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Arabidopsis CBF1 Overexpression Induces COR
Genes and Enhances Freezing Tolerance

Kirsten R. Jaglo-Ottosen, Sarah J. Gilmour, Daniel G. Zarka,
Oliver Schabenberger, Michael F. Thomashow”

Many plants, including Arabidopsis, show increased resistance to freezing after they
have been exposed to low nonfreezing temperatures. This response, termed cold ac-
climation, is associated with the induction of COR (cold-regulated) genes mediated by
the C-repeat/drought-responsive element (CRT/DRE) DNA regulatory element. In-
creased expression of Arabidopsis CBF1, a transcriptional activator that binds to the
CRT/DRE sequence, induced COR gene expression and increased the freezing tolerance
of nonacclimated Arabidopsis plants. We conclude that CBF1 is a likely regulator of the
cold acclimation response, controlling the level of COR gene expression, which in turn

promotes tolerance to freezing.

Studies of the molecular basis of plant tol-
erance to freezing have focused primarily on
the cold acclimation response, the process by
which plants increase their tolerance to
freezing in response to low nonfreezing tem-
peratures (1). Cold acclimation is associated
with biochemical and physiological changes
and alterations in gene expression (I, 2).
Studies of genes stimulated by low tempera-
ture have revealed that many, including the
Arabidopsis COR genes, encode hydrophilic
polypeptides that potentially promote toler-
ance to freezing (1-3). Indeed, constitutive
expression of CORI5a (which encodes the
chloroplast-targeted polypeptide COR15am)
in transgenic Arabidopsis plants improves the
freezing tolerance of chloroplasts frozen in
situ and of protoplasts frozen in vitro (4).
Unlike cold acclimation, however, CORI5a
expression has no discernible effect on the
survival of frozen plants (2, 5).

Genetic analyses indicate that multiple
genes are involved in cold acclimation in
plants (6). Several COR genes are coordi-
nately stimulated along with CORI5a in
response to low temperature (2, 7), which
suggests that COR15a might act in concert
with other COR genes to enhance tolerance
to freezing in plants. If so, expression of the
entire battery of COR genes would have a
greater effect on freezing tolerance than
CORI5a expression alone. To test this hy-
pothesis, we attempted to induce expression
of the COR gene “regulon” with the Arabi-
dopsis transcriptional activator CBF1 (CRT/
DRE binding factor 1) (8), a putative COR
gene regulator. CBF1 binds to the cis-acting
CRT (C-repeat)/DRE (drought-responsive
element) sequence (9, 10), a DNA regula-
tory element that stimulates transcription in
response to both low temperature and water
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deficit (9). The element is present in the
promoters of multiple COR genes including
CORI5a, COR78 (also known as RD29A
and LTI178), and CORG6.6 (10-12). Expres-
sion of CBFI in yeast (Saccharomyces cerevi-
siae) activates expression of reporter genes
that have the CRT/DRE as an upstream
activator sequence (8).

We created transgenic Arabidopsis plants
that overexpress CBF1 by placing a cDNA
encoding CBF1 under the control of the
strong cauliflower mosaic virus (CaMV) 35S
RNA promoter and transforming the chi-
meric gene into Arabidopsis ecotype RLD
plants (13). Initial screening gave rise to two
transgenic lines, A6 and B16, that accumu-
lated CBFI transcripts at high concentra-
tions. Southern blot analysis indicated that
the A6 plants had a single DNA insert and
the B16 plants had multiple inserts. Exami-
nation of fourth generation homozygous A6
and B16 plants indicated that amounts of
CBFI transcript were higher in nonaccli-
mated A6 and B16 plants than they were in
nonacclimated RLD plants (Fig. 1A). Quan-
tities of CBFI transcript were greater in the
A6 plants than in the B16 plants (Fig. 1A).

CBF1 overexpression induced COR gene
expression without a low-temperature stim-
ulus (Fig. 1A). Specifically, greater than nor-
mal amounts of COR6.6, COR15a, COR47,
and COR78 transcripts were detected in
nonacclimated A6 and B16 plants. In non-
acclimated A6 plants, COR transcript con-
centrations approximated those found in
cold-acclimated RLD plants. In nonaccli-
mated B16 plants, they were less than in
cold-acclimated RLD plants. Immunoblot
analysis indicated that the amounts of the
CORI15am (Fig. 1B) and CORG6.6 polypep-
tides were also elevated in the A6 and B16
plants, with a higher level of expression in
A6 plants. We were unable to identify the
CBF1 protein in either RLD or transgenic
plants (5). Overexpression of CBFI did not
affect transcript concentrations of elF4A
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Fig. 1. Expression of CBF1 and COR genes in RLD and A
transgenic Arabidopsis plants. (A) CBF1 and COR tran-
scripts. Leaves from nonacclimated and 3-day cold-accli-
mated plants (20) were harvested and total RNA was pre-
pared and analyzed for CBF1 and COR transcripts by RNA
blot analysis with 32P-radiolabeled probes (27). The auto-
radiograms for CBF1 resulted from 3-day film exposure
and those for COR6.6 and COR15a were from a 3-hour
exposure (the 32P-radiolabeled probes were of similar spe-
cific activity). (B) COR15am proteins. Total soluble protein
(100 ng) was prepared from leaves of the nonacclimated
RLD (RLDw), 4-day cold-acclimated RLD (RLDc4d), 7-day
cold-acclimated RLD (RLDc7d), and nonacclimated A6
and B16 plants; the amounts of COR15am were deter- B
mined by immunoblot analysis with antiserum raised

against the COR15am polypeptide (22). No reacting

bands were observed with preimmune serum.

(eukaryotic initiation factor 4A) (14), a
constitutively expressed gene that is not
responsive to low temperature (Fig. 1A),
and had no obvious effects on plant
growth and development.

Two additional transgenic lines, K16
and 1-11, that overexpress CBFI have re-
cently been identified. Northern blot anal-
ysis of nonacclimated T2 generation plants
indicated that, in both of these lines, COR
gene expression is also higher than that in
nonacclimated RLD plants.

CBF1 overexpression increased the toler-
ance of plants to freezing (Fig. 2), as deter-
mined by the electrolyte leakage test (15).
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Fig. 2. Freezing tolerance of leaves from RLD and
transgenic Arabidopsis plants. Leaves from non-
acclimated RLD (RLDw) plants, 10-day cold-ac-
climated RLD (RLDc) plants, and nonacclimated
A6, B16, and T8 plants were frozen at the indicat-
ed temperatures and the extent of cellular dam-
age was estimated by measuring electrolyte leak-
age (23). Error bars indicate standard deviations.
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Detached leaves were frozen to various sub-
zero temperatures and, after thawing, cellular
damage (due to freeze-induced membrane
lesions) was estimated by measuring ion
leakage from the tissues. Leaves from nonac-
climated A6 and B16 plants were more tol-
erant to freezing than those from nonaccli-
mated RLD plants (Fig. 2). The freezing
tolerance of leaves from nonacclimated A6
plants exceeded that of leaves from nonac-
climated B16 plants (Fig. 2A), which had
lower levels of CBFI and COR gene expres-
sion (Fig. 1A). T8 transgenic plants (4),
which constitutively express only COR15a
(under control of the CaMV 35S RNA pro-
moter) (Fig. 1A), were less freezing tolerant
than A6 plants (Fig. 2B).

A comparison of EL, values (the freezing
temperature that results in release of 50% of
tissue electrolytes) of leaves from RLD, A6,
B16, and T8 plants is presented in Table 1.
Data from multiple experiments indicate
that the freezing tolerance of leaves from
nonacclimated A6 and B16 plants was great-
er than that of leaves from nonacclimated
RLD and T8 plants and that leaves from

nonacclimated A6 plants were more freezing

 REPORTS

Cold
RLD

RLD A6

Fig. 3. Freezing survival of RLD and A6 Arabidop-
sis plants. Nonacclimated (Warm) RLD and A6
plants and 5-day cold-acclimated (Cold) RLD
plants were frozen at —5°C for 2 days and then
returned to a growth chamber at 22°C (24). A
photograph of the plants after 7 days of regrowth
is shown.

tolerant than leaves from nonacclimated
B16 plants.

The enhancement of freezing tolerance
in A6 plants was apparent in whole plant
survival tests (Fig. 3). Nonacclimated A6
plants displayed variable, but greater, freez-
ing tolerance than nonacclimated RLD
plants (Fig. 3). No difference in plant sur-
vival was detected between nonacclimated
B16 and RLD plants and nonacclimated T8
and RLD plants.

Our results demonstrate that constitutive
overexpression of the Arabidopsis transcrip-
tional activator CBF1 induces expression of
Arabidopsis COR genes and increases the
freezing tolerance of nonacclimated plants.
These results are consistent with CBF1 hav-
ing a role in regulating COR gene expression
and further link the COR genes to plant cold
acclimation. The increase in freezing toler-
ance brought about by expressing the battery
of CRT/DRE-regulated COR genes was
greater than that brought about by overex-
pressing CORI5a alone, which implicates

Table 1. Comparison of EL, values of leaves from RLD and transgenic Arabidopsis plants. EL, values
were calculated and compared by analysis of variance (25). ELg, = SE (n) are presented on the diagonal
line for leaves from nonacclimated RLD (RLDw), cold-acclimated (7 to 10 days) RLD (RLDc), and
nonacclimated A6, B16, and T8 plants. P values for comparisons of EL, values are indicated in the

intersecting cells.

EL;, values

RLDw RLDc A6 B16 T8
RLDw -39 *0.21 P < 0.0001 P < 0.0001 P =0.0014 P =0.7406
RLDc @ -7.6 £0.30 P =0.3261 P < 0.0001 P < 0.0001
A6 @ -7.2*025 P < 0.0001 P < 0.0001
B16 © -52 +0.27 P = 0.0044
T8 o -3.8 +0.35
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additional COR genes in freezing tolerance.
Whether CRT/DRE-containing COR genes
are involved in bringing about the full array
of biochemical and physiological changes
that occur with cold acclimation (I, 2) re-
mains to be determined.

Freezing temperatures greatly limit the
geographical distribution of native and
cultivated plants and often cause severe
losses in agricultural productivity (16).
Traditional plant breeding approaches
have met with limited success in improv-
ing the freezing tolerance of agronomic
plants (6). The freezing tolerance of the
best wheat varieties today is essentially the
same as the most freezing-tolerant variet-
ies developed in the early part of this
century. Biotechnology, however, may of-
fer new strategies. Here we show that the
freezing tolerance of nonacclimated Ara-
bidopsis plants is enhanced by increasing
the expression of the Arabidopsis regulato-
ry gene CBFI. The CRT/DRE DNA reg-
ulatory element we have targeted here is
not limited to Arabidopsis (17) and thus
may provide a way to improve the freezing
tolerance of crop plants.
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Structural Conservation in Prokaryotic and
Eukaryotic Potassium Channels

Roderick MacKinnon,* Steven L. Cohen, Anling Kuo, Alice Lee,
Brian T. Chait

Toxins from scorpion venom interact with potassium channels. Resin-attached, mutant
K* channels from Streptomyces lividans were used to screen venom from Leiurus
quinquestriatus hebraeus, and the toxins that interacted with the channel were rapidly
identified by mass spectrometry. One of the toxins, agitoxin2, was further studied by
mutagenesis and radioligand binding. The results show that a prokaryotic K* channel
has the same pore structure as eukaryotic K* channels. This structural conservation,
through application of techniques presented here, offers a new approach for K* channel

pharmacology.

Scorpion toxins inhibit ion conduction
through potassium channels by occluding
the pore at the extracellular opening. A
single toxin protein binds very specifically to
a single K™ channel to cause inhibition. The
toxins are 35 to 40 amino acids in length and
have a characteristic fold that is held rigidly
by three disulfide bridges (I). They are ac-
tive site inhibitors, because when they bind
to the channel they interact energetically
with K™ ions in the pore (2—4). The inter-
action between these inhibitors and the pore
of K* channels has been exploited to gain

insights into the structure and function of
K™ channels.

Studies employing site-directed mutagen-
esis of the Shaker K channel have mapped
the scorpion toxin binding site to regions
corresponding to the extracellular entryway
of the K* channel from Streptomyces lividans
(the KcsA channel) (4-9). Although the
amino acids of the K™ channel selectivity
filter are highly conserved, the residues lin-
ing the entryway are quite variable. As if to
mirror the amino acid variation at the bind-
ing site, the toxins are also highly variable in
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