accounted for by loss of function of various
kinesin superfamily members (20). Control
embryos injected with buffer alone did not
exhibit any of these phenotypes (Fig. 3, A
and C); the majority of them survived until
the gastruia stage (Fig. 3E), when they were
fixed and stained. Embryos injected in the
post-cellularization stage developed nor-
mally, confirming that AS-2 was unable to
cross cell membranes.

Our results demonstrate that AS-2 spe-
cifically inhibits kinesin activity by inter-
fering with MT binding. This mechanism is
unlike that of any known kinesin (or other
motor) inhibitor and may be generated by
AS-2 emulating tubulin binding to a por-
tion of the MT-binding site of kinesin.
AS-2 is also a potent toxin, which when
delivered intracellularly may ablate several,
if not all, aspects of kinesin-superfamily—
mediated transport. AS-2 and its deriva-
tives have many potential applications.
When made membrane permeant, AS-2
and its derivatives would be likely to be
efficient antimitotic or antitransport drugs
for studying kinesin functions or might be
therapeutic agents. The existence of a ki-
nesin atomic structure may allow the ratio-
nal design of molecules based on AS-2 and
the development of specific inhibitors for
kinesin families and subfamilies, thus lead-
ing to precise chemical intervention. Final-
ly, the ahility of AS-2 and its derivatives to
mimic the activity of the MT may allow
modification of surfaces or other substrates
with AS-2 to create artificial kinesin tracks.
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The Involvement of Cell-to-Cell Signals in the
Development of a Bacterial Biofilm

David G. Davies, Matthew R. Parsek, James P. Pearson,
Barbara H. Iglewski, J. W. Costerton, E. P. Greenberg*

Bacteria in nature often exist as sessile communities called biofilms. These communities
develop structures that are morphologically and physiologically differentiated from free-
living bacteria. A cell-to-cell signal is involved in the development of Pseudomonas
aeruginosa biofilms. A specific signaling mutant, a las/ mutant, forms flat, undifferentiated
biofilms that unlike wild-type biofilms are sensitive to the biocide sodium dodecyl sulfate.
Mutant biofilms appeared normal when grown in the presence of a synthetic signal
molecule. The involvement of an intercellular signal molecule in the development of P.
aeruginosa biofilms suggests possible targets to control biofilm growth on catheters, in
cystic fibrosis, and in other environments where P. aeruginosa biofiims are a persistent

problem.

Certain bacteria, such as the fruiting bac-
teria, communicate with each other to form
structured macroscopic groups (I, 2). Re-
cently, it has become apparent that in ap-
propriate environments, common bacteria
exhibit similar social behavior. Microscope
observations of living bacterial biofilms at-
rached to a glass surface have revealed that
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these sessile microbial biofilm populations
have a complicated structural architecture
(3, 4). Biofilms of mixed bacterial commu-
nities and of individual species such as
Pseudomonas aeruginosa that develop on sol-
id surfaces exposed to a continuous flow of
nutrients form thick layers consisting of
differentiated mushroom- and pillar-like
structures separated by water-filled spaces.
The structures consist primarily of an extra-
cellular polysaccharide (EPS) matrix or gly-
cocalyx in which the bacterial cells are
embedded (5). The finding that P. aerug-
nosa produces at least two extracellular sig-
nals involved in cell-to-cell communication
and cell density-dependent expression of
many secreted virulence factors suggests
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cell-to-cell signaling could be involved in
the differentiation of P. aeruginosa biofilms,
much as cell-to-cell signaling is involved in
the development of specialized structures of
fruiting bacteria like Myxococcus (1, 2).
Thus, we initiated this study of the role of
intercellular signals in P. aeruginosa biofilm
development.

The two cell-to-cell signaling systems
identified in P. aeruginosa are the lasR-las]
and rhiR-rhll (also called vsmR-vsml) sys-
tems (6-10). The lasl gene product directs
the synthesis of a diffusible extracellular
signal, N-(3-oxododecanoyl)-L-homoserine
lactone (30C,,-HSL). The lasR product is
a transcriptional regulator that requires suf-
ficient levels of 30C,,-HSL to activate a
number of virulence genes, including lasl,
and the thIR-rhll system (11-14). The rhll
product directs the synthesis of the extra-
cellular signal, N-buytryl-L-homoserine lac-
tone, which is required for activation of
virulence genes and expression of the sta-
tionary-phase ¢ factor, RpoS, by the vhlR
gene product (13-16). At sufficient popu-
lation densities these self-produced signals
reach the concentrations required for gene
activation. Thus, this type of gene regula-
tion has been termed quorum sensing and
response (17). Recently, acylhomoserine
lactones have been detected in naturally
occurring biofilms (18).

Because quorum sensing requires a suffi-
cient density of bacteria, neither of the P.
aeruginosa signals would be expected to par-
ticipate in the initial stages of biofilm for-
mation, attachment, and proliferation.
However, these signals may be involved in
biofilm differentiation. To test this hypoth-
esis, we monitored biofilm formation of

Fig. 1. Characteristics of P. aeruginosa WT and
quorum-sensing mutant biofiims in flow-through
continuous-culture reaction vessels (37). (A)
Depth of biofilms (mean = SD of 20 measure-
ments) (open bars) and cell-packing as deter-
mined by a nearest-neighbor analysis of cells at
the glass bioreactor surface (filled bars) (32, 33).
Strains: WT, PAQ1; lasl, rhil mutant, PAO-JP2;
rhil mutant, PDO100; and /as/ mutant, PAO-JP1.
(B) Epiflucrescence and scanning confocal pho-
tomicrographs of the WT and the /as/ mutant P.
aeruginosa biofilms containing the GFP expres-
sion vector pMRP9-1. (Top) Epiflucrescence pho-

tomicrographs of the WT (PAC1) and the las/ mutant (PAO-JP1) grown
with or without the autoinducer, 30C, ,-HSL added to the medium. (Bot-
tom) Saggital views of Z series of wild-type and /as/ mutant biofilms (with
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wild-type (WT) P. aeruginosa PAOI1 and a
lasI-vhll double mutant that makes neither
of the quorum-sensing signals (19). Both
strains adhered to and proliferated on the
glass surface of the reaction chamber and
reached a steady state within 2 weeks. How-
ever, the mutant biofilm was thin, about
20% of the WT thickness, and the cells
were more densely packed (Fig. 1A). Fur-
thermore, the WT formed characteristic
microcolonies composed of groups of cells
separated by water channels, whereas the
mutant appeared to grow rather as contin-
uous sheets on the glass surface. These re-
sults are consistent with the hypothesis that
although not involved in the initial attach-
ment and growth stages of biofilm forma-
tion, one or both of the P. aeruginosa quo-
rum-sensing systems participates in the sub-
sequent biofilm differentiation process.

To determine whether lasl, rhil, or both
are required for the normal development of
the P. aeruginosa biofilm, we tested mutants
defective in one or the other of these genes
(19, 20). As indicated by measuring average
thickness of biofilms and cell packing (Fig.
1A), the rhll mutant formed biofilms similar
to that of the WT, and the las] mutant
formed biofilms similar to that of the double
mutant.

To further compare the WT and las]
mutant biofilms, we constructed a plasmid
containing a gene encoding an enhanced
green fluorescent protein (GFP) and intro-
duced it into the two strains (21). This
enabled us to image P. aeruginosa cells in
the biofilms by epifluorescence and scan-
ning confocal microscopy (Fig. 1B). Scan-
ning confocal microscopy was used to pro-
duce a side view of the WT and mutant

20 um

Nearest neighbor (m)

@
o

fe2]
o

Distance above surface (jum)
n B
o (=}

Wild type

density.

biofilms. Only a few cells of an adherent
cluster of the WT were apparent at the
interface with the solid surface, and the
cells appeared to be in a loose confederation
with considerable intervening space be-
tween bacteria. Staining with alcian blue,
which binds polysaccharides (22), showed
that at least some of the intervening space
consisted of an EPS matrix. The mutant
biofilm was thin and much more uniform.
A top view generated by epifluorescence
microscopy showed the clusters of WT cells
compared with the more uniform distribu-
tion of the las] mutant (Fig. 1B).

To confirm that abnormal biofilm for-
mation in the las] mutant was due to the
absence of 30C,,-HSL, we added this com-
pound to the medium flowing through a
reaction chamber with a mutant biofilm
(23). In the presence of 30C,,-HSL, the

lasI mutant formed biofilms of an average
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Fig. 2. Analysis of total carbohydrates (milligrams
per milligram of total biofim protein) and total
uronic acids (nanograms per nanograms of total
biofilm protein) in biofilm samples of the WT P.
aeruginosa, PAO1, and the las/ mutant, PAO-JP1
(34). The filled bars show the average value for
total carbohydrates, and the open bars show the
average values for total uronic acids. The averag-
es of two separate experiments are shown; bars
correspond to the range.

las! mutant las/ mutant + autoinducer

or without 30C, ,-HSL) acquired by scanning confocal laser microscopy.
Because the bacterial cells contain GFP, the color correlates with cell
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thickness and cell density similar to that of
the WT biofilms (Fig. 1A), and as shown by
epifluorescence and confocal microscopy,
the addition of the quorum-sensing signal
allowed the development of clusters of rel-
atively loosely packed cells (Fig. 1B). From
this experiment we conclude that the quo-
rum-sensing signal 30C,,-HSL is required
for normal biofilm differentiation, and that
gradients of the signal do not appear to be
necessary for this differentiation.

The EPS matrix is generally considered to
be important in cementing bacterial cells
together in the biofilm structure (24). The
WT P. aeruginosa cells appeared to be em-
bedded in an EPS matrix. Thus, we exam-
ined EPS levels in biofilms by measuring
uronic acids (25), a constituent of the algi-
nate EPS of P. aeruginosa (26), and by mea-
suring total carbohydrates in biofilm samples
(27). We detected no significant differences
between the WT and the lasI mutant (Fig. 2)
despite their markedly different appearance
(Fig. 1). As shown previously, P. aeruginosa
biofilm and free-floating (planktonic) cells
also produce similar amounts of EPS (28).
However, the distribution of the glycocalyx
is different, with biofilm cells cemented to
one another by the EPS matrix and plank-
tonic cells having a compressed, incomplete
glycocalyx (28). The mutant biofilms in our

- . - . =
Fig. 3. SDS-induced detachment of mutant biofilm cells from a glass surface. Phase contrast photomi-
crographs of the P. aeruginosa WT strain, PAO1; the las/ mutant, PAO-JP1; and the fas/ mutant grown
in the presence of the autoinducer, 30C, ,-HSL (Al), immediately before addition of SDS, and at the
times indicated after SDS addition (35).
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study may have a glycocalyx matrix similar
to that of planktonic cells. This could result
in the tight packing of mutant biofilm bac-
teria. The results suggest that in the las]
mutant, the initial stages of biofilm forma-
tion proceed as normal, but differentiation
from attached planktonic bacteria into bio-
film bacteria does not proceed. Our hypoth-
esis is that in the WT, this differentiation is
triggered when the cell mass produces a suf-
ficient amount of the quorum-sensing signal,
30C,,-HSL. Although the signal generated
by Rhll does not appear to participate in
biofilm differentiation, there may well be
other as yet unidentified signals implicated
in this process.

Because we have hypothesized that the
abnormal, undifferentiated biofilm formed
by the lasl mutant contains cells similar in
physiology to planktonic cells, we examined
whether the abnormal mutant biofilm might
be sensitive to biocides that do not disrupt
WT biofilms. Thus, we exposed biofilms of
the WT and the las] mutant to the detergent
sodium dodecyl sulfate (SDS, 0.2%}). This
treatment had no detectable effect on the
WT, but within 5 min of SDS addition, most
or all of the bacteria in the lasI mutant
biofilm detached from the surface and dis-
persed (Fig. 3). Exposure of a las] mutant
biofilm grown in the presence of synthetic

REPORTS

30C,,-HSL t0 0.2% SDS for up to 24 hours
had no detectable effect. As with WT bio-
films, detachment and dispersal of the
30C,,-HSL-rescued lasI mutant biofilm
were not evident (Fig. 3), and indeed the
average thickness of this biofilm was not
changed by SDS treatment (93 * 21 pm
before and 24 hours after SDS treatment
versus 102 = 21 pm before and 24 hours
after SDS treatment of the WT biofilm).
Qur studies demonstrate that a cell-to-
cell signal is required for the differentiation
of individual cells of the common bacteri-
um P. aeruginosa into complex multicellular
structures. A mutation that blocks genera-
tion of the signal molecule hinders differ-
entiation, and the resulting abnormal bio-
film appears to be sensitive to the detergent
biocide SDS. The control of biofilm differ-
entiation and integrity by quorum sensing
has important implications in medicine.
Pseudomonas aeruginosa can colonize devic-
es such as catheters (29), and it colonizes
the lungs of most cystic fibrosis patients
(30). Because of their innate resistance to
antibiotics and other biocides, biofilms in
these environments are difficult, if not im-
possible, to eradicate. Bacterial biofilms also
present other problems of significant eco-
nomic importance in both industry and
medicine. Our finding of a connection be-
tween biofilm differentiation into clusters
of bacteria resistant to the detergent biocide
SDS and a quorum-sensing signal suggests
that inhibition of these cell-to-cell signals
could aid in the treatment of biofilms.
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Coupling Termination of Transcription to
Messenger RNA Maturation in Yeast

Charles E. Birse,” Lionel Minvielle-Sebastia, Barbara A. Lee,
Walter Keller, Nick J. Proudfootf

The direct association between messenger RNA (MRNA) 3’-end processing and the
termination of transcription was established for the CYC7 gene of Saccharomyces
cerevisiae. The mutation of factors involved in the initial cleavage of the primary transcript
at the poly(A) site (RNAT4, RNA15, and PCF11) disrupted transcription termination at the
3’ end of the CYC1 gene. In contrast, the mutation of factors involved in the subsequent
polyadenylation step (PAP1, FIP1, and YTH7) had little effect. Thus, cleavage factors link
transcription termination of RNA polymerase Il with pre-mRNA 3’-end processing.

Polyadenylation signals at the 3’ end of
pre-mRNA are required for the termination
of transcription in higher eukaryotes (1),
budding yeast (2), and fission yeast (3).
This ensures that transcription will only
terminate after RNA polymerase 1I (pol II)
has read beyond the end of the mRNA
sequence. The mechanism of pre-mRNA
3'-end formation (sequential endonucleo-
lytic cleavage and polyadenylation) and
many of the factors involved in catalyzing
these reactions are very similar between
higher eukaryotes and S. cerevisiae (4). Re-
constitution of this reaction in vitro in S.
cerevisiae has allowed the fractionation of
factors [cleavage factor IA (CF IA), CF 1B,
CF 1I, polyadenylation factor [ (PF I), and
poly(A) polymerase (PAP)] required for
each step in the 3’-end formation reaction
(5). The use of temperature-sensitive (ts)
mutants has facilitated the determination of
the molecular composition of these factors
and revealed interactions between them
(6). Here, we used yeast strains carrying
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these ts mutant alleles to demonstrate that
some of these factors are also involved in
pol 1I transcription termination.

We used transcription run-on analysis to
measure transcription termination at the 3’
end of the S. cerevisiae CYCI gene (Fig. 1),
for which signals that direct 3’-end forma-
tion have been well characterized (7). To
achieve high transcription, we transformed
yeast cells (8) with the multicopy plasmid
pGCYC, in which the CYCI promoter has
been replaced by the GALI/IO promoter
region (9). Reverse transcription polymer-
ase chain reaction (RT-PCR) analysis con-
firmed that transcripts initiating at the
GAL promoter are polyadenylated at the
same sites as found for the intact CYCI
gene (10, I1). The distribution of run-on
transcript over the contiguous single-
stranded probes 1 to 6 showed that tran-
scription stops efficiently, soon after the
CYCI poly(A) site (located at the 3" end of
probe 2), with only small amounts of run-on
transcript detected beyond probe 3 (Fig. 1,
B and D). This finding is in agreement with
previous in vivo data showing that signals
100 base pairs (bp) beyond the CYCI
poly(A) site are required to direct the ter-
mination of transcription (2). The back-
ground signal detected in the upstream
GAL probe indicates that transcription be-
gins at the GAL promoter. A similar distri-
bution of polymerases was observed with
the genomic copy of the CYCI gene, al-
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