photocarriers are generated in the top and
bottom cells. However, when the photocur-
rent-matched configuration is placed in an
aqueous environment, the system either
produces no current in the external circuit
or decomposes (27). A thicker, top p-type
layer and the resultant mismatch of elec-
tron-hole formation in the two-junction
region appear to be the key for proper
operation.
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Gastrointestinal Tract as a Major Site of
CD4* T Cell Depletion and Viral Replication
in SIV Infection

Ronald S. Veazey, MaryAnn DeMaria, Laura V. Chalifoux,
Daniel E. Shvetz, Douglas R. Pauley, Heather L. Knight,
Michael Rosenzweig, R. Paul Johnson, Ronald C. Desrosiers,
Andrew A. Lackner*

Human and simian immunodeficiency virus (HIV and SIV) replicate optimally in activated
memory CD4™ T cells, a cell type that is abundant in the intestine. SIV infection of rhesus
monkeys resulted in profound and selective depletion of CD4™ T cells in the intestine
within days of infection, before any such changes in peripheral lymphoid tissues. The loss
of CD4™ T cells in the intestine occurred coincident with productive infection of large
numbers of mononuclear cells at this site. The intestine appears to be a major target for
SIV replication and the major site of CD4* T cell loss in early SIV infection.

It is now thought that ongoing HIV rep-
lication results in a continual loss of
CD4* T lymphocytes that is nearly bal-
anced by the production of new CD4*" T
lymphocytes (I). This model explains
some of the puzzles of HIV infection, but
the events that occur in the initial stage
of infection remain largely unexplored.
Although it is clear that HIV targets lym-
phoid tissue, nearly all studies in this area
have focused on peripheral blood and
lymph nodes. These studies overlook the

fact that the gastrointestinal tract con-
tains most of the lymphoid tissue in the
body (2, 3). Furthermore, it is likely that
the behavior of HIV in the unique immu-
nologic environment of the intestinal
mucosa differs from that observed in the
periphery.

The gut-associated lymphoid tissue
(GALT) consists of organized lymphoid tis-
sue (Peyer’s patches and solitary lymphoid
follicles) as well as large numbers of acti-
vated memory T lymphocytes diffusely dis-
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tributed throughout both the intestinal
lamina propria and epithelium. The propor-
tion of activated memory CD4™ T cells is
much greater in the intestinal lamina pro-
pria than in peripheral blood or lymph
nodes (2, 4-6). Because HIV replicates
most efficiently in activated memory CD4*
T cells (7), the intestinal tract may be the
preferred target for initial infection and rep-
lication of HIV. The effects of primary HIV
infection on GALT are difficult to assess in
humans, largely because of the difficulties
involved in examining the intestinal tract
within days of infection. The SIV macaque
model provides a useful tool for examining
the pathogenesis of acquired immunodefi-
ciency syndrome and the early events in
infection (8).

Groups of macaques were inoculated
intravenously with the following molecu-
lar clones of SIV (9): pathogenic SIV-
mac239 (10); a macrophage-competent
derivative of SIVmac239, designated SIV-
mac239/316 (11); and an attenuated, nef-
deletion derivative of SIVmac239, desig-
nated SIVmac239Anef (12). Two animals
in each group were killed at 7, 14, 21, and
50 days after inoculation. Lymphocytes
were separately harvested from the intes-
tinal epithelium and lamina propria as
well as from the blood, spleen, and both
mesenteric and axillary lymph nodes of
each animal (13). Although intestinal in-
traepithelial lymphocytes (IELs) and lam-
ina propria lymphocytes (LPLs) were col-
lected and analyzed separately, only minor
changes were detected in the IEL popula-
tion (14); thus, only the LPL data are
presented here. Lymphocytes from all tis-
sues were examined for expression of CD3
(a pan-T cell marker), CD4 (T helper
cells), CD8 (cytotoxic/suppressor cells),
CD25 (interleukin-2 receptor, activated T
cells), and CD45RA (naive T cells) by
multiparameter flow cytometry (13). To
localize virus and examine the numbers
and phenotypes of infected cells, we per-
formed in situ hybridization for SIV and
immunohistochemistry on intestine and
peripheral lymphoid tissues (15).

Infection with pathogenic SIV (SIV-
mac239 or SIVmac239/316) consistently
resulted in rapid and profound depletion
of CD4" cells exclusively in the lamina
propria of the intestinal tract (jejunum,
ileum, and colon) (Fig. 1A). These de-
clines were evident by 7 days after infec-
tion, as compared to controls or animals
infected with SIVmac239Anef (P < 0.01)
(16). The nadir of intestinal CD4 deple-
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tion was reached by 14 to 21 days after
infection in SIVmac239-infected animals
but was delayed to 50 days in SIVmac239/
316-infected animals.

Immunohistochemistry on intestinal
segments confirmed the CD4™ T cell de-
pletion in the lamina propria and to a lesser
extent in the Peyer's patches and solitary
lymphoid nodules (14). Inmunohistochem-
istry and quantitative analysis of CD3 did
not reveal any significant change in the
total number of T cells in the intestine
(14). These results, in conjunction with the
observed increase in the percentage of
CD8* T cells (Fig. 1), indicate that the
CD4™" T cell depletion was accompanied by
an increase in absolute numbers of CD8" T
cells.

In marked contrast, there were minimal
changes in the percentages of CD4* lym-
phocytes in the blood, spleen, and lymph
nodes from these same animals at the same
time points. Slight decreases in CD4* cells
were observed in the axillary and mesenter-

ic lymph nodes of animals infected with
pathogenic clones of SIV, but these differ-
ences were not significant (Fig. 1). Percent-
ages of CD4™ T cells in the blood were
increased at days 7 and 14 after infection,
but the absolute numbers were not signifi-
cantly altered at these time points.

To rule out the possibility of CD4 down-
modulation or gpl20-mediated CD4 mask-
ing in the intestinal CD4 depletion, we
performed three-color analysis with anti-
bodies to CD3, CD4, and CD8. No signif-
icant increase in the proportion of
CD3*CD4CD8™ (double-negative) T cells
was observed, which would have been
expected if either CD4 masking or down-
modulation were involved (Fig. 2). This
strongly suggests that the CD4™ T cells
were eliminated from the intestinal tract
by lytic or apoptotic mechanisms or, alter-
natively, by altered trafficking of mucosal
lymphocytes.

To determine whether these results
were unique to molecular clones of SIV-
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mac239, we inoculated two additional an-
imals with uncloned SIVmac251. When
these animals were killed at 14 days after
infection, they also had marked CD4* T
cell depletion in the intestinal lamina pro-
pria (CD4™ T cell percentages decreased
to 8% or less in the jejunum and colon and
15% or less in the ileum) without signifi-
cant changes in peripheral lymphoid tis-
sues (14). The speed and extent of the
CD4* T cell depletion in these animals
was indistinguishable from what was ob-
served in animals infected with SIV-

mac239 (Fig. 1A). An additional three
animals inoculated with SIVmac251 were
killed 5 months after infection to deter-
mine whether the CD4" cells returned
after the acute phase of infection. CD4* T
cells were markedly decreased in the in-
testine of these animals as well (to less
than 10% of LPLs) (14). Thus, intestinal
CD4* T cell depletion is consistent for
different pathogenic strains of SIV and
appears to persist throughout the course of
infection. Selective depletion of CD4* T
cells from the intestine also appears to
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Fig. 2. Three-color flow cytometry dot plots comparing lymphocytes isolated from the intestinal lamina
propria (jejunum LPL) with those from the axillary lymph node (LN) from a normal uninfected macaque
and from macaques infected with SIVmac239 at 7 and 21 days after infection (pi). Each set of top and
bottom panels corresponds to the same animal. Plots were generated by first gating through lympho-
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occur in HIV-infected humans. Several
studies have suggested that CD4* T cell
depletion is more pronounced or occurs
sooner in the intestine than in peripheral
blood, even in the relatively early stages
(first several months) of HIV infection (5,
17, 18).

In contrast to pathogenic S1V, infection
with attenuated virus (SIVmac239Anef) did
not result in a significant loss of intestinal
CD4™ cells (Fig. 1) but was associated with
marked T cell activation, as determined by
up-regulation of CD25 (interleukin-2 re-
ceptor). Marked increases in CD25 coex-
pression were detected in both CD4* and
CD8* T cell subsets in SIVmac239Anef-
infected animals (Fig. 3).

The virulence of the molecular clones
used here correlated with the rapidity and
degree of intestinal CD4" T cell deple-
tion, and correlated inversely with CD25
expression on the remaining CD4" cells.
Infection with SIVmac239 resulted in rap-
id and profound CD4* depletion in the
intestine, and it decreased the relative
expression of CD25 on the remaining
CD4™" intestinal lymphocytes. Infection
with SIVmac239Anef was associated with
marked up-regulation of CD25 on intesti-
nal CD4™ T cells and to a lesser extent on
CD8* cells (Figs. 3 and 4). The effects of
infection with SIVmac239/316 on CD25
expression were intermediate between the
others, with the highest expression 21 days
after infection. Infection with SIV-
mac239/316 resulted in more CD25 ex-
pression on CD8* cells and on the re-
maining CD4* T cells than did infection
with SIVmac239 (Fig. 4). Expression of
CD25 was consistently higher in the jeju-
num of both normal and SIV-infected ma-
caques than in the ileum or colon. Fur-
thermore, expression of CD25 was consis-
tently higher on CD4* cells than on
CD8" lymphocytes (Fig. 4). Although
more organized lymphoid tissue is present
in the ileum, these data suggest that jeju-
nal lymphocytes (which are mostly LPLs)
are more activated than ileal lymphocytes,
which contain many organized lymphoid
nodules containing fewer activated cells.
This is consistent with the recent finding
that CD4 depletion in the intestine of
HIV-infected patients selectively occurs
in the lamina propria rather than in the
organized lymphoid tissue of the intestine
(18).

Our findings also confirm that the nor-
mal intestine contains larger numbers of
activated memory CD4" T cells than do
peripheral lymphoid tissues. The expres-
sion of CD25 is consistently higher, and
the expression of CD45RA (ndive cells) is
consistently lower, on intestinal lympho-
cytes than on lymphocytes obtained from
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the peripheral lymphoid tissues or mesen-
teric lymph nodes (2, 4-6). Although a
suitable memory cell marker has not been
found that cross-reacts with the rhesus
macaque, these data confirm that the in-
testinal mucosal lymphoid tissue of rhesus
macaques is similar in composition to that
of humans. Moreover, these data indicate
that the major target cells of HIV and SIV
are far more abundant in the intestinal
tract than in peripheral tissues.

Further insights into the early patho-
genesis of SIV were gained by examining
the distribution and phenotype of SIV-
infected cells in the intestine by in situ
hybridization, alone and combined with
immunohistochemistry, at sequential time
points after SIVmac239 infection. Coin-
ciding with the onset of CD4 depletion (7
days after infection), many SIV-infected
lymphocytes were present in the intestinal
tract of animals infected with pathogenic
clones of SIV (Fig. 5A). Also, there were
more virus-infected cells in the intestine
than in the peripheral lymphoid tissues, as
previously described (19). Initially, many
infected cells were present throughout the
intestinal lamina propria as well as in the
T-dependent areas of organized lymphoid
nodules (Peyer’s patches and solitary lym-
phoid follicles). At later time points (21
and 50 days after infection) when CD4* T
cell depletion was marked, the number of
virus-infected cells was greatly diminished
and the remaining infected cells were
mainly limited to the organized lymphoid
nodules. Conversely, the percentage of in-

Jejunum lleum

fected macrophages increased at later time
points. Although infected macrophages
were rare in animals at day 7 after infec-
tion, combined immunohistochemistry for
macrophages (HAM-56) and in situ hy-
bridization for SIV demonstrated an in-
crease in the percentage of infected mac-
rophages at later time points, which were
mainly located within organized lymphoid
nodules (Fig. 5B). This is consistent with
the results of previous experiments using
uncloned SIVmac251 (20).

Combined, the in situ hybridization
and flow cytometry data suggest the fol-
lowing course of events: Initially, large
numbers of activated memory CD4*" T
cells are constitutively present throughout
the intestinal lamina propria. These initial
target cells are rapidly infected and serve
as sources for viral amplification and dis-
semination. However, this large pool of
activated memory CD4*% T cells in the
intestine is rapidly depleted, leaving only
naive lymphocytes and macrophages to
serve as viral host cells. The decrease in
the pool of susceptible cells results in a
decline in viral load in the tissue. Howev-
er, new lymphocytes are continually re-
cruited to or produced in the organized
lymphoid tissues (GALT and lymph
nodes), and these may become activated
by antigenic stimulation to serve as fresh
host cells for viral replication, thus perpet-
uating the infection. This would explain
why the numbers of virus-infected lym-
phocytes are reduced in GALT at the later
time points of infection.
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These observations strongly suggest
that intestinal lymphoid tissue is a crucial
target organ in the initial pathogenesis of
SIV infection. On the basis of this evi-
dence, we hypothesize that the gastroin-
testinal tract, and not the peripheral lym-
phoid tissue, is the major site of early SIV
and HIV replication and amplification,
resulting in profound and rapid CD4* T
cell loss. If so, then the acute phase of
infection with SIV or HIV should be
viewed primarily as a disease of the muco-
sal immune system. There are important
ramifications of considering SIV/HIV as a
mucosal disease, including the design of
therapies that target the intestinal tract
and vaccines that stimulate an effective
mucosal immune response. These results
suggest that an important advantage of a
modified live virus vaccine that targets
the intestinal mucosa would be its ability
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Fig. 5. Localization of SIV-infected cells in the
intestine of macaques. (A) In situ hybridization for
SIV in the jejlunum showing large numbers of in-
fected lymphocytes (black) in the lamina propria 7
days after infection with SIVmac239. Scale bar,
100 pm. (B) Intestinal lymphoid nodule double-
labeled by in situ hybridization for SIV (black) and
immunohistochemistry (brown) for HAM-56 (mac-
rophages) in a macaque 21 days after infection
with SIVmac239. Note the presence of several
SIV-infected macrophages having large black nu-
clei and brown cytoplasm (arrowheads). A few
SIV-infected lymphocytes are also visible in this
field (arrows). Scale bar, 50 pm.
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to stimulate an appropriate immune re-
sponse at the site involved in the earliest
stages of viral infection.
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Association of the AP-3 Adaptor Complex
with Clathrin

Esteban C. Dell’Angelica, Judith Klumperman,
Willem Stoorvogel, Juan S. Bonifacino®

A heterotetrameric complex termed AP-3 is involved in signal-mediated protein sorting
to endosomal-lysosomal organelles. AP-3 has been proposed to be a component of a
nonclathrin coat. In vitro binding assays showed that mammalian AP-3 did associate with
clathrin by interaction of the appendage domain of its 83 subunit with the amino-terminal
domain of the clathrin heavy chain. The B3 appendage domain contained a conserved
consensus motif for clathrin binding. AP-3 colocalized with clathrin in cells as observed
by immunofluorescence and immunoelectron microscopy. Thus, AP-3 function in protein

sorting may depend on clathrin.

The formation of vesicles for transport be-
tween organelles of the endocytic and se-
cretory pathways and the selection of cargo
for packaging into those vesicles are medi-
ated by protein coats associated with the
cytosolic face of the organelles (I). The best
characterized coats contain clathrin and
protein complexes termed “adaptors” (2).
Clathrin is a complex of three heavy chains
and three light chains that polymerizes to
form the scaffold of the coats. The adaptors
mediate attachment of clathrin to mem-
branes and recruit integral membrane pro-
teins to the coats. Two clathrin adaptors
have been described to date—AP-1 and
AP-2, which participate in protein trans-
port to the endosomal-lysosomal system
from the trans-Golgi network {TGN) and
the plasma membrane, respectively.
Recently, another complex related to
AP-1 and AP-2 has been identified. This
complex, termed AP-3, is composed of two
large subunits (8 and B3A or B3B), a me-
dium-sized subunit (W3A or w3B), and a
small subunit (03A or o3B) (3-8). AP-3
has been localized to the TGN and endo-

somes (4, 5) and is involved in protein
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trafficking to lysosomes or specialized endo-
somal-lysosomal organelles such as pigment
granules, melanosomes, and platelet dense
granules (8, 9). Previous studies suggested
that AP-3 is a component of a nonclathrin
coat (3, 4). However, a critical question has
remained unanswered: does AP-3 assemble
with a structural coat protein that plays the
role of clathrin?

We used glutathione S-transferase
(GST) fusion proteins bearing the H
(hinge) and C (COOH-terminal) segments
of the “appendage” region of human B3A
(6) to search for this putative protein (Fig.
1A). The reason for selection of these con-
structs was that both AP-1 and AP-2 bind
clathrin via the appendage regions of the
B1 and B2 subunits (10, 11). Affinity puri-
fication from a cytosolic extract of a human
T cell line, Jurkat, resulted in isolation of a
prominent 180-kD protein on GST-B3A-
but not GST-B3A,; or GST columns (Fig.
1B). Unexpectedly, microsequencing of
eight tryptic peptides derived from the 180-
kD protein identified it as the clathrin
heavy chain (Fig. 1B) (I2). Binding of
clathrin to GST-B3A could also be dem-
onstrated by immunoblotting with antibod-
ies to either the heavy (Fig. 1C, 1B, and Fig.
1D, TL ._) or light (Fig. 1D, CON.1) chain
of clathrin as well as by immunoprecipita-
tion of metabolically labeled proteins (Fig.
1C, IP). Furthermore, the extent of clathrin
binding to GST-B3A was comparable to
that of a GST fusion protein having the
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