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Dependence of Germinal Center B Cells on 
Expression of CD21 /CD35 for Survival 
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Garnett Kelsoe, Michael C. Carroll? 

Affinity-driven selection of B lymphocytes within germinal centers is critical for the 
development of high-affinity memory cells and host protection. To invest~gate the role 
of the CD21/CD35 coreceptor in B cell competition for follicular retention and survival 
within the germinal center, either Cr2+ or Cr2""" lysozyme-specific transgenic B cells 
were adoptively transferred into normal mice immunized with duck (DEL) or turkey (TEL) 
lysozyme, which bind with different affinities. In mice injected with high-affinity turkey 
lysozyme, Cr2""" B cells responded by follicular retention; however, they could not 
survive within germinal centers. This suggests that CD21 provides a signal independent 
of antigen that is required for survival of B cells in the germinal center. 

T h e  murine Cr2 locus encodes comple- 
ment receptors CD21 (CR2; 150 kD) and 
CD35 (CR1; 190 kD) that are expressed 
primarily on B cells and follicular dendritic 
cells (FDCs) (1). Cr2""" mice have im- 
paired immune responses to T-dependent 
antigens (2 ,  3);  the defect is in the B cell 
compartment (2,  4). The natural ligands for 
CD21 and CD35 are activation products of 
complement C3 (C3d and C3b, respective- 
ly) (5) that are covalently coupled to anti- 
gen (6); mice deficient in C3 have itnpaired 
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humoral responses similar to those observed 
ill C ~ ~ ~ U I I  animals (7). In studies in which 

f~~s ion  proteins of C3d and hen egg ly- 
sozytne (HEL) were used, B cell activation 
in vitro and in vivo was enhanced and 
dependent on the presence and density of 
C3d (8). Thus, CD21/CD35 may be a po- 
tent coreceptor for complement-decorated 
antigens that can raise the intensity of sub- 
optimal activating signals. 

To examine directly the fate of B cells 
deficient in CD21/CD35 in an immune 
recipient, we bred Cr2""" mice with mice 
expressing a transgenic (tg) immunoglobu- 
lin (Ig) consisting of both heavy and light 
chains, which bind avian egg lysosymes 
with very high affinity (9). The importance 
of CD21/CD35 as a coreceptor in B cell 
activation by antigen ligands that bind with 
increasingly substantial affinities was exatn- 
ined by comparing the response of Cr2+ 
and Cr2""" lysoiyme-specific Ig tg B cells to 
DEL and TEL, respectively (10, 11). As 
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expected, 10- to 100-fold less TEL than 
DEL was reyuired for the induction of pro- 
liferative responses and up-regulation of the 
CD86 costitnulator tnolecule in both groups 
of tg B cells (12). Thus, activation through 
the B cell receptor (BCR) in the absence of 
cotnpletnent is comparable in Cr2- and 
~ ~ 2 n u 1 1  tg B cells, and B cell activation and 

proliferation is proportional to antigen 
affinity. 

To examine the importance of B cell 
expression of CD211CD35 in combination 
with low-affinity antigen (DEL) in vivo, we 
adoptively transferred splenic B cells isolat- 
ed from either Cr2- or Cr2""" lysozyme- 
specific Ig tg mice with DEL into wild-type 
(WT) recipients that had been primed 7 
days earlier with DEL (13, 14). Cr2""" tg B 
cells from the spleen declined over the 
5-day period in the DEL-primed recipients 
(Fig. 1A); by day 5 after transfer, there were 
-'o (2 16 fewer Cr2""" than Cr2+ tg B cells 

(0.26 z 0.04% versus 1.14 2 0.26%, re- 
spectively; P < 0.01) in the recipient 
spleens (15). An  increase in Cr2""" tg B 
cells in the blood was observed by day 5 
(Fig. 1B); however, this did not account for 
the loss of cells from the spleen given the 
relatively low number of B cells in blood 
compared with spleen. Loss of Cr2""" tg 
cells frotn the spleen was confirmed by im- 
munohistochemical analysis (Fig. 2, A to D, 
and Table 1) and correlated with a low 
freyuency of expression of CD86 (B7-2) at 
day 1 after transfer (12). Although similar 
numbers of Cr2+ and Cr2""" tg B cells were 
present on day 1 in the primary splenic 
follicles of imtn~me recipients (Fig. 2, A and 
C) ,  by day 5 less than 2% of follicles held 
~ ~ 2 ~ ~ 1 1  tg B cells compared with 85% of 

follicles positive for Cr2- tg B cells (Fig. 2, 
B and D, and Table 1) (1 6).  The loss of the 
~ ~ 2 ~ ~ 1 1  tg B cells in DEL-immune recipients 

was greater than that in nonimmune con- 
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trols in which over 50% of the follicles were CD21/CD19 coreceptor might deliver a the splenic outer periarteriolar lymphoid 
positive for tg B cells 5 days after transfer subthreshold signal leading to B cell elimi- sheath (PALS) can result in an abortive 
(Table 1). Thus, binding of intermediate nation. Cook et al. (17) have reported that response in the follicle in the presence of 
affinity antigen without coligation of subthreshold BCR stimulus of tg B cells in T cell help. Whether specific elimination 

or migration out of the white pulp ac- 
counts for the loss of Cr2""" tg B cells 

Fig. 1. Flow cytometric analysis of Spleen Blood cannot be determined from these results. 
splenic (MNCs) and peripheral To rule out down-regulation of the Ig 
blood mononuclear cells (PBMCs) 

lo  pi receptor, we labeled splenocytes with a flu- 
of recipients after adoptive transfer - orescent dye (BCECF AM-2'7'-bis-2-car- 
of Cr2+ or Cr2nU11 lysozyme-specific 4 boxyethyl-5 and 6-carboxy-fluorescein) be- 
lg tg B cells. (A to D) Frequency of 8 fore transfer (15). O n  day 5 after transfer, 
Cr2nU11 or Cr2+ HEL-specific tg B 0.1 
cells in the spleen or blood 1,3, and 3 

spleen cells were harvested and fluorescent 

5 days after transfer into nonirradi- cells analyzed for expression of the B cell 
0.01 ated MHCclass Il-matched WTre- , , , marker CD45R (B220), and HEL binding. 

cipients that had been immunized 7 4 lo Similar numbers of BCECF+B220+ and 
days previously with 50 pg of soh- 8 HEL+B220+ tg cells were observed, con- 
ble DEL (A and B) or TEL (C and D) m firming that the majority of the HEL+ tg 
antigen. Values represent the f cells were accounted for (12). Thus, most 
mean 2 SD of HEL-binding B cells Cr2""" tg B cells in vivo remained inacti- 
within the total B cell population x 0.1 vated by DEL antigen despite its substantial 
(B220+) of three to four experi- affinity and activating potential in vitro. 
ments with pooled cells from two O.O1 mice for each group in each exper- o 2 4 6 o 2 4 

This finding supports the threshold model 

iment. Closed and open circles rep- 
= 

(18) that CD21/CD35 (with CD19 and 
resent Cr2+ HEL+ tg B cells with Days CD81) is a potent coreceptor for antigen 
and without antigen; closed and open triangles represent CRnUI1 HEL+ tg B cells with and without and its coligation with the BCR lowers the 
antigen. affinity threshold for B cell activation (1 9). 

Table 1. Morphometric analysis of splenic sections of recipients on day of follicles or follicles and GCs with more than 10 tg B cells were counted 
5 after transfer of tg B cells. HEL-binding B cells and PNA-positive GC B for six recipients each for Cr2nU11 and Cr2+. Values represent the mean 
cells were identified by immunostaining as described (16). Total numbers -+ SEM. 

TEL-primed DEL-primed Nonimmune 
Recipients 

Cr2+ ~ r 2 ~ '  Cr2 + Cr2nu11 Cr2 + CQ~UII  

No. of follicles 35.7 2 2.1 32.2 -+ 2.9 33 -+ 1.9 32.2 k 2.4 35 2 1.3 35.8 -+ 1.4 
No. of GCs 28.7 k 2.3 24 2 3.6 30.5 2 2.7 28.7 -+ 3.1 8.8 -+ 1.6 7.2 2 2.2 
No. of follicles with >10 HEL-specific B cells 32.3 -+ 3.1* 17.7 -+ 4.4 28.3 -+ 3.7t 0.5 2 0.5 27 -+ 2.1 19 -+ 5.3 
No. of GCs with >10 HEL-specific B cells 15.5 z 2.0$ 1.7 2 0.7 1.2 2 0.7 0.2 -+ 0.2 0 0 
GCs with >10 HEL-specific B cells/GCs (%) 53.3 -+ 3.6 6.3 -+ 2.2 4.1 -+ 2.4 0.5 2 0.5 

'Comparison of Cr2+ versus CRnU" tg B cells in follicles of TEL-immune mice (P < 0.01). +Comparison of Cr2+ versus Cr2nU11 tg B cells in follicles of DEL-immune mice (P < 
3 x lo+). $Comparison of Cr2+ versus Cr2""I1 tg B cells in GCs of TEL-immune mice (P < 3 x 
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To determine if the binding of high-af- 
finity antigens by Cr2""11 tg B cells could 
drive in vivo activation, follicular retention, 
and participation in the germinal center 
(GC) response, we transferred tg cells into 
TEL-primed recipients. Analysis of the he- 
quency of CD86+ Cr2""" tg B cells in TEL- 
immune versus nonimmune recipients (26% 
versus 17%, respectively; P < 0.05) indicat- 
ed a significant increase in expression of this 
activation marker. By day 5 after transfer, an 
-30-fold difference was observed in the 
number of follicles in TEL-immune versus 
DEL-immune recipients that held Cr2""" tg 
B cells (60% versus 1.5%, respectively) (Fig. 
2, H and D, respectively, and Table 1). This 
difference is not likely due to the differential 
availability of T cell help because (i) similar 
numbers of GCs were observed in spleens of 
both DEL- and TEL-primed recipients (Ta- 
ble 1); (ii) mice immunized with TEL or 
DEL showed similar antibody responses (1 2); 
and (iii) T cells isolated from both groups of 
immune recipients on day 3 after transfer 
expressed similar amounts of the CD25 ac- 
tivation marker and proliferated comparably 
in vitro when cultured with the relevant 
antigen (1 2). 

Despite their activation and persistence 
within the splenic follicles, few GCs of 
TEL-primed recipients contained Cr2""" 
HEL-specific tg B cells. Two-color immu- 
nohistochemical analyses of splenic sec- 
tions on day 5 after transfer demonstrated 
that less than 7% of GCs included Cr2"" tg 
B cells as compared with greater than 53% 
positive for Cr2+ tg B cells (Fig. 2, H and F, 
respectively, and Table 1). Although inter- 
action with a very high affinity antigen was 
sufficient for the activation and follicular 
retention of coreceptor-deficient tg B cells, 
it was insufficient for their entrance or sur- 
vival (or both) within GCs. The relative 

Cr2+ HEL+ tg B cells Cr2n~1t HEL+ tg B cells 

Fig. 3. Cr2+ lysozyme-specific lg tg B cells local- 
ized within the GCs of TEL-primed recipients are 
actively dividing. BrdU uptake of dividing (A) Cr2+ 
(n = 4) or (B) Cr2nU11 (n = 5) HEL-specific tg B cells 
in splenic follicles 5 days after transfer into nonir- 
radiated MHC class Il-matched WT recipients 
that had been immunized 7 days previously with 
TEL antigen. B cells are stained with B220-HRP 
(crimson), tg cells are stained with HEL-biotin- 
strepavidin-AP (blue), and proliferating cells that 
incorporated BrdU were revealed by sequential 
incubation with BU20a, goat anti-mouse IgG-bi- 
otin, and strepavidin-AP (pink). 

absence of GCs that include Cr2""" tg B 
cells is not explained by the migration of tg 
B cells out of the spleen because less than a 
twofold difference was observed in the 
number of follicles (85% versus 60%) occu- 
pied by Cr2+ and Cr2""" tg cells, respec- 
tively (Table 1). To examine if the Cr2+ 
and Cr2""" tg B cells were actively dividing 
in GCs, we pulsed both groups of TEL- 
primed recipients with bromodeoxyuridine 
(BrdU) on day 5 after transfer and harvest- 
ed their spleens 2 hours later. Similar pro- 
portions of BrdU-labeled endogenous B 
cells and Cr2+ tg B cells were present in the 
GCs of mice immunized with TEL (Fig. 3A) 
(20). However, few Cr2""" tg B cells incor- 
porated BrdU (Fig. 3B). Thus, high-affinity 
B cells that lack CD21 are activated by 
antigen and enter GCs but do not prolifer- 
ate there. 

The reduction in the number of Cr2""11 
tg B cells within the GCs of TEL-primed 
mice suggests that CD21/CD35 expression 
is required for survival in GCs. Given the 
extraordinary affinity of TEL binding to the 
BCR of Cr2""11 tg cells, it seems unlikely 
that coreceptor amplification of BCR sig- 
nals alone could account for the failure of tg 
B cells to participate in the G C  reaction. 
Instead, expression of CD21 by G C  B cells 
may be critical for contact with C3d-anti- 
gen complexes retained by FDCs and may 
deliver a distinct survival signal. Whether 
this signal represents the synergistic effect 
of coligation of CD21/CD19 with the BCR 
as reported by Tooze et al. (21) is not 
known. Because the efficient retention of 
antigen by FDCs is mediated by comple- 
ment (22), attachment of C3d-antigen 
complexes by way of CD211CD35 receptors 
may provide not only a source of antigen for 
G C  B cell activation and selection, but also 
a ligand (C3d) necessary for B cell differen- 
tiation along the memory pathway. There- 
fore, WT mice immunized with TEL were 
injected intravenously with a soluble form 
of CD21 ([CR2],-IgG1) (23) at the peak 
period of G C  formation (days 8, 9, and 10) 
and their spleens harvested 48 hours later. 
As a control, TEL-immune mice were in- 
jected with a similar concentration of IgG1. 
Soluble CD21 treatment resulted in an 87% 
reduction in total G C  area within the 
splenic white pulp (Fig. 2, I and J )  (24). 
[CR2],-IgG1 has been well characterized 
and is specific for iC3b and C3d (23); un- 
like human CD21, mouse CD21 does not 
bind CD23. This reduction in G C  area is 
most likely explained by the blockade of 
C3d on FDCs within the GC, which would 
disrupt contact between activated B cells 
and FDCs as well as coligation of the CD21/ 
CD19 coreceptor. Although [CR2],-IgG1 
treatment would also inhibit activation of 
na'ive B cells at other sites such as the 

PALS, this would not explain the elimina- 
tion of preexisting GCs at day 8. Coculture 
of FDCs with primed B and T cells promot- 
ed B cell survival, and the effect was depen- 
dent on expression of CD21 and CD2lL 
(C3d) by B cells and FDCs, respectively 
(25). Thus, expression of the CD21 and 
CD19 coreceptor provides not only an en- 
hancing signal for lowering the threshold of 
B cell activation, but also mediates an un- 
anticipated survival signal for B cells within 
the GC. 
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Visualization of Single RNA Transcripts in Situ 
Andrea M. Femino, Fredric S. Fay,? Kevin Fogarty, 

Robert H. Singer* 

Fluorescence in situ hybridization (FISH) and digital imaging microscopy were modified 
to allow detection of single RNA molecules. Oligodeoxynucleotide probes were syn- 
thesized with five fluorochromes per molecule, and the light emitted by a single probe 
was calibrated. Points of light in exhaustively deconvolved images of hybridized cells 
gave fluorescent intensities and distances between probes consistent with single mes- 
senger RNA molecules. Analysis of p-actin transcription sites after serum induction 
revealed synchronous and cyclical transcription from single genes. The rates of tran- 
scription initiation and termination and messenger RNA processing could be determined 
by positioning probes along the transcription unit. This approach extends the power of 
FISH to yield quantitative molecular information on a single cell. 

T h e  identification of specific nucleic acid 
sequences by FISH has revealed sites of 
RNA processing, transport, and cytoplas- 
mic localization ( 1 ) .  Recognition of these 
sites of hybridization is possible only when 
sufficient concentrations of the target se- 
quence provide contrast with regions of 
lesser or no signal. Here we describe a quan- 
titative approach to identify single mole- 
cules in these regions of lo\v concentration. 
The methodology also facilitates accurate 
quantitation of the regions containing mul- 
tiple copies of RNA, such as is found at 
transcription sites. Analpsis of individual 
transcription sites with single molecule ac- 
curacy generated precise information on 
nascent chain initiation, elongation, and 
termination. 

FISH images are composed of points of 
light with variable intensities resulting ei- 
ther from hpbridization or from background 
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fluorescent noise. We used multiple probes 
targeted specifically to p-actin mRNA to 
generate high-intensity point sources that 
result from hpbridization to individual 
RNAs. We then quantitated the light in- 
tensitv from each ooint source to distin- 
guish ' hybridizationL events from spurious 
fluorescence. 

The strategy involves (i) synthesizing 
several oligonucleotide probes to adjacent 
sequences on an RNA target such that thelr 
collective fluorescence will be emitted as a 
point source after hybridization; (ii) conju- 
gating fluorochro~nes to specific sites on 
each oligonucleotide orobe so that the flu- " 

orescent output per molecule of probe can 
be calibrated (Fig. 1, A to C); (iii) acquiring 
digital images from a series of focal planes 
through a hybridized cell; and (iv) process- 
ing these images with a constrained decon- 
volution algorithm such that out-of-focus 
light is quantitatively restored to its original 
points of origin. 

To identifir single p-actin mRNA mole- 
cules, we hvbridized multiole orobes to the 

L 

isoform-specific 3'-untranslated region 
(UTR) of the mRNA in norrnal rat kidney 
(NRK) cells. The acquired fluorescence im- 
age was made up of numerous bright points 
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