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Isolation of a Benzene Valence Isomer with
One-Electron Phosphorus-Phosphorus Bonds

Yves Canac, Didier Bourissou, Antoine Baceiredo,
Heinz Gornitzka, Wolfgang W. Schoeller,” Guy Bertrand*

Atetraphosphabenzene analog of the postulated anti-tricyclohexylene, a singlet biradical
valence isomer of benzene, has been isolated. The tricyclic derivative features one-
electron phosphorus-phosphorus bonds, which result from the w*-w* interaction be-
tween two diphosphirenyl radicals. Such one-electron bonds may play a wider role in

phosphorus chemistry.

Despite the long history associated with
the chemistry of benzene (CiHg), new and
fascinating benzene isomers are still being
discovered (1). In contrast to the large
number of possible C.H, isomers [217
generated by a computer-aided procedure
(2)], the number of possible valence iso-
mers of benzene [(CH)4] is quite small
(Fig. 1). To date, only four such com-
pounds have been observed experimentally
(3): cis-Dewar benzene A, benzvalene B,
prismane C, and bicycloprop-2-enyl D. Re-
cent ab initio calculations have predicted
that Mobius benzene E and trans-Dewar ben-
zene F lie in very shallow minima on the
potential energy profile, with energies 418
and 660 kJ/mol, respectively, higher than
benzene (4); furthermore, benzmobiusstri-
pane G has been proposed by Balaban (5). In
addition to these valence isomers, which

obey the octet rule, one can imagine a num-

ber of biradical structures. So far, none of
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these species have been isolated, although
anti-tricyclohexylene H has been postulated
to be the transition state in the Cope rear-
rangement of the bicycloprop-2-enyl deriva-
tives D’ into D” (6).

Heterobenzene chemistry, especially
that involving the heavier main group ele-
ments, is comparatively poorly developed
(7). For the phosphorus-containing series
(P is isolobal to the CH fragment), several
phospha- (8) and diphosphabenzene (9) va-
lence isomer derivatives, a few 1,3,5-tri-
phosphabenzene derivatives (10), and
hexaphosphabenzene in the coordination
sphere of transition metals (11) are known.
No tetra- and pentaphosphabenzene species
have been described.

We report here the synthesis of the tran-
sient diphosphirenyl radical 2 and the en-
suing stable dimer 3 (Scheme 1). The latter

, . NG-Poe |
N(~-Pr)a N(-Pr)p
BF3/ EtgN (cat.)
7 — - — P;P\
PR p~—P R—P
N(i-Pr)
1 2 3

N(i-Pr)p

Scheme 1. Synthesis of diphosphirenyl radi-
cal 2 and of its stable dimer 3. N(-Pr),,
diisopropylamino.
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Fig. 1. Benzene valence isomers A through G and
Cope rearrangement between derivatives D' and
D". =

compound is the first valence isomer deriv-
ative of a tetraphosphabenzene and can be
related to anti-tricyclohexylene H (Fig. 1).

Treatment of 1H-diphosphirene 1 (12)
with catalytic amounts of BF; (5%) and
triethylamine (Et;N) (5%) in tetrahydrofu-
ran at 50°C for 2 hours led to the formation
of a diamagnetic red solution (all manipula-
tions were performed under Ar). After evap-
oration of the solvent and extraction with
pentane, compourid 3 was isolated in 45%
yield as red crystals (melting point, 140°C)
(Scheme 1).

The molecular weight, obtained by mass
spectrometry (13), corresponded to a dimer
of the diphosphirenyl radical 2, which for-
mally results from the homolytic cleavage of
the P-N bond of 1. The 3P proton-coupled

nuclear magnetic resonance (NMR) spec-

Fig. 2. Molecular view of 3 in the solid state (ther-
mal ellipsoids with 50% probability). Selected bond
lengths (in angstroms): P1-P2, 2.205(3); P1-P2a,
2.634(3); P1-C1, 1.743(p); P2-C1, 1.738(6); C1-
N1, 1.336(7). Selected angles (in degrees): C1-P1-

P2, 50.6(2); C1-P2-P1, 50.8(2); P1-C1-P2,
78.6(3); P1-C1-N1, 141.4(4); P2-C1-N1,
138.8(4); C1-P1-P2a, 94.9(2); P2-P1-P2a,

89.1(1); P1-P2-P1a,.90.9(1). Sum of the valence
angles around N1, 359.9°.
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Fig. 3. (A) Schematic illustration of A
radicals 2 and dimers 3 through 6.
(B) Canonical structures of radicals
2 and dimers 3. A priori, in the rad-
ical 2P (E = P, R = NH,), the single
electron can reside at the C atom
[2B, state (C,, symmetry), canoni-
cal structure 1, or 2A’ state (Cy), ca-
nonical structure I}, or alternatively
at the P atoms [2A, state (C,,), ca-
nonical structures 1l and IV]. Be- B
cause of the weakness of the P-P
w-bond (142 kJ/mol), the calcula- f
tions predicted that the energies of
the 2B, and 2A’ states are higher by

2E, 2'E

E=E

than that of the 2A,, state (with zero-
point energy corrections). An anal-
ysis of a multiconfiguration self-

Y A
E=r

195 and 148 kd/mol, respectively, 1 I

D
D

3E, 3'E 4E, 4'E 5E, 5'E 6E, 6'E

E=P 2P-6P:R=NHy 2'P-6'P:R=H
E=N 2N-6N: R=NHy 2'N-6N: R=H
E=CH 2C-6C: R=NHy 2'C-6'C:R=H

consistent field wave function emphasizes the closed-shell nature of 3P [complete active space (12,12)/
6-319(d), ¢, = 0.9 of the leading ground-state configuration; the lowest energy triplet (°B,) is 280 kJ/mol
higher in energy] and implies a strong electronic coupling of the two initially formed radicals 2P. For the
parent diphosphirenyl radical 2'P, the energies of the 2B, and 2A’ states are 90 and 81 kJ/mol higher
than that of the 2A,, state. For the diazirinyl radical 2N, the energies of the 2B, and 2A’ states are 118 and

61 kd/mol higher than that of the 2A, state.

trum showed only a singlet at —164.5 ppm,
suggesting the presence of a three-membered
ring framework (14) and the absence of an
amino group at the P. The high symmetry of
the structure was confirmed by the 'H and
13C NMR spectra (15). Moreover, we car-
ried out a single-crystal x-ray diffraction
study of 3 (16). In the crystal structure (Fig.
2), the molecule is organized around an in-
version center located at the center of a
rectangular P, framework, which is almost
perpendicular to two three-membered rings
(P,/P,C: 97°); the NR, groups are slightly
tilted out of the P-P-C planes (0.164 A).
The P-C and P-P bond lengths in the three-
membered rings are within the range ex-
pected for single bonds; the C-N bond
lengths are short, indicating a strong dou-
ble-bond character, which is confirmed by
the planarity of the N atoms. Interesting-
ly, the P-P bonds between the two three-
membered rings [2.634(3) A] (parentheses
indicate the error in the last digit) are by
far the longest P-P bonds ever reported
(17) but are clearly less than twice the P
van der Waals radii (3.8 A).

To gain a better understanding of the
nature of 3 and its formation from 2, we
carried out ab initio calculations (18). For

the radical 2P (E = P, R = NH,) (Fig. 3A),
the calculations predicted a ?A, ground state
(canonical structures IIT and 1V) (Fig. 3B).
The spin density is equally distributed over
the two P atoms, and the single occupied
molecular orbital (SOMO) is the m* orbital
of the P=P double bond. Because of the
higher strength of the N-C mr-bond (268
kJ/mol) compared with that of the P-C
w-bond (180 kJ/mol) (19), derivative 2P is
best described by the zwitterionic structure
IV. The dimerization of the diphosphirenyl
radical 2P is exothermic (—163 kJ/mol) and
occurs by means of a w*-m* interaction (20)
(Fig. 4), giving rise to the formation of 3P. A
four-center bonding system with six 1 elec-
trons (21) best describes the P, framework;
each P-P bond between the two three-mem-
bered rings is formally a one-electron bond,
which rationalizes the very long P-P bond
distance. The most accurate, if any, Lewis-
like representation of dimers 3 and 3P is the
zwitterionic structure V (Fig. 3B). The bi-
radical canonical structure VI best describes
the triplet state in which the P-P distances
between the three-membered rings lie in the
range for classical P-P single bonds. The
alternative P-P and C-C o-dimers 4P and
5P are higher in energy than 3P, and even

Table 1. Calculated relative energies (in kilojoules per mole) for the radicals 2P, dimers 3P through 6P
(E = P; R = NH,), 2E, and dimers 3'E through 6'E (E = P, N, CH; R = H).

Deriv- Deriv- Deriv- Deriv-
ative Energy ative Energy ative Energy ative Energy
2P 0 2'P 0 2'N 0 2'C 0
3P —-163 3'P —209 3'N —-115 3'C -325
4P —-106 4'P —148 4'N -115 4'C —409
5P -98 5P —245 5'N —-362 5'C —409
6P —-178 6'P —242 6'N -520 6'C —933
2081



more striking, the energy of tetraphospha-
benzene 6P is only 15 kJ/mol lower (Fig. 3A
and Table 1). The ground state of the parent
diphosphirenyl radical 2'P (E = P, R = H)
is also ?A,, and the w*-m*-dimer 3'P is
lower in energy than the P-P o-dimer 4'P.

It is of interest to compare these results
with those reported for the analogous N-
and C-containing series. On the basis of the
formation of nitriles and N,, Maeda and
Ingold postulated that the bimolecular self-
reaction of diazirinyl radicals proceeds by
way of an N-N o-dimer of type 4 (Fig. 3A)
(22). Once again, calculations show that
the diazirinyl radical 2'N is in the ZA,
ground state and that the energy of the
w*-mw*.dimer 3'N is equal to that of the
N-N o-dimer 4’N. Because this latter com-
pound suffers from the antiaromaticity of
the two 1H-diazirine moieties (23), dimers
of types 3 and 4 are unlikely to be isolated
in.the N-containing series. Of course, the
C—C o-dimer 5’N is much more stable, but
its formation is also quite unlikely from the
diazirinyl radical, because it would require
the spin density to be located at the C atom
of 2'N, which is not the case.

In contrast to the diphosphirenyl 2'P and
diazirinyl 2'N radicals, calculations predict a
2A" ground state for the cyclopropenyl radi-
cals 2'C (canonical structure II, Fig. 3B),
with one of the C atoms being strongly py-
ramidalized (24). It has been shown that
cyclopropenyl radicals dimerize to form the
corresponding bicycloprop-2-enyl derivatives
4'C (25). Surprisingly, anti-tricyclohexylene
3'C, which is best described as a singlet
biradical, is calculated to have an energy only
83 kJ/mol above that of the previously isolat-
ed (3) C—C o-dimer 4'C.

Although benzene (6’C) is far more sta-
ble than its valence isomers 4’C and of
course 3'C, in the corresponding N-con-
taining series the difference in energy be-

NR,

Fig. 4. Orbital diagram for the dimerization of the
diphosphirenyl radical 2 into the m*-n*-dimer 3
(SOMO-SOMO interaction).
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tween the various isomers is much smaller,
and the incorporation of P brings the sta-
bility of the w*-mw*-dimer to the fore.

Up until the 1970s, the chemistry of the
heavier main group elements was believed
to be restricted to that involving single
bonds as a result of the so-called “double-
bond rule” (26). Now, after three decades
devoted to the synthesis and study of four-
electron and six-electron multiple bonds
(27), the isolation of 3 suggests that one-
electron bonds could also play an important
role in phosphorus chemistry.
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