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Unitary Control in Quantum Ensembles:
Maximizing Signal Intensity in Coherent
Spectroscopy

S. J. Glaser,” T. Schulte-Herbriiggen, M. Sieveking,
O. Schedletzky, N. C. Nielsen, O. W. Sgrensen, C. Griesinger*

Experiments in coherent magnetic resonance, microwave, and optical spectroscopy
control guantum-mechanical ensembles by guiding them from initial states toward target
states by unitary transformation. Often, the coherences detected as signals are repre-
sented by a non-Hermitian operator. Hence, spectroscopic experiments, such as those
used in nuclear magnetic resonance, correspond to unitary transformations between
operators that in general are not Hermitian. A gradient-based systematic procedure for
optimizing these transformations is described that finds the largest projection of a
transformed initial operator onto the target operator and, thus, the maximum spectro-
scopic signal. This method can also be used in applied mathematics and control theory.

The development of specific sets of con-
trolling unitary transformations (pulse se-
quences) has long been a major thrust in
nuclear magnetic resonance (NMR) spec-
troscopy (1) and, more recently, in electron
magnetic resonance spectroscopy (2), laser
coherent control (3), and quantum comput-
ing (4). These spectroscopic experiments
are most often applied to quantum ensem-
bles rather than individual atoms or mole-
cules. For example, a test tube of water may
contain some 10?2 hydrogen atoms, and a
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full quantum-mechanical description would
afford 219" spin energy levels; yet, a reduced
density operator treatment (5, 6) with no
more than four highly averaged matrix ele-
ments gives an excellent description of its
spin dynamics.

In sufficiently large quantum ensem-
bles, the expectation values of noncom-
muting operators, such as I, and L, can be
determined simultaneously with negligible
mutual interference. For example, in
NMR it has been customary to record the
magnetization from an ensemble along the
x and y axes simultaneously in the rotating
frame. The complex superposition of the
two signals is called quadrature detection
and corresponds to the non-Hermitian de-
tection operator I = I+ il, (1) (where
i = \V/=1). Moreover, non-Hermitian
components of the density operator, such
as [, can be distinguished experimentally
from their adjoints (in this case from [7)
by their different responses to rotations
around the quantization axis z. This makes
them amenable to filtering by pulsed field
gradients and coherence transfer echoes
and also results in opposite signs of their
oscillation frequencies during evolution or

:

detection periods. Consider, for example,
a standard two-dimensional (2D) NMR
experiment with an evolution period ¢,
and a detection period t,. In order to

“maximize the intensity of 2D peaks, two

successive transformations must be opti-
mized. In a first step, the density operator
containing the operators 1Z that represent
the ensemble of nuclear spins at thermal
equilibrium is transformed into a state in-
cluding non-Hermitian operators like I*
or products of such operators oscillating
during t;. In a second step, these non-
Hermitian operators must be transformed
to yield non-Hermitian operators I~ that
are detected by I during t,. Almost all
multidimensional NMR experiments re-
quire optimal transfers between operators
that are in general not Hermitian. A pro-
cedure to find unitary transformations of a
given operator A achieving the largest
projection onto a target operator C (where
both may take the form of an arbitrary
complex square matrix) is highly desired
not only by the experimentalist; in this
general case, it has so far also been an
unsolved problem to the mathematicians
(7).

In this context, we address the following
questions. (i) What are the unitary trans-
formations of a given initial operator A that
maximize the transfer amplitude onto a tar-
get operator C, and what is the maximum
amplitude? (ii) What additional restrictions
are imposed by symmetry or a limited set of
experimentally available control fields?

For the transformation between an ini-
tial quantum-mechanical state function
ll!li> and a target state function ll!1t> of the
same norm, it is always possible to find a
unitary operator U that converts [y,
completely into |l|J[>, that is, U] ) =
bly,) with b = 1. In this case, the transfer
amplitude is only restricted by experimen-
tal constraints (8). This argument also
holds for an ensemble in a pure state
where all individual quantum systems can
be described by the same state function
Ilj}} However, the situation is quite differ-
ent for nonpure states. Suppose the oper-
ator A represents a (not necessarily Her-
mitian) component of the density opera-
tor (5, 6) relevant to a specific signal in a
spectroscopic experiment. If relaxation
and other dissipative processes can be ne-
glected, A is transformed during the ex-
periment by a unitary transformation of
the form

A = UAU! (1)

where the propagator U is a unitary oper-
ator (9). In contrast to unitary transforma-
tions between two normalized state func-
tions [{;) and |th>, it is in general not
possible to transform an arbitrary initial
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Fig. 1. Individual unitary transformations U™ and
U@ exist, taking the initial state functions |y =
[a) and [)@ = |B) to the target state functions
[y = [B)yand |y,)@ = |B), respectively. How-
ever, for the ensemble consisting of both quantum
systems, there is no unitary transformation U
that transforms the initial density operator A
= 2{laXal + [BXBI} completely into the target
density operator C = |BXBI. In general, if A,
=1 + &)laXal + (1 — &)|BXBI}, then UAUT
# Cforall Uunless e = =1.

operator A completely into any target op-
erator C (Fig. 1). Hence, a fundamental
limit of quantum control is imposed by the
properties of unitary transformations of
operators. The task is to maximize the
overlap between the transformed operator
A and the target operator C, the extent of
which can be quantified by the scalar
product (AIC) (9). In mathematics, the
set of all possible values of (A|C) for
arbitrary unitary operators U is called the
C-numerical range of A", denoted W(AT)
(7, 10). The maximum attainable absolute
value of (A|C) constitutes a fundamental
unitary bound b for the achievable transfer
amplitude between A and C. In the math-
ematical literature, this bound is called
the C-numerical radius of AT, written
1c(A") (10). Whereas the problem of de-
termining the least upper bound has been
solved for transfers between Hermitian op-
erators (11), the one between non-Hermi-
tian operators is so far unsolved (7).

Here we introduce a method to deter-
mine the fundamental bound b equivalent
to 1o(A") for arbitrary complex operators
A and C. In addition, the method yields
unitary operators U, achieving it. We
restrict the following discussion to Liou-
ville spaces of finite dimension where all
operators can be represented by complex
square matrices. For simplicity and with-
out loss of generality, we assume that A
and C are normalized to a trace norm of 1
(9). Then the function

f(U):=(UAU'|C) (2)

maps any unitary operator U onto a com-
plex number, and the unitary bound b cor-
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Fig. 2. For two given 3 X 3
matrices A and C (75), an
image of the C-numerical
range W (A") is generated
by calculating f(U,) for 107
random unitary operators
U,. The range between *1
(Re axis) and *i (Im axis) of
the complex plane was par-
titioned into 128 by 128 pix-
els, and the number of hits
per pixel is color coded. In
addition, for 10 arbitrarily
chosen initial unitary opera-
tors U, the values of f(U,)
are indicated (black dots)
and the trajectories of f(U,)
are shown during the optimi-
zation of | (U)| (white lines).

The dashed white circle corresponds to the norm limit of |f (U)! .

responds to the maximum of the real-valued
function |f(U)|

b= m6x|f(U)| (3)

An iterative algorithm to identify b can be
constructed if for any U in the space of
unitary operators the gradient V|f(U)| is
known or, more conveniently, the gradient
VF(U) for the function F(U) = |f(U)|% It
takes the form (12)

VE(U) = {(f*(U)IUA'U',C])'-
HUIUAU',CIU 4)

If, for a given unitary operator U,, the
gradient VF(U,) does not vanish, the fol-
lowing iterative scheme finds a unitary op-
erator Uy, with [f(U,,,)| closer to the
unitary bound b (12)

U1 = CXP{—8VF(Uk)ka}Uk (5)

where 8 > 0 is an adaptable step size (13).
This algorithm is an Euler-type approach
modified to ensure that the operators U, ;
remain unitary. It generalizes methods op-
timizing transfer between real symmetric
matrices (14) to the general case of com-
plex square matrices.

This algorithm is illustrated in Fig. 2
for an example of low dimensionality (15),
where an approximation to the corre-
sponding C-numerical range W(A') is
readily obtained by calculating f(U) for a
large number of random unitary operators
U that are created by orthonormalizing
the columns of a random complex matrix
using a Gram-Schmidt procedure. Howev-
er, this approach is impractical as soon as
the problem is of higher dimension. Figure
2 also shows typical trajectories (compare
with Eq. 5) of f(U,) during the optimiza-
tion of 10 arbitrary initial unitary opera-
tors U,. Even in the presence of several
local maxima, the desired global maxi-
mum b of f(U) can be determined by

tracing the boundary of the C-numerical
range (12) (Fig. 3).

For non-Hermitian operators of inter-
est in spectroscopic applications (16), all
local maxima of |f(U)| are equivalent
because the corresponding C-numerical
ranges are circular disks centered at the
origin of the complex plane (17-19). In
these cases, the unitary bound b and an
optimal unitary operator U, are found
using the simple gradient-based optimiza-
tion starting from a single initial unitary
operator U,,. For example, consider non-
Hermitian operators A and C representing
an ensemble of I S spin systems. Each IS
spin system consists of n spins-%, denoted I,
..+, I (for example 'H nuclear spins) and
one additional spin-%, denoted S (such as a
13C nuclear spin or an electron spin). A
transformation of practical interest (20) is
the transfer of —1 quantum coherence of
spin S to —1 quantum coherence of the I
spins with the initial operator A = §7 =
S, — iS, and the target operator C = F~ =
i, (I, — il,) (9, 21). The unitary

)’
. b

0.5

0 T 2n

¢

Fig. 3. For the case of Fig. 2, the absolute value
|f (U)| is shown as a function of ¢ for all points on
the boundary of the C-numerical range W,(A")
(12). The global maximum of |f(U)| vields the
unitary bound b = 0.85.
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Table 1. Maximum transfer efficiencies for typical coherence transfer pro-
cessesin/;S (n =1, 2, and 3) spin systems. Singular value conservation yields
uSV) (23, 24), which forms an upper limit to the fundamental unitary bound b.

. REPORTS

In cases with permutation symmetry among the n / spins, u’fy‘g (28) forms an
upper limit of the attainable unitary bound b’y ., and exp,,, corresponds to
the best transfer efficiencies provided by state-of-the-art experiments (20).

Transfer o UV Uy b bl P, m
S——F- IS 1 1 1 1 1
3 1 3,8 42
Z=0.75 —= =0.707 N e
1,S 1 2 5 = 070 5 = 0650 g =0629
2+.3 3+43 3+.3 3+.3 1
- - - - —= = 0577
I5S 4= 0933 > = 0827 5 =0.789 5 =0.789 5=0
oF,8~—F~ 1 1 1 1 1 1
1,S L~ o707 L~ o707 L~ o707 L~ 0707 L~ o707
7+23 8+.3 1+2,/3 1+2,3 5
15S T‘/— =0872 3 2‘/— = 0811 T‘/_ =0.744 T‘/_ =0744  5=0625

bounds b determined for these transfers
with the gradient-based algorithm are giv-
en in Table 1. For the I,S spin system,
typical trajectories of f(U) during the op-
timization of |f(U)| are shown in Fig. 4.
As expected (18, 19), all trajectories con-
verge to the same value |f( Uopt)l =1V2
= 0.707, which represents the previously
unknown unitary bound b for this transfer.
Figure 4 also shows that the density of
f(U) for randomly chosen U decreases rap-
idly with increasing |f(U)|. Even when
f(U) was evaluated for 107 randomly cho-
sen unitary operators U, the largest value
of | f(U)| found was <66% of the unitary
bound b, as even 107 trials sample only a
small portion of the high-dimensional
space (22).

It is interesting to compare the funda-
mental unitary bound with known upper

and lower limits for b (7, 10)
0= =p =4V =] 6)

Because the norm of an operator is invari-

ant under unitary transformations (9), the

Fig. 4. For the operators A
=S"andC=F~inan/,S
spin system, the values of
f(U,) are shown for 107 ran-
dom unitary operators U,.
Partitioning and color cod-
ing is the same as in Fig. 2.
Again for 10 arbitrarily cho-
sen initial unitary operators
U, the trajectories of f(U,)
during the optimization of
[f )| are shown as white
lines and the radius of the
dashed white circle corre-
sponds to the norm limit.
The blue circle circum-
scribes the C-numerical
range W(A"), which is a cir-
cular disk with radius b =
1V2.
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unitary bound b cannot exceed 1. This
upper limit for b can be further tightened
to uSV) by noting that unitary transforma-
tions also conserve the singular values of
an operator (23, 24). A lower limit I[EV)
for b results from conservation of eigen-
values of an operator under unitary trans-
formations (25). Only for the special case
of Hermitian operators A and C, where
b = IBY) (11, 26), are exact bounds
known so far. However, in the general case
of non-Hermitian operators A and C, b is
only poorly defined by these upper and
lower limits. For example, for the transfer
between A = S”and C = F~ in I S spin
systems, all eigenvalues of A and C are 0,
and hence, the lower limit [EY) = 0 is
useless. The corresponding upper limits
u®V) are also summarized in Table 1.

So far, the discussion has been restrict-
ed to the determination of the fundamen-
tal unitary bound b defined in Eq. 3. How-
ever, this bound is only relevant in prac-
tice if arbitrary unitary transformations
can be implemented experimentally (27).

Moreover, the new approach is also suited
to determine upper bounds for transfer
efficiencies if only a subset U’ of all uni-
tary operators U is available. Then
f(U’OPt)| corresponds to the reachable
bound b’ = b. This condition holds if, for
example, the system investigated shows
permutation symmetry. These restrictions
can be taken into account in a symmetry-
adapted basis with the matrix representa-
tions of the operators A and C assuming
block structure (I, 28). For each block j,
an optimal unitary suboperator and a uni-
tary bound b’; can be derived separately.
Then the final unitary operator is the
direct sum of the unitary suboperators and
bom = 2 b')
Table 1 summarizes the symmetry-re-
stricted unitary bounds b’ and their up-
per limits u'(sSYX\) (28) for the transfer be-
tween A = S” and C = F~ in [, S systems
with equivalent spins I, ..., I.. For I,S
systems, the best known experimental im-
plementation (20, 29) almost achieves the
unitary bound b’_ . However, in I5S spin
systems, <75% of the unitary bound b =
b’ ,m has been reached so far, thus leaving
considerable room for improvement. A
similar situation exists for the transfer be-
tween the operators A = 2F,S” and C =
F~ in IS systems (16, 20, 21) (see Table
1), suggesting that many important exper-
imental building blocks will turn out to be
less than optimal, thus triggering a search
for better experiments.
In practice, the optimal unitary operator

U = U,, typically has to be realized by
propagators (27) in terms of a finite set  of
effective (that is, time independent) Ham-
iltonians according to

U= exp(—itka)
‘exp(—ite— Hy-1)* . . . "exp(—it;H,) (7)

where >0 and H;, € ¥ are chosen to
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provide the maximum transfer efficiency.
Furthermore, the shortest overall duration 7
=1t +t + ...+t is highly desired. This
leads to the minimal-time problem min T
subject to

U
U(T) = Uopn T
with p1ecew1se constant H(t) = H for 3i_1 i
=t < 3_it, which is a standard task in
optimal control (30). Its solution will clear-
ly benefit from the knowledge of the opti-
mum unitary operator and the maximum
possible transfer efficiency.

Apart from the spectroscopic impact of
controlling quantum ensembles outlined
thus far, the approach taken here is readily
applicable on a broader scale. It solves the
closely related general problem of a least-
squares approximation of an arbitrary com-
plex matrix given by the unitary transform
of another, as

min [UAU' — CJI* = ||A|* + |IC|*~
2 max Re trjUATU'C}

= —iH{)U() (8)

)

(the function Re takes the real part of the
argument). Problems of this kind arise in
fitting tasks. Moreover, generalizing the
case of real symmetric matrices (14), the
algorithm is adaptable to sorted diagonal-
ization of complex Hermitian matrices, be-
cause the differential equation

dU(¢)

i = AU(t)C — U(t)CU'(e)AU(¢)

(10)

with U(t) unitary induces what is called a
gradient flow to the transfer function
tr{U'AUC} by virtue of the trace norm.
Thus, if C is some diagonal matrix with
sorted real entries, U(t) will finally diago-
nalize any Hermitian matrix A [by
Ut (t)AU(t)] to the same ordering of its real
eigenvalues as given in C, thus solving a
common problem in optimal control.
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