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Unitary Control in Quantum Ensembles: 
~aximizing Signal Intensity in Coherent 

Spectroscopy 
S. J. Glaser,* T. Schulte-Herbruggen, M. Sieveking, 

0. Schedletzky, N. C. Nielsen, 0. W. Slzlrensen, C. Griesinger* 

Experiments in coherent magnetic resonance, microwave, and optical spectroscopy 
control quantum-mechanical ensembles by guiding them from initial states toward target 
states by unitary transformation. Often, the coherences detected as signals are repre- 
sented by a non-Hermitian operator. Hence, spectroscopic experiments, such as those 
used in nuclear magnetic resonance, correspond to unitary transformations between 
operators that in general are not Hermitian. A gradient-based systematic procedure for 
optimizing these transformations is described that finds the largest projection of a 
transformed initial operator onto the target operator and, thus, the maximum spectro- 
scopic signal. This method can also be used in applied mathematics and control theory. 

T h e  developlnent of specific sets of con- 
trolling unitary transforlnations (pulse se- 
quences) has long been a major thrust in 
nuclear lnagnetlc resonance (NMR) spec- 
troscopy ( I )  and, more recently, in electron 
magnetic resonance spectroscopy ( 2 ) ,  laser 
coherent control ( 3 ) ,  and quantum comput- 
ing (4). These spectroscopic experiments 
are most often applied to qilantuin ensein- 
bles rather than individual atoms or inole- 
cules. For example, a test tube of water inay 
contain soine loL2 hydrogen atoms, and a 
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full quantum-mechanical description would 
afford 2'"' spin energy levels; yet, a reduced 
density operator treatment (5, 6 )  with no 
more than four highly averaged matrix ele- 
ments gives an excellent description of its 
spin dynamics. 

In sufficiently large quantum ensem- 
bles, the expectation values of noncorn- 
muting operators, such as I, and I,, can be 
determined sirnultaneously with negligible 
mutual interference. For example, in 
NMR it has been customary to record the 
magnetization from an ensemble along the - - 
x and y axes sirnultaneously in the rotating 
frame. The co~nplex superposition of the 
two signals is called quadrature detection 
and corresponds to the non-Hermitian de- 
tection operator I+ = Ix + iI, (1)  (where 
i = d- 1) .  Moreover, non-Hermitian 
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cheme un-frankfurt.de (C G.) oscillation frequencies during evolution or 

detection periods. Consider, for example, 
a standard two-dimensional (2D) NMR 
experilllent with an evolution period t l  
and a detection period t2. In order to 
maximize the intensity of 2D peaks, two 
successive transforlnations must be opti- 
mized. In a first step, the density operator 
containing the operators I, that represent 
the ensemble of nuclear spins at thermal 
eqi~ilibrii~rn is transformed into a state in- 
cluding non-Hermitian operators llke I+ 
or products of such operators oscillating 
during t,. In a second step, these non- 
Hermitian operators must be transformed 
to yield non-Hermitian operators I- that 
are detected by I+ during tL.  Almost all 
multidimensional NMR experiments re- 
quire optimal transfers between operators 
that are in general not Hermitian. A pro- 
cedure to find unitary transformations of a 
given operator A achieving the largest 
projection onto a target operator C (where 
both may take the form of an arbitrary 
complex square matr~x)  is highly desired 
not only by the experimentalist; in this 
general case, it has so far also been an 
i~nsolved uroblem to the mathematicians 
(7 ) .  

In this context, we address the following 
auestions. ii) What are the unitarv trans- 

\ ,  

torinations of a given initial operato; A that 
maximize the transfer amnlitude onto a tar- 
get operator C, and what is the maximum 
amnlitude? iii) What additional restrictions , , 

are imposed by symmetry or a limited set of 
exnerilnentallv available control fields? 

For the transformation between an ini- 
tial auanturn-mechanical state function 

1 +,) aAd a target state function I +,) of the 
same norm, it is alwavs nossible to find a 

8 L 

unitary operator U that converts 1 +,) 
colnpletely into I +,), that is, L'I +,) = 

bl+,)  with b = 1. In this case, the transfer 
amplitude is only restricted by experimen- 
tal constraints (8). This argument also 
holds for an ensemble in a nure state 
where all individual quantum systems can 
be described by the same state function 

1 +). However, the situation is quite differ- 
ent for nonpilre states. Suppose the oper- 
ator A represents a (not necessarily Her- 
mitian) component of the density opera- 
tor (5, 6 )  relevant to a specific signal in a 
spectroscopic experiment. If relaxation 
and other dissipative processes can be ne- 
glected, A is transformed during the ex- 
periment by a unitary transformation of 
the form 

where the propagator U is a unitary oper- 
ator (9) .  In contrast to unitary transforma- 
tions between two normalized state func- 
tions 1 +,) and I +,), it is in general not 
possible to transform an arbitrary initial 
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operator A completely into any target op- 
erator C (Fig. 1). Hence, a fundamental 
limit of quantum control is imposed by the 

I 

r--------------- 

properties of unitary transformations of 
operators. The task is to maximize the 
qverlap between the transformed operator 
A and the target operator C, the extent of 
which can be quantified by the scalar 
product (AIc) (9). In mathema_tics, the 
set of all ~ossible values of (AIC) for 

I I 

j . I,3) j 
I I 
I I 

I 
1- la) j 
L---------------A 

A =f~a)e~+~p) (p~}  

. , 

arbitrary uLitary operators U is called the 
C-numerical range of At, denoted Wc(At) 
(7, 10). The maximum attainable absolute 
value of (AI C)  constitutes a fundamental 
unitary bound b for the achievable transfer 
amplitude between A and C. In the math- 
ematical literature, this bound is called 
the C-numerical radius of At, written 
rc(At) (10). Whereas the problem of de- 
termining the least upper bound has been 
solved for transfers between Hermitian op- 
erators (1 1 ), the one between non-Hermi- 
tian operators is so far unsolved (7). 

Here we introduce a method to deter- 
mine the fundamental bound b eauivalent 

Fig. 1. Individual unitary transformations Ucl) and 
U2) exist, taking the initial state functions 1 ai)(l) = 
1 a) and I Jri)(2) = I p) to the target state functions 
I at)(') = I p) and I = I p), respectively. How- 
ever, forthe ensemble consisting of both quantum 
systems, there is no unitary transformation U 
that transforms the initial density operator A 
= i(la)(a I + I p)(p I} completely into the target 
density operator C = I p)(pl. In general, if A, 
= '((1 + E) 1 a)(a 1 + (1 - E )  I p)(p I ) ,  then UA,Ut 
# 6 for all U unless E = 21. 

U 

4 

to rc(At) for arbitrary complex operators 
A and C. In addition. the method vields 

I I 

j . 18) j 
I I 
I 

[ - la) j 
L---------------A 

c = IB)(BI 

unitary operators U,,, achieving it. We 
restrict the followine discussion to Liou- " 
ville spaces of finite dimension where all 
operators can be represented by complex 
square matrices. For simplicity and with- 
out loss of generality, we assume that A 
and C are normalized to a trace norm of 1 
(9). Then the function 

maps any unitary operator U onto a com- 
plex number, and the unitary bound b cor- 

Fig. 2. For two given 3 x 3 
matrices A and C (15), an 
image of the C-numerical 
range WCMt) is generated 
by calculating f(U,) for lo7 
random unitary operators 
U,. The range between 2 1 
(Re axis) and +i (Im axis) of 
the complex plane was par- 
titioned into 128 by 128 pix- 
els, and the number of hits 
per pixel is color coded. In 
addition, for 10 arbitrarily 
chosen initial unitary opera- 
tors U,, the values of f (UJ 
are indicated (black dots) 
and the trajectories of f (U,) 
are shown during the optimi- 
zation of If (U) I (white lines). 
The dashed white circle corresponds to the norm limit of If (U) I . 

responds to the maximum of the real-valued 
function If(U) I 

b = maxl f(U) I 
U 

(3) 

An iterative algorithm to identify b can be 
constructed if for any U in the space of 
unitary operators the gradient v I f ( ~ )  I is 
known or, more conveniently, the gradient 
VF(U) for the function F(U) = If(U) 1 2. It 
takes the form (1 2) 

If, for a given unitary operator Uk, the 
gradient VF(Uk) does not vanish, the fol- 
lowing iterative scheme finds a unitary op- 
erator Uk+, with If(Uk+,) 1 closer to the 
unitary bound b (1 2) 

Uk+, = exp{-6VF(Uk)U$}Uk (5) 

where 6 > 0 is an adaptable step size (1 3). 
This algorithm is an Euler-type approach 
modified to ensure that the operators Uk+, 
remain unitary. It generalizes methods op- 
timizing transfer between real symmetric 
matrices (14) to the general case of com- 
plex square matrices. 

This algorithm is illustrated in Fig. 2 
for an example of low dimensionality (1 5 ) ,  
where an approximation to the corre- 
sponding C-numerical range Wc(At) is 
readily obtained by calculating f(U) for a 
large number of random unitary operators 
U that are created by orthonormalizing 
the columns of a random complex matrix 
using a Gram-Schmidt procedure. Howev- 
er, this approach is impractical as soon as 
the problem is of higher dimension. Figure 
2 also shows typical trajectories (compare 
with Eq. 5) of f(Uk) during the optimiza- 
tion of 10 arbitrary initial unitary opera- 
tors U,. Even in the presence of several 
local maxima, the desired global maxi- 
mum b of f(U) can be determined by 

tracing the boundary of the C-numerical 
range (1 2) (Fig. 3). 

For non-Hermitian oDerators of inter- 
est in spectroscopic applications (16), all 
local maxima of If(U) 1 are equivalent 
because the corresponding C-numerical 
ranges are circular disks centered at the 
origin of the complex plane (1 7-1 9). In 
these cases, the unitary bound b and an 
optimal unitary operator U,,, are found 
using the simple gradient-based optimiza- 
tion starting from a single initial unitary 
operator U,. For example, consider non- 
Hermitian operators A and C representing 
an ensemble of 1,s spin systems. Each 1,s 

1 spin system consists of n spinsp denoted I,, 
. . . , I, (for example 'H nuclear spins) and 
one additional spin-+, denoted S (such as a 
13C nuclear spin or an electron spin). A 
transformation of practical interest (20) is 
the transfer of - 1 quantum coherence of 
spin S to -1 quantum coherence of the I 
spins with the initial operator A = S- = 
S, - is, and the target operator C = F- = 
Z;,, (Ikx - ilk,). (9, 21). The unitary 

Fig. 3. For the case of Fig. 2, the absolute value 
If (U)I is shown as a function of cp for all points on 
the boundary of the C-numerical range WCMt) 
(72). The global maximum of l f ( ~ ) I  yields the 
unitary bound b = 0.85. 
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Table 1. Maximum transfer efficiencies for typical coherence transfer pro- In cases with permutation symmetry among then I spins, u ' g  (28) forms an 
cesses in Ins (n = 1,2, and 3) spin systems. Singular value conservation yields upper limit of the attainable unitary bound b',,, and exp,, corresponds to 
dSV) (23, 24), which forms an upper limit to the fundamental unitary bound b. the best transfer efficiencies provided by state-of-the-art experiments (20). 

Transfer Spin dw) U ' ( ~ )  b system sym bkn ~ X P -  

bounds b determined for these transfers 
with the gradient-based algorithm are giv- 
en in Table 1. For the 1,s spin system, 
typical trajectories of f(U) during the op- 
timization of I ~ ( u )  I are shown in Fig. 4. 
As expected (18, 19), all trajectories con- 
verge to the same value I~(u,,,) I = l/l/Z 
= 0.707, which represents the previously 
unknown unitary bound b for this transfer. 
Figure 4 also shows that the density of 
f(U) for randomly chosen U decreases rap- 
idly with increasing I ~ ( u )  I . Even when 
f(U) was evaluated for lo7 randomly cho- 
sen unitary operators U, the largest value 
of I ~ ( u )  I found was <66% of the unitary 
bound b, as even lo7 trials sample only a 
small portion of the high-chmensional 
space (22). 

It is interesting to compare the funda- 
mental unitary bound with known upper 
and lower limits for b (7, 10) 

Because the norm of an operator is invari- 
ant under unitary transformations (9), the 

unitary bound b cannot exceed 1. This 
upper limit for b can be further tightened 
to dSV) by noting that unitary transforma- 
tions also conserve the singular values of 
an operator (23, 24). A lower limit l(EV) 
for b results from conservation of eigen- 
values of an operator under unitary trans- 
formations (25). Only for the special case 
of Hermitian operators A and C, where 
b = l(EV) (11, 26), are exact bounds 
known so far. However, in the general case 
of non-Hermitian operators A and C ,  b is 
only poorly defined by these upper and 
lower limits. For example, for the transfer 
between A = S- and C = F- in 1,s spin 
systems, all eigenvalues of A and C are 0, 
and hence, the lower limit PEV) = 0 is 
useless. The corresponding upper limits 
dSV) are also summarized in Table 1. 

So far, the discussion has been restrict- 
ed to the determination of the fundamen- 
tal unitary bound b defined in Eq. 3. How- 
ever, this bound is only relevant in prac- 
tice if arbitrary unitary transformations 
can be implemented experimentally (27). 

Fig. 4. For the operators A 
=S-andC=F-inan1,S 
spin system, the values of 
f (U,) are shown for 1 O7 ran- 
dom unitary operators U,. 
Partitioning and color cod- 
ing is the same as in Fig. 2. 
Again for 10 arbitrarily cho- 
sen initial unitary operators 
U,, the trajectories of f (Uk) 
during the optimization of 
I f (u) I are shown as white 
lines and the radius of the 
dashed white circle corre- 
sponds to the norm limit. 
The blue circle circum- 
scribes the C-numerical 
range W&4 +), which is a cir- 
cular disk with radius b = 
1 I*. 

Moreover, the new approach is also suited 
to determine upper bounds for transfer 
efficiencies if only a subset U r  of all uni- 
tary operators U is available. Then 
I~(u',,) I corresponds to the reachable 
bound b' I b. This condition holds if, for 
example, the system investigated shows 
permutation symmetry. These restrictions 
can be taken into account in a symmetry- 
adapted basis with the matrix representa- 
tions of the operators A and C assuming 
block structure (1, 28). For each block j, 
an o ~ t i m a l  unitarv subo~erator and a uni- 
tary bound brj c a i  be derived separately. 
Then the final unitarv oDerator is the , . 
direct sum of the unitary suboperators and 
btsym = Xj bb. 

Table 1 summarizes the symmetry-re- 
stricted unitary bounds btS,, and their up- 
per limits u'($L) (28) for the transfer be- 
tween A = S- and C = F- in 1,s systems 
with equivalent spins I,, . . . , I,. For 12S 
systems, the best known experimental im- 
~lementation (20.29) almost achieves the . ,  , 
unitary bound brs ,. However, in 1,s spin 
svstems. <75% o! the unitarv bound b = 
brs,, has been reached so far, thus leaving 
considerable room for im~rovement. A 
similar situation exists for the transfer be- 
tween the operators A = 2F,S- and C = 
F- in 1,s systems (16, 20, 21) (see Table 
I), suggesting that many important exper- 
imental building blocks will turn out to be 
less than optimal, thus triggering a search 
for better experiments. 

In practice, the optimal unitary operator 
U = U,, typically has to be realized by 
propagators (27) in terms of a finite set X of 
effective (that is, time independent) Ham- 
iltonians according to 

. where tj > 0 and Hj E X are chosen to 
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~rov ide  the maximum transfer efficiencv. 
Furthermore, the shortest overall duration 7 

= tl + t, + . . . + ti, is highly desired. This 
leads to the minimal-time problem min 7 

subject to 

with piecewise constant H( t )  = H, for C:z:tr 
% t < C '  ,=,t,, which is a standard task in 
optimal control (30). Its solution will clear- 
ly benefit from the knowledge of the opti- 
mum unitary operator and the maximum 
possible transfer efficiency. 

Apart from the spectroscopic impact of 
controlling quantum ensembles outlined 
thus far, the approach taken here is readily 
applicable on a broader scale. It solves the 
closely related general problem of a least- 
squares approximation of an arbitrary com- 
plex matrix given by the unitary transform 
of another, as 

min IIuAU' - cl12 = IAl12 + IlC2- 

2 max Re tr{UAfU'C} (9)  

(the function Re takes the real part of the 
argument). Problems of chis kind arise in 
fitting tasks. Moreover, generalizing the 
case of real symmetric matrices (14), the 
algorithm is adaptable to sorted diagonal- 
ization of complex Hermitian matrices, be- 
cause the differential equation 

with U(t) unitary induces what is called a 
gradient flow to the transfer function 
tr{UtAUC} by virtue of the trace norm. 
Thus, if C is some diagonal matrix with 
sorted real entries, U(t) will finally diago- 
nalize any Hermitian matrix A [by 
Ui-(t)AU(t)] to the same ordering of its real 
eigenvalues as given in C, thus solving a 
common problem in optimal control. 
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