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Impacts of Rising Atmospheric Carbon Dioxide 
on Model Terrestrial Ecosystems 

T. H. Jones,* L J. Thompson, J. H. Lawton, T. M. Bezemer, 
R. D. Bardgett, T. M. Blackburn, K. D. Bruce, P. F. Cannon, 

G. S. Hall, S. E. Hartley, G. Howson, C. G. Jones, 
C. Kampichler,f E. Kandeler, D. A. Ritchie 

In model terrestrial ecosystems maintained for three plant generations at elevated con
centrations of atmospheric carbon dioxide, increases in photosynthetically fixed carbon 
were allocated below ground, raising concentrations of dissolved organic carbon in soil. 
These effects were then transmitted up the decomposer food chain. Soil microbial 
biomass was unaffected, but the composition of soil fungal species changed, with 
increases in rates of cellulose decomposition. There were also changes in the abundance 
and species composition of Collembola, fungal-feeding arthropods. These results have 
implications for long-term feedback processes in soil ecosystems that are subject to 
rising global atmospheric carbon dioxide concentrations. 

Above-ground plant and ecosystem re
sponses to elevated atmospheric carbon di
oxide (C0 2) are varied {1-7). However, all 
these potential responses may be con
strained by below-ground processes and me
diated by responses of soil biota to both 
direct and indirect effects of C 0 2 enrich
ment (8-12). Roots, mycorrhizal fungi, and 
other rhizosphere organisms may be sub
stantially affected by changes in C 0 2 con
centration, yet comparatively little atten
tion has been paid to the effects of increas
ing atmospheric CO z on these below-
ground organisms and their functioning 
(13). In addition, reliable predictions about 
the ecological effects of elevated C 0 2 at the 
community, ecosystem, and biosphere lev-
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els are difficult to make; most available 
information is based on experiments con
ducted at lower levels of organization, such 
as leaves or individual plants (J, 3, 14). 
Only relatively recently have longer term 
experiments on populations and communi
ties been initiated. Current experimental 
evidence questions the justification for pre
dicting community and ecosystem responses 
from results obtained with isolated plants 
growing under controlled (mostly optimal) 
conditions (1, 3, 14, 15). One possible 
solution is to use model laboratory systems 
of intermediate complexity. Here, we used 
the Ecotron controlled environment facility 
at Silwood Park (16) to provide evidence, 
from direct experimental studies, of changes 
in soil biota as a consequence of elevated 
atmospheric C 0 2 concentrations. 

The experiment used 16 terrestrial mi
crocosms, each 1 m2, maintained in the 
Ecotron (16, 17). Conditions were the same 
for all chambers (18), except that eight 
were maintained at ambient external atmo
spheric C 0 2 concentrations, which fluctu
ated naturally between 350 and 400 fjimol 
moH, and eight were dynamically main
tained at 200 fjimol mol-1 above ambient 
(J9). The community, established in soil 
that was relatively poor in nutrients (18), 
consisted of primary producers, herbivores, 
secondary consumers (parasitoids), and soil 
micro- and macroorganisms (Table 1). All 
chambers were initiated with the same 
community, and several ecosystem process
es were measured over three plant genera
tions. The results discussed below, from as 
many as four independent experimental 
runs (20, 21), primarily concern the soil; 
not all parameters were measured in every 
run. 

The communities growing in elevated 
C 0 2 fixed more carbon for most of the 

experimental period (22). Changes in the 
above-ground community were relatively 
small (23) and broadly in line with other 
whole-ecosystem studies (1-4, 6, 7, 24). 
More marked effects, previously unreported, 
were observed in soil biota. Total numbers 
(all species pooled) of Collembola per kilo
gram of Ecotron soil were significantly 
higher at the end of run 1 in elevated C 0 2 

[density (± SE) = 252 ± 35 (elevated), 
166 ± 54 (ambient); P < 0.05]. Species 
composition also changed (Fig. 1). Proiso-
toma minuta dominated communities in am
bient C 0 2 , whereas Folsomia Candida domi
nated in elevated C 0 2 . Pseudosinella alba 
was also present in significantly higher pro
portions in elevated C 0 2 in run 1 but not in 
other runs. It is well known that key envi
ronmental variables influence soil microar-
thropods (25). Of these, temperature, water 
content, and pH of soil showed no signifi
cant differences between treatments in any 
run. Nor can change in the collembolan 
community be attributed to changes in root 
biomass (26) or in root "quality" (as as
sessed by C:N ratios) (27). 

Soil microbial biomass (26) was unaf
fected by elevated C 0 2 ; similar results have 
been obtained in most (18, 28, 29) but not 
all (9) other studies. Enzymes involved in 
carbon and nitrogen cycling in the soil also 
showed no major significant treatment ef
fects (30). All ecosystems were initiated 
with standard samples drawn from a filtered 
soil-wash microbial pool (31) (Table 1). 
Bacterial assemblages in the topmost 10 cm 

Table 1. Composition of the Ecotron community 
(cf., species very similar, but not exactly like type-
specimen). 

Plant species Cardamine hirsuta 
Poa annua 
Senecio vulgaris 
Spergula arvensis 

Herbivore and Mollusk (Helix aspersa) 
parasitoid Aphids {Brevicoryne brassicae, 
species Myzus persicae) 

Whitefly (Trialeurodes 
vaporariorum) 

Leaf miner [Phytomyza 
(Chromatomyia) syngenesiae] 

Parasitoids (Aphidius 
matricariae, Dacnusa sibirica, 
Encarsia formosa) 

Soil biota Earthworm (Lumbricus 
terrestris) 

Wood louse (Porcellio scaber) 
Collembola (Folsomia Candida, 

Proisotoma minuta, 
Protaphorura cf. armata, 
Pseudosinella alba, 
Sphaeridia cf. pumilis) 

Plus soil bacteria, fungi, 
protists, and nematodes 
seeded into each chamber 
by means of a filtered soil 
leachate(37) 
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were assayed with DNA profiles (32); at the 
end of run 1, we found only minor differ- 
ences in bacterial taxonomic composition 
between chambers, and no consistent dif- 
ference between treatments. 

Fungi, in contrast, showed differences 
between ambient and elevated atmospheric 
CO, treatments. One functional group, cel- 
lulose decomposers, had higher biomass in 
elevated CO, (33), probably accounting for 
the increased decomposition rates of cotton 
strips placed in the soil (P < 0.05) (34). 
Moreover, fungal taxonomic composition 
differed between treatments: 14 of the 33 
species isolated were common to both treat- 
ments, whereas 9 species were restricted to 
ambient CO, and 10 to elevated CO,, a 
pattern extremely unlikely to occur by 
chance (35). 

These results imply that enhanced atmo- 
spheric CO, concentrations will have major 
impacts on soil food chains. A substantial 
proportion of photosynthetically fixed car- 
bon is allocated below ground (8, 9, 36); 
after release, much of this carbon becomes 
available to rhizosphere microorganisms 
(1 0, 37). At the end of run 1, soil concen- 
trations of dissolved organic carbon (DOC) 
were significantly higher in elevated CO, 
(Fig. 2) [analysis of variance (ANOVA), 
P < 0.051, and soil-water dissolved organic 
nitrogen (DON) concentrations were high- 
er, almost reaching statistical significance 
(P = 0.06). These changes are probably 
sufficient to drive observed differences in 
soil fungi. Collembola are major consumers 
of, and selective grazers on, different species 

of fungi (38). We suggest that differences in 
the collembolan community were driven by 
differences in the soil fungal assemblage, 
which in turn were driven by differences in 
organic substrates derived from higher 
plants. 

Thus, we hypothesize that at elevated 
atmos~heric CO, concentrations over three 
plant generations, a relatively long pathway 
of alterations occurs: increased ~ l a n t  ~ h o -  
tosynthesis + below-ground transport of 
carbon + increased DOC + changes in 
soil fungal assemblages + changes in Col- 
lembola species abundance and composi- 
tion. Possible long-term feedbacks remain 
unknown: Collembola are selective fungal 
grazers, and hence it is possible that they 
not only respond to but also drive changes 
in soil fungal species composition, with un- 

Run 1 Run 3 and 4 

Carbon dioxlde treatment 

Fig. 2. Concentrations of DOC in the topmost 15 
cm of soil at the end of the experiment in runs 1,3, 
and 4 (run 1, both treatments; run 3, ambient CO,; 
run 4, elevated CO,). Means (2  SE) are given. 
Open bars represent ambient CO,; shaded bars 
represent elevated CO,. 
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Fig. 1. Composition of Collembola community at the end (after 9 months) of Ecotron experiments. Data 
(mean ? SE) from three runs are presented: ambient (open bars) and elevated (solid bars) CO, from run 
1 ..ambient CO, (dotted bars) from run 3, and elevated CO, (hatched bars) from run 4. No data are 
presented from run 2 because it only lasted 4.5 months. For each treatment there are significant 
differences (ANOVA; F test, P << 0.05) in the proportion (arc sine transformed) of each of the five 
species. 

known consequences for the long-term de- 
composition of soil organic matter (8, 36). 

Despite these differences, other soil 
biota and processes (root biomass and C:N 
ratio, bacterial taxa, enzymatic activity) re- 
mained unchanged. Microbial biomass may 
have remained unchanged despite increases 
in soil DOC because microbial populations 
were regulated by grazing from components 
of the ecosystem that we did not monitor, 
for example, protozoa or nematodes. These 
apparent differences in, and lack of cou- 
pling between, bacterial and fungal compo- 
nents of the soil food web may reflect com- 
partmentalization of soil ecosystem process- 
es (39). 

We urge caution in overgeneralizing 
these results. The Ecotron houses model 
ecosystems (16, 17). Published studies (1 1, 
28, 40) provide conflicting data on soil 
microbial responses to elevated CO,, with 
the possibility that responses are specific to 
particular plant species, communities, or 
ecosystems. Considerably more attention 
must be paid to the long-term impacts of 
increasing atmospheric CO, concentrations 
on soil ecosystem processes and soil biota. 
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Con tml of Alternative Splicing of Potassium 
Channels by Stress Hormones 

Jiuyong Xie and David P. McCobb* 

Many molecular mechanisms for neural adaptation to stress remain unknown. Expres- 
sion of alternative splice variants of Slo, a gene encoding calcium- and voltage-activated 
potassium channels, was measured in rat adrenal chromaffin tissue from normal and 
hypophysectomized animals. Hypophysectomy triggered an abrupt decrease in the 
proportion of Slo transcripts containing a "STREX" exon. The decrease was prevented 
by adrenocorticotropic hormone injections. In Xenopus oocytes, STREX variants pro- 
duced channels with functional properties associated with enhanced repetitive firing. 
Thus, the hormonal stress axis is likely to control the excitable properties of epinephrine- 
secreting cells by regulating alternative splicing of Slo messenger RNA. 

Stressors incluiling cold csposure, hypogly- 
cemia, and physical collstraillt trigger ailap- 
tive cha~lges in catechi~lamine- and pep- 
tide-secreting chroinaftin cells ot the aiire- 
rial medulla. Rapid stress-induced increases 
it1 transcription of the epinephrine-s\:ntl~e- 
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sizitlg enzyme Chenylethanolatuine-N- 
~~~ethyltratlsferase (FNMT) r e s ~ ~ l t  from 'ti- 
rect interactioll ot receptor-bounil glu- 
cocorticoiii stress hormones with glucocor- 
ticoicl response eleille~lts in the promoter 
( 1  ). GlucocorticoiJs also regulate transcrip- 
tion of voltage-gated K channel genes in 
cardiac 2nd pituitary cells (2). In chromaf- 
fin cells, large-conCluctal~ce "BK" calcium- 
and voltage-gated K channels are particu- 
larly p ~ ~ l n i n e n t ,  participating in action po- 
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