ACC function comes from
event-related brain potential (ERP) stud-
ies during speeded response tasks. These
studies have reported an error-related neg-
ativity (ERN), peaking 100 to 150 ms after
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a person shows electromyographic evi-
dence of initiating an incorrect response.
Dipole modeling suggests that the ERN
has a medial frontal generator, possibly
the ACC (5). These and other character-
istics of the ERN have led to the hypoth-
esis that the ACC is involved in monitor-
ing and compensating for errors. Specifi-
cally it has been proposed that this in-
volves a comparator process in which a
representation of the intended, correct re-
sponse is compared to a representation of
the actual response (5, 6).

We propose that rather than imple-
menting a comparator process, the ACC
monitors competition between processes
that conflict during task performance. For
example, response competition arises when a
task elicits a prepotent but inappropriate
response tendency (manifested as activity
in the incorrect response channel) that
must be overcome to perform correctly.
These conditions are also more likely to
elicit incorrect responses, possibly ac-
counting for the relationship of ACC ac-
tivity to errors. However, our hypothesis
predicts that response competition will ac-
tivate the ACC even when a correct re-
sponse is made. The present study em-
ployed event-related functional magnetic
resonance imaging (fMRI) to accomplish
two goals. First, we sought to test the
hypothesis, suggested by ERN studies, that
the ACC shows error-related activity.
More important, we also sought to test our
alternative hypothesis regarding the func-
tional significance of the ERN and the
performance-monitoring function of the
ACC.

Thirteen people underwent fMRI (7)
while performing variants of the Contin-
uous Performance Test (AX-CPT) (8)
that were designed both to increase error
rates and to manipulate response compe-
tition (Fig. 1) (9). We observed a tran-
sient increase in ACC activity (10) occur-
ring during incorrect responses (11) (Fig.
2). However, as predicted by our hypoth-
esis, greater ACC activity was also seen
during correct responses, under conditions
that elicited greater response competition
(12). We interpret these results as suggest-
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ing that the contribution of the ACC to
performance monitoring may be the detec-
tion of response competition rather than
detection of errors per se. Sensitivity to
response competition should also produce
error-related effects, because error trials
are often likely to be those in which ac-
tivity in the incorrect response channel
competes with, and prevails over, activity
in the correct response channel.

To determine whether error and com-
petition effects were specific to the ACC,
we used two additional analyses. First, we
examined error- and competition-related
effects in three other regions of interest
(ROIs) previously shown to be activated
by stimulus degradation (two right inferior
frontal regions and a right striatal region)
(8). We observed error-related activity in
one right frontal region (BA 44/45), but
neither this nor the two other ROIs
showed competition effects (13). Next, we
examined error and competition effects in
an exploratory analysis of all brain regions

scanned (14). Three regions in addition to
the ACC showed significant transient in-
creases in activity associated with errors.
These were the right (BA 9) and left (BA
46/9) dorsolateral prefrontal cortex and
the left premotor cortex (BA 6). However,
none showed significant effects of re-
sponse competition.

Our reconceptualization of ACC activ-
ity as being related to response competi-
tion, rather than errors per se, has a num-
ber of important implications. First, it
links the wealth of literature concerning
the role of this region in higher level
cognition [including the hypothesis that it
is involved with late selection or “atten-
tion to action” (1)] with the ERP litera-
ture suggesting that it is responsive to
errors. In particular, it reconciles the ob-
servation that reliable ACC activation is
observed in some tasks that are associated
with low error rates, such as the Stroop
task and verbal fluency (15, 16). Second,

it is computationally parsimonious. A

Trial
Events
AorB XorY
ISI-9.5s = ITI-9.5s

L] L

Cue Probe

(0.5 s) (0.5 8)
Scanning
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Fig. 1. The AX-CPT task. Stimuli were presented centrally on a visual display projected into the scanner
[duration of cue and probe, 0.5 s; duration of interstimulus interval (IS), 9.5 s; and duration of intertrial
interval (ITl), 9.5 s]. Trials occurred as sequences of cue-probe pairs. Stimuli were either degraded or
nondegraded letters, presented as cue-probe pairs. Eight time-locked scans were acquired during each
20-s trial, one every 2.5 s, and included sufficient time for the MRI signal to decay to baseline after
transient response-related activity.

Fig. 2. The location of Accuracy

the region of the ACC _ 015

(BA 24/32) and its asso- L o Rl
ciated effects. On the B i
left, the functional image £

from the confirmatory S oy S

analysis of the 39-voxel Scan Within Trial

ACC ROI (yellow) is ren- Trial Type

dered onto a three-di- _ 015

mensional structural MRI er 4\ o=
image for anatomic visu- o f | A
alization. On the right, N | eBY
the temporal dynamics i e B e AX

of activity in this region Scan Within Trial
are shown for both the

error and the trial-type effects, plotted as percent change from the mean MRl signal for each condition.
Error bars indicate the standard error of the mean. The error effect (observed as an error X scan
interaction during the degraded condition) occurred during the time of response as a transient increase
in activity on incorrect trials. The competition effect (observed as a cue X probe X scan interaction) is
shown only for correct trials and also occurred during the time of response. A transient increase in
activity was found for trials with high response competition (AY and BX) relative to trials with low
competition (AX and BY).
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comparator function requires the ACC to
have access to representations of intended
states (for example, the correct action) as
well as the outcome of processing, whereas
detection of competition requires only in-
formation about the state of the response
system.

This study focused on ACC activity as-
sociated with response competition. The
question remains open as to whether the
ACC is responsive to competition only at
this level or is also responsive to competi-
tion earlier in processing. Whichever is cor-
rect, the present findings demonstrate how
error-related activity can occur without the
need for a comparator and how such activ-
ity might represent one instance of a more
general performance-monitoring function

of the ACC.
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