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tive changes in catecholamine- and pep-
tide-secreting chromaffin cells of the adre­
nal medulla. Rapid stress-induced increases 
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sizing enzyme phenylethanolamine-N-
methyltransferase (PNMT) result from di­
rect interaction of receptor-hound glu­
cocorticoid stress hormones with glucocor­
ticoid response elements in the promoter 
(1). Glucocorticoids also regulate transcrip­
tion of voltage-gated K channel genes in 
cardiac and pituitary cells (2). In chromaf­
fin cells, large-conductance "BK" calcium-
and voltage-gated K channels are particu­
larly prominent, participating in action po-

Control of Alternative Splicing of Potassium 
Channels by Stress Hormones 

Jiuyong Xie and David P. McCobb* 

Many molecular mechanisms for neural adaptation to stress remain unknown. Expres­
sion of alternative splice variants of Slo, a gene encoding calcium- and voltage-activated 
potassium channels, was measured in rat adrenal chromaffin tissue from normal and 
hypophysectomized animals. Hypophysectomy triggered an abrupt decrease in the 
proportion of Slo transcripts containing a "STREX" exon. The decrease was prevented 
by adrenocorticotropic hormone injections. In Xenopus oocytes, STREX variants pro­
duced channels with functional properties associated with enhanced repetitive firing. 
Thus, the hormonal stress axis is likely to control the excitable properties of epinephrine-
secreting cells by regulating alternative splicing of Slo messenger RNA. 
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tential repolarization and driving the brief (3,4). Slo is the only known gene encoding 
afterhyperpolarization. Pronounced differ- BK channels, and alternative splicing may 
ences in the repetitive firing properties of underlie much of the existing BK functional 
chromaffin cells have been attributed to diversity (5, 6 ) .  
variations in kinetics and voltage depen- Hypophysectomy (pituitary removal) in 
dence of BK channel gating in these cells rats represents a robust and reproducible ex- 
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medullary RNA. Slo3 and 
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Slo4 revealed inserts at 
site I I  only. (B) Three variants at site II. ZERO had no insert between the flanking exons. Nucleotide 
sequence of STREX-1 dictates the substitution of P for L, followed by the insertion of 58 residues. The 
sequence of STREX-2 dictates the insertion, after L, of 61 residues, the downstream 58 of which are 
shared with STREX-1 at nucleotide and amino acid levels (C). Boxed segments demarcate midcodon 
splice boundaries providing the most parsimonious explanation for the observed sequences. In STREX-2, 
a 9-bp exon is presumably inserted before the 174-bp exon in STREX-1 . Insertion of this 9-bp exon alone 
can account for a variant identified in other tissues (6) having residues IYF following L. Single-letter 
abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; I ,  
Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; R, Arg; S, Ser; T, Thr; V, Val; and Y, Tyr. 

A N H H+A H + C  Fig. 2. Stress horrnone- 
reated changes In ex- ""' I presston of S ~ O  spl~ce 

ZERO varlants (A) Agarose gel 
electrophores~s of RT- 
PCR products obtained 
with primers Slo3 and Bo,8h 8 w "'$, , , Slo4 nal medullas on RNA of from three adre- rats 

N for each group. The low- 
;; 0. 6 0.4 er band represents the 

14 W 
a a 450-bp product from 
k k, ZERO, and the upper 

0 .o band is a composite of 
unresolved STREX-1 
and -2 products (624 
and 633 bp). STREX 
band intensity is much 
reduced at 15 days after 
hypophysectomy (H), 
compared with age- and 
sex-matched normal 
rats (N). ACTH infections 

D 40 beginning at hypophysectomy (H + A) maintiin STREX variants ;#,* at near normal levels, although implanted corticosterone pellets 
(H + C) do not. (B) Mean values (? SEM) of ratios of upper to 
lower gel band intensities (STREX to ZERO products), measured 

8 from digitized images of ethidium bromide-stained gels. Sample 
o sizes are above bars. H was significantly below N (P < 0.00002) 
3 
a and H + A (P < 0.00001). (C) Serum corticosterone (CORT) 
K g  concentrations at death, measured by RIA. P < 0.0005 for H 

+ A + compared with N; P < 0.02 for H + A compared with N. (D) 
Adrenal corticosterone concentrations. ACTH injections but not 

corticosterone implants were effective in raising corticosterone concentrations locally (P < 0.0006 for H 
+ A compared with H alone). (E) Time course of the decline in STREGZERO abundance (top) after 
hypophysectomy parallels that for PNMTIactin abundance (bottom). PNMT and STREX were normal- 
ized by means for unoperated rats in parallel reactions. 

perimental nullification of hormonal stress 
axis function and has confirmed results with 
other approaches demonstrating extensive 
stress-related plasticity in chromaffin cell 
phenotype (7). We used a quantitative re- 
verse transcription polymerase chain reac- 
tion (RT-PCR) strategy (8) to measure in 
parallel the effects of hypophysectomy (9) 
on adrenal medullary levels of PNMT and 
total rat Slo (rSlo) mRNA (without regard 
to splicing variation). PNMT mRNA was 
reduced to 8.5 2 1.1% (2SEM; N = 4) of 
normal levels by hypophysectomy, whereas 
total Slo mRNA was not detectably altered 
over 10 weeks after hypophysectomy. 

Five alternative splice sites have been 
identified in the COOH-terminal half of 
mammalian Slo genes (5, 10, 1 1 ). Using 
RT-PCR on adrenal medulla, we found no 
inserts at sites I, 111, or IV (Fig. 1A). How- 
ever, primers bracketing sites I to I11 yielded 
two distinct bands. Subcloning and se- 
quencing indicated that the lower molecu- 
lar weight band contained only products 
with no insert at site I1 (configuration re- 
ferred to as ZERO). Two related variants of 
similar size composed the upper band, re- 
ferred to as STREX-1 and -2 (stress axis- 
regulated exons). The STREX variants 
share a 174-base pair (bp) exon (10, 11 ), 
with STREX-2 having an additional 9-bp 
exon (Fig. 1B). 

The relative intensities of STREX and 
ZERO PCR product bands were very con- 
sistent between reactions from the same 
sample, providing an internal calibration 
system for measuring relative abundance 
across treatment groups (12). The ratio of 
STREX to ZERO forms was markedly re- 
duced by hypophysectomy (Fig. 2). In six 
unoperated animals, the ratio varied from 
0.59 to 0.83 (mean 2 SEM = 0.74 2 0.02) 
(Fig. 2B). In 14 rats hypophysectomized 15 
days earlier, the ratio varied from 0.13 to 
0.39 (mean = 0.25 + 0.005). Thus, ranges 
did not overlap, and means differed very 
significantly (P < 0.00002). In a separate 
series of reactions, we measured a decrease 
in the abundance of STREX relative to 
total RNA using STREX-specific primers 
and a STREX-derived calibration template 
(P < 0.0002). No other variants between 
the obligatory primer sites were detected in 
adrenal medulla by us or others (10). Be- 
cause total Slo transcript was not changed 
by hypophysectomy, the change described 
likely reflects a decrease in the absolute 
abundance of STREX with an accompany- 
ing increase in ZERO. 

The STREX to ZERO ratio declined 
rapidly after hypophysectomy (Fig. 2E). By 
11 days, it was 42.5% of normal (P = 
0.002), and by 32 days, it was 11.5% of 
normal, indistinguishable from the value at 
70 days. Thus, the time course of STREX 
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decline was very similar to that for PNMT 
mRNA. 

Pituitary influence on chromaffin cells 1s 
generally ind~rect,  with adrenocorticotropic 
hormone ( A C T H )  acting on cortical cells 
to  st~mulate the synthesis of glucocorti- 
coids, which then act on chromaffin cells. 
Subcutaneous injections of A C T H  (4  
U/100 g) (13) were given daily or on alter- 
nate days beginning at surgery to determine 
~vhether the effects of hypophysectomy 
could be prevented by ACTH replacement. 
Fifteen days after surgery, ratios of STREX 
to ZERO products were indistinguishable 
frorn norlnal animals and sign~ficantly h ~ g h -  
er than those of vehicle-injected or unin- 
jected hypophysectomized animals (Fig. 
2B). 

Attempts to bypass ACTH by d~rectly 
manipulating corticosteroid concentrations 
in the blood Lvere ineffective in controlling 
STREX varlant expression. Neither dexa- 
lnethasone ~njections 81 days after surgery 
(10 mg kgpt  dayp' for 4 days) nor implan- 
tation of corticosterone pellets (the major 
rat ailrenal glucocorticoid under A C T H  
control) at surgery raised or maintained 
STREX levels significantly above hypophy- 
sectomized levels. One explanation is that 
injections and implants, although restoring 
serum corticosterone concentrations, can- 
not match the much higher local concen- u 

trations to which chromaffin cells are ex- 
posed in cortico-medullary venous sinuses 
~vi thin the gland (14). T o  address this ques- 
tion, we used radioimmunoassay (RIA) (15) 
to measure serum corticosterone concentra- 
tions and total gland corticosterone con- 
tent. Normal and hypophysectomized rat 

sera contained 312 2 22  and 20 2 6 nglml, 
respectively (Fig. 2D). Corticosterone alas 
roughly 100-fold Inore concentrated in ad- 
renal tissue than in serum (Fig. 2D). Corti- 
costerone implants (100 mg of pellet im- 
planted subcutaneously at surgery) raised 
serum concentrations to 121 + 14% of 
normal hut raised adrenal content to only 
10 + 2% of normal. By contrast, A C T H  
injections raised seruin concentrations to 
529 + 113% and adrenal content to 61 2 
7% of normal. They also prevented the 
cortical atrophy normally caused by hy- 
pophysectoiny. Thus, A C T H  injections 
maintained high local concentrations (with 
supernorinal secretory rates) apparently re- 
uuired to lnaintain near normal STREX 
levels after hypophysectomy. 

We estimated the relative abundance of 
STREX and ZERO transcripts In native 
tissue bv correcting for differences in PCR 
alnplifidatioil efficiencies, assuming similar 
R T  effic~enc~es. T o  measure amplification 
efficiencies, we constructed a plasmid con- 
taining both ZERO and STREX-2 isoforms, 
ensuring a one to one template ratio. Am- 
plification yielded band intensity ratios 
(STREX to ZERO) of 0.64 t 0.2 (STREX 
efficiency = 97% of ZERO efficiency per 
cycle). The  ratio was negligibly affected by 
template amount, even when 100-fold 
greater than in tissue samples, indicating 
amplification a~ i th in  the linear range. Ex- 
trapolating from relative efficiencies, the 
STREX to ZERO template ratio In norrnal 
rats was 1.16. For hypophysectornized and 
ACTH-injected hypophysectoinized rats, 
this ratio was 0.47 and 1.17, respectively, at 
15 days. With the assumption that no other 
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values were normalized by the maximal conductance (G,,,) in each 
patch and fit with Boltzmann functions. (C) Average G-V curves for 
25 STREX and 8 ZERO patches (STREX-1 and -2 not different; 
[CaZT], = 10 kM). Curves were generated from independently av- 
eraged Vo , and steepness parameters from individual fits. Horizon- 
tal SEM bars for Vo, are barely detectable. Steepness varied little 
within or between groups. (D) STREX channels deactivate more 
slowly, as seen in tail currents for ZERO and STREX-2 patches 
[Ca2-1, = 100 pM. I ,  current. (E) Mean time (7) constants (i SEM) 
from exponential fits to tails with [Ca2'], = 10 pM. 
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variants at site I1 occur in significant pro- 
portions in chrolnaffin cells, STREX van- 
ants made L I ~  about 53,32,  and 54% of total 
Slo transcripts in the respective groups. By 
70 days, STREX transcripts declined to 
15% of the total. 

T o  determine whether STREX exons af- 
fect the f~~nc t iona l  properties of Slo chan- 
nels, we constructed Slo expression plas- 
~nids differ~ng only at site 11, having the 
form of STREX-1, STREX-2, or ZERO (no  
inserts at sites 1, 111, and IV) (16). Currents 
in inside-out patches pulled from STREX 
cRNA-injected Xenopus oocytes (17) actl- 
vated at voltages -20 mV negative to those 
In ZERO-injected oocytes (Fig. 3 )  (10, 18). 
A t  10 FM intracellular Ca2- concentration 
([Ca2-I,), the half-activation voltage (Vo j, 
from Boltzmann fits) alas -2.33 -+ 0.30 mV 
for 25 STREX patches and 20.5 2 1.44 mV 
for 8 ZERO patches. The  steepness of volt- 
age dependence did not differ (17.1 -+ 0.5 
mV/e-fold change for STREX, 16.2 + 1.2 
for ZERO). In add~tion, STREX speeds ac- 
tivation and slows deactivation at a given 
test potential. Slower BK deactivation has 
been linked to enhanced repetitive firing in 
chromaffin cells. Time constants of tail cur- 
rent kinetics ( + 9 0  to -80 mV) averaged 
2.31 i 0.06 and 0.85 + 0.06 ins for 18 
STREX and 7 ZERO patches, respectively. 

Studies of firing properties and BK chan- 
nels in native rat chrolnaffin cells (3, 4)  
suggest that STREX exons enhance repeti- 
tive firing. Chrotnaffin cells subdiv~de into 
two types, those spiking continuously with a 
sustained current injection and those spik- 
ing only once or twice. BK channels in the 
former exhibit substantially slower deacti- 
vation kinetics. This slower kinetics en- 
hances repetitive firing by auginenting the 
afterhyperpolarization, facilitating recovery 
from inactivation of sodium and calcium 
channels. Both more negative and faster 
activation will further augment the afterhy- 
perpolarization by increasing BK openings 
during the brief action potential. It has 
been proposed that chromaffin cells secret- 
ing epinephrine rather than norepinephrine 
fire repetitively (3 ) .  Because the pattern of 
gl~~cocorticoid receptor expression maps 
onto that for PNMT expression (191, we 
hypothesize that STREX is differentially ex- 
pressed in epinephrine- and norepineph- 
rine-secreting cells. 

Our observation that stress hormones 
affect Slo 1nRNA coinposition suggests that 
hypophysectoiny and more natural stress 
system perturbations will alter chrolnaffin 
BK channel protein cornposition and cellu- 
lar excitability. For PNMT, protein levels 
and enzyme activity are not always com- 
mensurate with mRNA fluctuations, as 
translational and later stages are subject to 
additional regulatory controls (20). Howev- 
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er, even slnall changes in STREX expres- 
slon p r o d ~ c i n ~  subtle changes in chromaf- 
fin cell excital~ilitv could have ~ronounced  
effects on  the secretioil of catecholaini~~es 
and other products ( incl~~ding corticoste- 
roids through reciprocal i~lteractiolls with 
the adrenal cortex) (ZI),  with potentially 
f ai-leaching . .  consecluences in humans. 

Aillone the f~~nc t ions  1ikel.i~ to be affected 
to some estent are carcf~ovascular, digestive, 
metabolic, immune, and ~neiltal f~~nc t ions  
(22). Changes in chromaffin BK challilels 
in response to hormonally coinm~~nicated 
stress represent anot l~er  ilimensiol1 of stress- 
related plasticity in adrenal tissue. 

Tissue-specific and ite\;elc>prnental regu- 
lation of alternative splicing is well estab- 
lished for man\- genes, with factors and 
mechanisms being ~vorked out. Reports of 
ifynalnic regi~latiol~ of splicing patterns in 
adult tissues are rare (23). Esons in complex 
~liodi~lar nroteins si~cll as ion channels often 
comprise discrete f~~nc t iona l  units, and dy- 
nainlc hormonal col~trol of exon selection 
provides a i ~ n i i j ~ ~ e  di~neilsion for reg~~lating 
the often critical f~~nc t iona l  nuances of the 
\\-hole protein. 
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Maternal Control of Embryogenesis by MEDEA, 
a Polycomb Group Gene in Arabidopsis 

Ueli Grossniklaus,* Jean-Philippe Vielle-Calzada, 
Marilu A. Hoeppner, Wendy B. Gaglianot 

The gametophytic maternal effect mutant medea (mea) shows aberrant growth regulation 
during embryogenesis in Arabidopsis thaliana. Embryos derived from mea eggs grow 
excessively and die during seed desiccation. Embryo lethality is independent of the 
paternal contribution and gene dosage. The mea phenotype is consistent with the 
parental conflict theory for the evolution of parent-of-origin-specific effects. MEA en- 
codes a SET domain protein similar to Enhancer of  zeste, a member of the Polycomb 
group. In animals, Polycomb group proteins ensure the stable inheritance of expression 
patterns through cell division and regulate the control of cell proliferation. 

T h e  ulant l i te  cvcle alternates het~veen 
diploid and haploid generations, sporophyte 
and gametophyte, as the haploid spores un- 
dergo sc~reral cell divisions hefore the ga- 
metes finally ilitferentiate and fuse to pro- 
duce the diploid zygote. We identified an 
AT-abiilobsis thalim~n mutant, ~neden (men) ,  in 
which self-ferti1i:ation of the hetero:ygote 
proi+uces 5L?% aborted seeds that col la~~se.  
a c c i ~ m ~ ~ l a t e  anthocyanin, and do not germi- 
nate. This ratio of detective to nori~lal seeds 
is conslstei-it with a gametophyt~c control of 

the defect, hecause half the haploid gameto- 
phytes receive the mi~tant  allele. Heterozy- 
gous emhryos ahort if the mutant allele is 
derived fri~in the female (Fig. iA) ,  hut de- 
velop l~orinally if it is derived from the male 
(Fig. 1B and Table 1) .  Embryos derived 
from mutant eggs ahort irrespective of the 
paternal contribi~tion ( I ) .  Thus, the mea 
llliltai1t displays ~nateri~al-effect e i ~ l b r ~ o  le- 
thality (2). I11 flowering plants, einhryo de- 
velopment 1s affected hy both the female 
g;tmetophytc ( 3 )  anid the sporophytic tissue 
of the parent plant (4) .  T h e  survi\~al of the 
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