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A Trivalent System from Vancomycin-D-Ala-D-Ala
with Higher Affinity Than Avidin-Biotin

Jianghong Rao, Joydeep Lahiri, Lyle Isaacs, Robert M. Weis,
George M. Whitesides*

Tris(vancomycin carboxamide) binds a trivalent ligand derived from D-Ala-D-Ala with very
high affinity: dissociation constant (K ) =~ 4 x 1077 = 1 X 10~'" M. High-affinity trivalent
binding and monovalent binding are fundamentally different. In trivalent (and more
generally, polyvalent) binding, dissociation occurs in stages, and its rate can be accel-
erated by monovalent ligand at sufficiently high concentrations. In monovalent binding,
dissociation is determined solely by the rate constant for dissociation and cannot be
accelerated by added monomer. Calorimetric measurements for the trivalent system
indicate an approximately additive gain in enthalpy relative to the corresponding mono-
mers. This system is one of the most stable organic receptor-ligand pairs involving small
molecules that is known. It illustrates the practicality of designing very high-affinity

systems based on polyvalency.

Polyvalent inhibitors can be used for
blocking the adhesion of pathogens to the
surfaces of target cells (1, 2). The enhanced
biological activity observed in these systems
has been rationalized in terms of the roles of
enthalpy and entropy. Similar strategies us-
ing polyvalency may also be applied to oth-
er problems in biochemistry such as block-
ing carbohydrate-protein interactions and
controlling cellular signal transduction (3—
7). We describe the design and synthesis of
a trivalent system of receptor and ligand
derived from vancomycin and D-Ala-D-Ala
(DADA), respectively, that shows excep-
tionally high affinity [its binding constant
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(K,)is ~4 X 10717 =1 X 10717 M, 25 times
tighter than biotin-avidin, which is one of
the strongest interactions known in biolog-
ical systems (8)] and we characterize the
thermodynamics and kinetics of this high-
affinity system.

We chose the vancomycin'DADA pair
for elaboration into a polyvalent system for
tive reasons: (i) vancomycin is relatively rig-
id, and there is little loss in conformational
entropy on binding (Table 1) (9); (ii) Wil-
liams and others have studied it in detail
structurally (10-12) and thermodynamically
(9, 13); (iii) the two components are readily
available and relatively easily modified syn-
thetically (7); (iv) the monovalent complex
has a convenient binding constant (K; =~ 1
uM) (14); and (v) Williams proposed that
noncovalent divalency is important in the
binding of vancomycin to DADA groups in
bacterial cell walls (15-17).

The design of the trivalent vancomycin
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Fig. 1. HPLC of aliquots of samples that con-
tained (A) RV, (4.5 uM); (B) RV, (4.5 uM); (C)
RV; (4.5 uM) + L (19.1 mM); and (D) RV, (4.5
uM) + R'L', (4.5 uM). Dansyl-L-Leu (10 pM) was
introduced into each sample except (A) as an in-
ternal standard. All analyses were carried out un-
der the same conditions, with a Rainin (Woburn,
Massachusetts) analytical reverse-phase C18 col-
umn, linear eluting gradient from 85% solvent A
[0.1% trifluoroacetic acid ( TFA) in water] and 15%
solvent B (0.1% TFA in acetonitrile) to 70% A and
30% B, over 45 min. The absorbance was moni-
tored at 280 nm wavelength.

derivative R V5 [CH;-1,3,5-(CONHCH,-
4-CH,NHCOV);; V = Vancomycin] and
the trivalent derivative of DADA, R’L’;
[C¢H;-1,3,5-(CON®H(N*-acetyl)-L-Lys-D-
Ala-D-Ala)], was based on the geometry of
the monovalent complex (18) and on the
positions available for modification (Scheme
1) (19). The central aromatic spacer was
designed to be large enough to accommodate
three vancomycin molecules and rigid to
minimize the loss of conformational entropy
on binding. Syntheses were modeled on
literature precedents (7, 19); 'H nuclear
magnetic resonance (NMR) spectra and
electrospray ionization mass spectrometry
(ESIMS) confirmed the structures (20).
We examined the stability of the com-
plex R VR’ L’ by high-pressure liquid
chromatography (HPLC). On injecting a
mixture of RV and R’ L’;, we observed
only the aggregate R,V;R’ L';; we did not
observe free R V5 (R V;:R' L' and RV,
have clearly distinguishable retention
times) (Fig. ID). In a control experiment,
we examined a mixture of R V5 (4.5 pM)
and a monovalent ligand L, diacetyl-L-Lys-
D-Ala-D-Ala (19.1 mM), by HPLC under
otherwise identical conditions; this experi-
ment showed only the presence of RV,
(Fig. 1C). We inferred that the 1:3 com-
plex of R V;3L that was undoubtedly
present at equilibrium dissociated com-
pletely during the passage through the col-
umn; the fact that the peak for R V5 was
sharp indicated that dissociation was fast

RiV3

R'iL's

Scheme 1. Structures of the trivalent derivatives of vancomycin, R\V,, and of DADA, R',L,.

under the conditions of the experiment
(21). We concluded that R VR’ L’; was
stable enough to survive the HPLC exper-
iments intact. Therefore, we used HPLC to
quantitate the relative amounts of R’ L’;,
R, V5, and R VR’ L'; in a mixture of these
species and to estimate the trivalent disso-
ciation constant K (Eq. 1). A direct titra-
tion of R, V5 with R’ L’;, however, was not

Kt
RV;RL SRV, + R LS (1)

successful; the reaction was stoichiometric
even when R V; was at its minimum de-

tectable concentration [in the micromolar
range for the ultraviolet (UV) detector].
Thus, we turned to a competition assay to
estimate K indirectly from the equilibrium
constant K (Egs. 2 and 3);

RV,3L + R’ L', = R,V4R'.L’; + 3L

(2)

[RV5R'LSILP (K’
TRVSLIRL Ky

3)

here, K7 is the average monovalent disso-
ciation constant of the complex R, V;-3L

Table 1. Thermodynamic parameters of binding of derivatives of vancomycin to derivatives of DADA at
298 K. Values of AH° were determined by duplicated ITC titrations at pH 7.0 in 5.0 mM phosphate buffer
at 298 K; values for the free energy AG® were calculated from K, measured in the same solution except
for that of R\V4'R’\L'5; values of ~-TAS® were calculated from AG® = AH® — TAS®. In the cases of 1:3 or
3:1 complexes, the three binding sites were treated as independent in the analyses. Errors are
estimated as 25% for K4 and 5% for AH°. R’,L" and RV are the monovalent derivatives of DADA and V,
respectively, designed to simulate the influence of the R’, group in R',L'; and the R, group in R\V5: R",L’,
Ne-acetyl-Ne-benzoyl-L-Lys-D-Ala-D-Ala; RV, C;H,CONHCH,-4-CH,NHCOV.

. Receptor/ AG° AH° —TAS®
Receptor  Ligand " ong M) kJ/mol)  (kd/mol)  (kJ/mol)
RV, RL'; 1:1 4 x 1077+ 1 x 10717 —-94 —-167 73
Vancomycin* L 1:1 1.6 X 10 -33.0 -50.2 17.2
RV, R'L' 1:8 1.1 X 10 -33.9 -51.9 18.0
RV, L 1:8 2.7 X 10 -31.8 -50.2 18.4
Vancomycin RL', 3:1 0.34 X 1076 —-36.8 -73.2 36.4
RV R'\L'5 3:1 0.11 X 10°6 —-39.7 -741 34.4
RV R'L 1:1 0.96 x 1076 -34.3 -87.9 53.6
*Measured in 20 mM phosphate buffer at 298 K; the results agree well with the literature values (73).
www.sciencemag.org * SCIENCE ¢ VOL. 280 « 1 MAY 1998 709



and was estimated as 5 wM by UV differ-
ence spectroscopy (14, 22).

We allowed R’ L'; to compete with the
monovalent ligand L for R, V;; the concen-
tration of L used in the assay was chosen
such that at least 99% of the three vanco-
mycin binding sites on R V; were saturated,
and that on addition of R’ L’;, there was a
quantifiable concentration of free R’ L5 in
solution at equilibrium in the system. We
defined 6 as a measure of the progress of the
exchange reaction on addition of R’ L',
(Eq. 4); 0 is the fraction of total RV,
present in the sample that is in the form of

R V,R' L',
[RrVB.R/ ELI 3]
T RVy3L] + RVyR' L]

0 K K

wr- ot ©®

0 (4)

Equation 5, obtained by combination of
Egs. 3 and 4, was used to characterize the
binding (23): if the ratios of 6/[R’L’;] are
plotted versus 6, a straight line would be
expected; both the slope and y intercept of
this line would afford the ratio of K/[L]? and
thus the value of K. The values of 6 and
[R".L';] were determined from the HPLC
titrations (24). The ratios of 6/[R’ L';] were
then plotted versus 0. As expected, the plot
gave a straight line and yielded the value of
K (Fig. 2). We estimated K¢ using K and K
(Eq. 3); our estimate of K is ~ 4 X 10717
1 X 10717 M. This dissociation constant is
lower than that of biotin-avidin (K, = 10715
M) (8).

At first, the conclusion that R,V bound
very tightly to R’ L’; seemed at odds with
the relatively fast equilibrium we observed
in solutions containing R, V;, R’ L’;, and L.
If we assume that the rate constant for
association of R V5 and R'L’;, k__, is ap-
proximately nine times that for association

6 /[RYL'5] (1/uM)

Fig. 2. A plot of the ratios of 6/[R’,L’,] versus 6 for
the titration of RV, (4.5 uM) with R’.L’; (O to 35
M) in the presence of L (19.1 mM). The line is a
linear fit of the data to Eq. 5. The slope of the line
yields a value of K/[L]® =~ 0.47 M~ ", The value of
Ky for RVyR'\L'; is thus estimated as ~4 X
10777 =1 X 10777 M (Eq. 3).
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of V and L [making a statistical correction
of a factor of 9 for the number of receptor
and ligand groups in the trivalent species;
koo = 9.3 X 105 M s7! for V with L (21)],
then k_, would be ~8 X 107 M~ 57, and
the rate constant for dissociation of
R, V;R' L5, kg, would be k = kK =
3 X 107 s7%. Even if the association of R,V
with R’ L’; were diffusion controlled (12)
and had a value of k,, ~ 10° M~! 57}, the
estimated value of k_g would be ~4 X 107®
s7!. This value is compatible with our ob-
servation that the aggregate does not disso-
ciate observably over the >10° s required
for the HPLC analyses. The exchange reac-
tion between R V3R’ L’; and L, however,
proceeded surprisingly rapidly; the reaction
was nearly complete in <45 min, as evident
in the HPLC traces taken during the ex-

R\VgeR'(L's

Dansyl-L-Leu

Absorbance (Arbitrary units)

T —1

15 20 25
Time (min)

Fig. 3. Representative HPLC traces demonstrat-
ing the exchange of RV, (3 uM) + R’ L’ (22 uM)
with L (86 mM) with formation of RV,-3L. Ex-
change reactions were carried out by adding L to
an equilibrated mixture of RV, and R'\L’; and
injecting it into the HPLC column after (A), O; (B), 2;
(C), 45; (D), 190; or (E), 360 min. Symbols (@)
indicate the retention time of R\V,-3L; this com-
pound dissociates to free RV, on the column. The
sample of RV, we used contained small amounts
of impurities, which are indicated by the asterisk
and solid bar. The conditions were similar to those
in Fig. 1, except that a Vydac analytical RP column
was used with the same linear gradient, run over
30 min.

change of R V5-R' L', with excess L (Fig.
3). Approximately 60% of the R\Vj re-
mained as R V;-R’ L’; at equilibrium in a
system containing L at an ~86 mM con-
centration, 17,000 times greater than the
dissociation constant for the complex of
R, V; and L, confirming that R V;R’ L’
was tightly associated. There is, however,
an essential difference in kinetics between
this trivalent system and biotin-avidin. Dis-
sociation of R, V3-R’ L5, when carried out
in the presence of excess monovalent ligand
L, proceeds in stages and is rapid in the
presence of excess L; dissociation of
biotin-avidin necessarily proceeds to com-
pletion in one step and is slow.

We evaluated the thermodynamics of
binding, using isothermal titration calorim-
etry (ITC) (Table 1) (25). ITC can be used
to estimate K in the millimolar to nano-
molar range. It allowed us to estimate the
enthalpy of binding, AH®, and KY for the
monovalent interactions, but only AH® for
the interaction of R V5 with R'L’;. We
will analyze these complex data in detail in
the future, but we note two important ini-
tial inferences from them here. First, AH®
for the interaction between R V; and
R'L'; is ~-167 kJ/mol, a value that is
approximately three times that for monova-
lent vancomycin and DADA (AH® = —53.3
kJ/mol) (13); similarly, the value of ~TAS°®
(where T is the temperature and AS°® is the
entropy of binding) for the trivalent species
is approximately three times that of the
monovalent species (26). Second, the value
of K, is remarkably indifferent to substitu-
tion on either vancomycin or L-Lys-D-Ala-
D-Ala groups, so long as the interaction is
monovalent; only the trivalent interaction
is strong. Third, attachment of organic
groups to vancomycin or L-Lys-D-Ala-D-
Ala groups sometimes leads to larger values
of AH® than is observed for unsubstituted
vancomycin and diacetyl-L-Lys-D-Ala-D-
Ala. We have not established the origin of
this increase yet. In general, however, the
data suggest that the high free energy of
association of R, VR’ L’; comes primarily
from the association of three V and L
groups.

The trivalent system comprising RV,
and R’ L', is the tightest binding system in
relatively low molecular weight organic spe-
cies of which we know. These systems are
fundamentally different from those formed
by strong monovalent interactions (such as
avidinbiotin), in that dissociation of the
complex can be accelerated by incubation
with a monovalent ligand capable of com-
peting for the receptor sites. Avidin-biotin
interactions are widely used in analytical
biochemistry; we believe that tight binding
systems based on polyvalency will offer al-
ternatives and that the aspect of reversibil-
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ity on addition of competing monovalent
ligand will confer a degree of flexibility not
possible with avidin-biotin.
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Eqg. 4, where [R\V,-R'L’,] was estimated from its
integration, and [R,V4-8L] was from the integration
of R\V5, because R,\V4:3L dissociated to RV, on
the column (27).

25. In atypical ITC experiment, a solution of the ligand is
injected stepwise into a stirred solution of the recep-
tor; after each injection, heat evolves because of
binding. Integration of the evolved heats is a mea-

sure of the enthalpy of binding (AH®); analysis of the
titration curve yields a value of the binding constant
[T. Wiseman, S. Williston, J. F. Brandt, L.-N. Lin,
Anal. Biochem. 179, 131 (1989)].

28. The entropic loss of the first binding event in the
trivalent complex would be expected to be larger
than that of the monovalent binding of V to L,
because RV, and R'[L'; have larger sizes and
more conformational freedom than V and L. The
next two steps would be less entropically unfavor-
able than the first binding event, because they take
place intramolecularly.

27. Supported by NIH grants GM 30367 (G.M.W.), GM
51559 (G.M.W.), and GM 53210 (R.M.W.). J.R.
thanks Eli Lilly (1996-97) and Hoffmann-LaRoche
(1997-98) for doctoral fellowships. L.I. thanks NIH
for a postdoctoral fellowship.
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An Analysis of the Origins of a Cooperative
Binding Energy of Dimerization

Dudley H. Williams,* Alison J. Maguire, Wakako Tsuzuki,
Martin S. Westwell

The cooperativity between binding of cell wall precursor analogs (ligands) to and anti-
biotic dimerization of the clinically important vancomycin group antibiotics was inves-
tigated by nuclear magnetic resonance. When dimerization was weak in the absence of
a ligand, the increase in the dimerization constant in the presence of a ligand derived
largely from changes associated with tightening of the dimer interface. When dimeriza-
tion was strong in the absence of a ligand, the increase in the dimerization constant in
the presence of a ligand derived largely from changes associated with tightening of the
ligand-antibiotic interface. These results illustrate how, when a protein has a loose
structure, the binding energy of another molecule to the protein can derive in part from

changes occurring within the protein.

Cooperativity lies at the heart of molecular
recognition, which leads to biological func-
tion (1). It is typically exercised when nu-
merous weak interactions operate simulta-
neously. We may define an interaction be-
tween two molecules of A to give A'A
(dimerization) as being cooperative with
the binding of B to A if the equilibrium
constant for the association of two mole-
cules of B-A (to give B-AA-B) is greater
than that for A + A — A-A. Here, we
investigate the molecular origins of such
cooperativity and define a method for lo-
cating the origins of cooperative binding
energy. We define the interfacial bindings
in B-A and A-A as “loose” or “tight.” In
tight binding, the bonds that identify the
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individual interactions at the interface give
a relatively large (perhaps near maximal)
binding energy; that is, the average bond
lengths are relatively short. In contrast,
loose binding means that the corresponding
interactions are associated with longer av-"
erage bond lengths, which give an apprecia-
bly lower binding energy than that avail-
able in a tight structure. Loose interactions
occur when the sum of the favorable bond-
ing interactions (enthalpy) is sufficiently
small to be counteracted by the adverse
entropy of binding and when there is a
relatively large amount of residual motion
in the bound state (2).

We provide experimental evidence for
the validity of the above considerations in
the following sequence of steps:

1) The occurrence of loose and tight
interactions, but otherwise involving a
common set of weak bonds, was shown
through the use of proton chemical shift
changes upon association. Using the chem-
ical shift criterion, we showed that associ-
ated structures involving one interface (B
+ A—>BAorA+ A — A-A) tighten at
that interface as the equilibrium constant
for their formation increases.
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