
Nanowires: Small Is Beautiful ing paking mechanisms, and new nmgrirnc 
~mmrties su& as sponmeous mzlgnetiza- - - 
tion (7). an& ther4f;c;re are currentl; an ex- 

Gerhard Fasol citini &Ad of research. 
The electronic aronatiis and the dv- 

as a template to p w  100-nm-wide 
metal wires (3). These metha% a l h  the 
fabricadon of extremdv -thin wks with 
unpdent ly  large aspedt ratio and are likely 
to find a range of applications. A &her re- 
lated area is that of short, wntriction-like me- 
tallic nan0wire.s (4, 5). The focus of this re- 
search is quantization and enhanced stability 
at panicular thickness. 

namics of filling C& ramtubes with 
metab are complex, In g e a d ,  there is a 
strong electronic interaction between host 

T h e  fabricatimofoptidfibe~sandof &in ~ u n d o p e d r ~ ~  carbon nanorube and f i l l i i  metal, In 
metallic wires is among thre most critical ",.,&psd IbGQ+ many cases, the carbon nanotubrs 

whthowa FOX mmpfe, end up being filled with metallic 
the ability U, Wea~ thin md- carbides. Ineofporation is often 
lie in-- wlth h d k .  found to be similar to that in gra- 
p ~ o p m & s i s a ~ t b  phitic intercalation compounds 
limiting &e progw ofdtra-lwge- (a), especially in the case of alkali 
mle integcatkd circuits. And mag- m e d  intercalation. 
netic ltawmucm are lkek ca To reduce the comp~icatiow 
repbe today's mmd mag of interactions between host 
netic media in the future. Over the rurnokbes and filling metal, it has 
ht ~ e v d  p~, s ~ e r a l  im-t been proposed recent$ to fill bo- 
new methods to fabricate m&c ron nitride rxamtube9 (9, 10) 
and magnetic rimmire have 'been with metal atoms. Calculations 
invented. In one case, &n and (11) show that boron nittrde 
other kinds of m h  have nwtubes should behave like 
been filled with metal (1 ), whems i d d  noninteracting b t s  for 
in d e r  approach, the clewed metal atoms inside, unlike carban 
edge of a mol& beam exp- m t u b e s ,  which show strong 
(MBE)-gtmn 4-nm q~an&tm c h g e  trander and h+idization 
wasnsedasatempktodepsita effects. The reasom are that bo- 
metal nanowire by ebm ron nitride is s d l e  insuiator 
(2). In this latter medi6d, the with a bandgap E, around 5.5 eV, 
atomic precision of MBE groavth of a d  is much less po1arizable than 
semiwnducto~~ can be exploited fabricated by e l e ~ o d 0 P ~ ~ n  O n Q  c b d  edge ~f a metals a d  semimemlw Baron ni- 
for mvel m&lic & eonduetor wafer onto which extrerneiy thin layem have bem grown by =ide n8notub alw show inter- 

MBE. W i  this method it is pmible to cmvert the atomic precision of 
r)lmoshuCm' A complely dfP- Arl&E growth of semiconductor Iqyers to the fabrication of metallic strud Variations' Re- 
ferent d~ was taken =& tn mmwires. [Adapted from (41 cently, it has also been demon- 
which DNA molecules were used strated chat instead of being filled 
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Carban nmotuk  (6)' with lengths OLL 

the d r  of micrometers are produced by 
the! discharge between two graphite el=- 
d e s ,  The widths: of carbon nan~tuhs  
rangefrommorethan1~Aiixthecase~ 
mulddl  tubes to less than 10 in single 
wall tubes. Carbon ~anohlbes ean be filled 
with metab ( I )  and ided one-dimensi~nd 
metals (that is, strings of single atoms) can 
thus be fabricated. These might show new 
metallic phases, new electron-pho~t~n in- 
teraction mechanisms, new s u m d u c t -  

with metals, carbon n&tuba 
can be chemically converted into nan~rods 
of other materials Han et d. ( 12) poduced 
14.9-nmdiameter GaN d by react- 
ing gaseous metal oxide (Ma) with carbon 
nmtubes in an ammonia atmosphere. This 
intermtirtg reaction is eqmsed as: 

Nanowires produced by filling nano- 
tubes, however, are usdly obtained in un- 



controlled aggregates. It is difficult, and 
very laborious to place such nanowires 
in precisely controlled locations, such as 
would be needed in micro-supercon- 
ducting quantum interference devices 
(SQUIDS) for magnetic measurements. My 
group recently tackled this problem with a 
selective electroplating method (2), which 
is accessible to more conventional semi- 
conductor fabrication techniques, as shown 
schematically in the figure on the previous 
page.' A series of InGaAs and InAlAs layers 
is grown by MBE onto an undoped InP sub- 
strate. The particular conduction band and 
valence band lineup in this mcdulation- 
doped structure causes electrons to drop 
from the heavily doped 13-nm-thick 
InAlAs laver into a 4-nm InAs laver. which , , 

therefore becomes conducting. At the 
cleaved edge of the wafer. the 4-nm-thick " 
Ids-conducting quantum well acts as a 
4-nm thin line-source of electrons. Be- 
cause deposition of metal ions from the 
electrolvte reauires the neutralization of 

C~eaved edge of sample factor of around 100 beyond the super- 
paramagnetic limit. A particularly at- 

= tractive option is to store each bit in 
an individual single-domain magnetic - - 
nanostructure, as opposed to a conglom- 
erate of about 1000 as is done today. 

Seminal investigations ( 17) of needle- 
shaped magnetic nanostructures with 
widths in the 100- to 300-nm range show 
that the switching fields strongly depend 
on the width of bar-shaped magnetic 
nanostructures, are almost independent 
of the length, and depend strongly on the 
shave of the ends of the nanobars (17). . , 

The nanobars for these studies were pro- 
duced by electron beam lithography, 
which is clearly unsuitable for fabricating 
low-cost magnetic memories. Similar 
studies of magnetization properties may 
soon be done on nanos~ructures with 
widths in the nanometer range [that is, 
about 11100 the width of the e-beam-vro- 
duced structures of (17)] fabricated with 
the new low-cost fabrication methods for 

I metal ions by electrons, selective deposi- even thinner magnetic nanostructures, 
The nano edge. Atomic force microscope image of a ,,h as the methods discussed above. can take at the 4-nm ex- nanowire fabricated with the selective electrodeposition 

posed thin line-shaped edge of the modu- method shown schematically on the previous page, The In view of these results, the fabri- 
lation-doped I d s  layer, where electrons permalloy metal wire is about 20 nm in width, but the cation of metallic and magnetic nano- 
are available. I d s  is chosen because the same method should work also down to widths of 4 nm. wires and other nanostructures presents 
Fermi level of InAs is pinned in the con- (MBE growth courtesy of M. Holland and C. Stanley, interesting challenges and may turn out 
duction band, so that the insulating sur- Glasgow University). [Adapted from (211 to be crucial for the future development 
face depletion layer common in GaAs of high density magnetic storage and for 
and other 111-V materials is avoided, and though to my knowledge there are no known other applications such as interconnecting 
electrons can freely flow from the I d s  layer practical applications of these very interest- quantum devices. 
into the electrolyte. The MBE-grown 4-nm ing fundamental effects yet. 
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