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The Quantum-Classical Metal

David G. Clarke, S. P. Strong, P. M. Chaikin, E. |. Chashechkina

In a normal Fermi liquid, Landau’s theory precludes the loss of single-fermion quantum
coherence in the low-energy, low-temperature limit. For highly anisotropic, strongly
correlated metals, there is no proof that this remains the case, and quantum coherence
for transport in some directions may be lost intrinsically. This loss of coherence should
stabilize an unusual, qualitatively anisotropic non-Fermi liquid, separated by a zero-
temperature quantum phase transition from the Fermi liquid state and categorized by the
unobservability of certain interference effects. There is compelling experimental evi-
dence for this transition as a function of magnetic field in the metallic phase of the organic
conductor (TMTSF),PF (where TMTSF is tetramethyltetraselenafulvalene).

At the heart of the modern understanding
of metals is Landau’s Fermi liquid theory
(FLT) (1). According to this theory, the
ground state and low-lying excited states of
a system of interacting fermions can be
placed into one-to-one correspondence
with similar states in an appropriately cho-
sen model of noninteracting fermions (such
as a free-electron gas). For the interacting
system, these low-lying states are labeled by
occupation numbers for fermionic “quasi-
particles,” just as the states of the noninter-
acting system are labeled with the occupa-
tion numbers for the free fermions. In the
quasiparticle basis, the ground state of the
interacting system is a filled Fermi sea (2),
and individual quasiparticles excited above
this Fermi sea have a scattering rate from
the other quasiparticles that vanishes much
faster (quadratically) than their excitation
energy (3). In this sense, the quasiparticles
are weakly interacting, even though the
interactions among the original fermions
may have been quite strong.

This aspect of the theory accounts for (i)
the otherwise mysterious successes of nearly
free electron models of metals and, with the
exception of various broken symmetry
states that themselves at least fit into the
Fermi liquid paradigm, (ii) why there were
no serious experimental challenges to FLT
until comparatively recently. In recent
times, the cuprate superconductors (4) and
other highly anisotropic metals (5) have
exhibited properties very different from the
predictions of FLT. We discuss a proposal
for a breakdown of the theory for these
highly anisotropic systems with strong elec-
tron-electron interactions.

One hallmark of a Fermi liquid is that
quantum coherence for the motion of a
single fermion in all directions is intrinsic;
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that is, it is present in the low-energy, low-
temperature limit for pure systems. Here we
present theoretical and experimental con-
siderations strongly challenging the inevi-
tability of such coherence for anisotropic
metals with strong electron-electron inter-
actions. In fact, the evidence for the loss of
intrinsic quantum coherence for transport
in one direction in the organic conductor
(TMTST),PE, is compelling.

The Stability of Fermi
Ligquid Theory

For short-range interactions in two or more
dimensions, FLT is valid at all orders in
perturbation theory of the electron-electron
interaction. This agreement results from the
internal consistency of FLT: the filled
Fermi sea of quasiparticles restricts the scat-
tering phase space so thoroughly that excit-
ed quasiparticles experience arbitrarily
small scartering rates for small enough ex-
citation energies. As a result, the quasipar-
ticles effectively become eigenexcitations
for sufficiently small excitation energies,
and their filled Fermi sea is an appropriate
ground state. To find behaviors other than
those expected in FLT, one must start out-
side of this self-consistent loop. One way of
doing this is to begin with the exact solu-
tion of a system of interacting fermions in
one dimension, where FLT generally fails.
Interacting fermions generally do not
form Fermi liquids in one dimension be-
cause the phase space argument leading to
the quadratically vanishing scattering rate
is not valid in one dimension. Instead, the
fermions in such models generically form
Luttinger liquids. These liquids still have
excitations with vanishing scattering rates,
but the excitations are bosonic, rather than
fermionic, in character and are related to
the density wave modes of the underlying
fermions (6). As a consequence, Luttinger
liquids differ from Fermi liquids in a variety
of ways. For example, the power laws occur-

ring in many correlation functions are func-
tions of the interaction strength. Moreover,
the velocities of spin and charge excitations
are generically different in Lutringer liquids,
although they are always the same in Fermi
liquids.

It is now well accepted that FLT fails
for generic one-dimensional models and
that Luttinger liquid behavior results.
However, real materials are never one or
even two dimensional; they are at most
anisotropic, and therefore, a proposal for
non-Fermi liquid behavior in a bulk ma-
terial cannor be justified with one-dimen-
sional results. Even a very “one-dimen-
sional” material must be represented with
coupled one-dimensional models. This
coupling is, in principle, capable of restor-
ing FLT at low enough energies. To argue
that FLT fails in bulk merals, one must
demonstrate that for some reason this cou-
pling does not restore FLT. Such a dem-
onstration requires the inclusion of, for
example, single particle hopping between
one-dimensional chains and a demonstra-
tion of something exotic about the char-
acter of the single particle hopping. In
previous work (7) we have found evidence
for a nontrivial breakdown of FLT related
to a loss of what we termed the “coherence
of interliquid hopping.”

Quantum Coherence

Coherence in this context has a meaning
somewhat different from, although related
to, its usual usage in FLT. In FLT, the
quasiparticles are said to propagate “coher-
ently” in that their scattering rates are
much smaller than their energies. They
therefore exist as well-defined excitations.
This notion of coherence is central to FLT
and to its explanation of the absence of
quasiparticle scattering. The absence of
quasiparticle scattering is necessary to ex-
plain the successes of nearly free electron
models of metals and even to explain mun-
dane and familiar properties of metals such
as their high conductivities. Coherence is
thus an essential, defining property of Fermi
liquids. The natural question is whether all
bulk metals have coherent quasiparticles.
The existence of coherently propagating
quasiparticles implies that the wave nature
of the quasiparticles will be detectable in
interference experiments. Exhibiting ob-
servable interference effects between differ-
ent histories in this manner is the defining
property of a more general notion of coher-
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ence: quantum coherence. Hereafter, we
use coherence to refer to the more general
notion of quantum coherence, but the read-
er should bear in mind the close connection
between the two, especially the fact that
Fermi liquid coherence implies various
kinds of quantum coherence. The absence
of this kind of coherence therefore implies
the absence of Fermi liquid behavior. In
fact, we will argue that some non-Fermi
liquids can be coupled perturbatively with a
single particle hopping without exhibiting
coherence for the interliquid transport. In
the low-energy, long-time limit, these mod-
els should have no observable interference
effects between histories in which fermions
move between the coupled liquids. If this
occurs, then the resulting state is not a
Fermi liquid.

Experimentally, we will discuss measure-
ments of various interference effects, but on
the Gedanken level, we are interested in
one particular quantity that offers a natural
probe of the coherence of interliquid trans-
port. We consider two systems of interact-
ing fermions, each initially in their ground
states and identical except that the systems
are at slightly different densities; that is,
8N = N, — N, # 0, where N, and N, are
the total particle numbers in each chain. At
time t = 0, we imagine suddenly switching
on the coupling between the systems in the
form of a single particle hopping, t,, and we
examine the behavior of the expectation
value (8N(t)) (7). It turns out that, by this
measure, coupled Fermi liquids, rather re-
markably, exhibit macroscopic quantum co-
herence (8), in the form of oscillations of
(8N(t)) with vanishing damping. To better
understand why undamped oscillations in
(8N(t)) represent macroscopic quantum co-
herence (and why we are studying such a
quantity at all), one needs to understand
the close analogy between (3N(t)) and the
quantity (o*(t)), which plays a central role
in the prototypical model for the quantum-
to-classical crossover, the Caldeira-Leggett
model (CLM).

The CLM focuses on a two-state “mac-
roscopic” degree of freedom described con-
veniently with the use of the Pauli matrices
for spin one-half. This degree of freedom o
is coupled to an environment of infinitely
many microscopic degrees of freedom, rep-
resented by the simplest possible realization,
a bath of harmonic oscillators. The oscilla-
tors “measure” (9) the 0% state of the degree
of freedom, and an additional perturbation
(proportional to ¢*) mixes the two g% states
coherently. For strong enough coupling to
the oscillators, the macroscopic degree of
freedom should decohere, which makes su-
perpositions of a* states meaningless, result-
ing in “classical behavior.” The quantity
most frequently studied is the expectation
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value (o*(t)), where the system has been
prepared by clamping g% to +1 forall t <0
and allowing the environment to adapt to
this configuration. This restriction resem-
bles an experimentally realizable situation:
the controllable, macroscopic degree of
freedom is held in a particular state, and the
microscopic degrees of freedom, uncon-
trolled by the experimenter, relax to their
equilibrium under these circumstances. The
system is then released, and the experi-
menter looks for quantum interference ef-
fects in the ensuing behavior of the observ-
able, macroscopic degree of freedom.

One can make a canonical transforma-
tion to the CLM, changing basis to the
eigenstates of the joint oscillator-degree of
freedom system (in the absence of the o*
perturbation that mixes the two ¢* eigen-
states). The CLM Hamiltonian then takes

the form

1 ‘ .
Hey = 7 Algte™ + o)

1 1
+ E(Emim?xiz + ﬁpf) + g0 (1)

where i in the first term is —1, Q = 2,(C/
mw?2)p, C, is the coupling to the ith har-
monic oscillator, and m;, w, x, and p, are
the mass, frequency, position, and momen-
tum of the ith oscillator. For the moment,
we consider only the case where the energy
bias € = 0. In this language, the “measure-
ment” effects of the environment are en-
coded in the nondegeneracy of the states
that are connected by the A term. In the
absence of coupling to the bath (all C,
zero), the A term connects two degenerate
o7 states. In the presence of the bath, how-
ever, decoherence results when this degen-
eracy is sufficiently reduced by the operator
e which creates and destroys oscillator
bosons over a broad energy range whenever
a transition between the a* states takes
place.

In the new representation, the usual
CLM preparation amounts to taking the
system to be in one of the two ground states
of the system in the absence of the A term
and then suddenly switching this term on at
time ¢t = 0. This treatment is parallel to the
preparation for coupled systems of interact-
ing fermions; o plays the role of 8N, A the
role of t |, and the oscillator bath the role of
the charge- and spin-density oscillator
modes of the coupled fermions systems. In
both cases, one follows the dynamics of the
expectation value of a discrete, observable
“macroscopic” variable (either o or 8N)
that has been set up in a nonequilibrium
state defined as a valid ground state of the
problem in the absence of the perturbation
(either the ¢* term or the interliquid single

particle hopping term). Like the A term in
the CLM, the action of the single particle
hopping can be written, at least for Fermi
and Luttinger liquids, as the product of an
operator whose only action is to change 8N
and an exponential in the creation and
annihilation operators of the charge- and
spin-density oscillator modes of the inter-
acting fermions (10). The resulting Hamil-
tonian is strikingly similar to that of the
transformed CLM Hg;,, Although the
models cannot be mapped into one another
(for example, the 8N variable has many
values, not just two), the analogy does mo-
tivate the proposal that both coherent and
incoherent dynamics can occur for 3N in a
manner similar to the incoherence for ¢
(11).

The signature of quantum coherence in
the CLM is taken to be the presence of
oscillations in {¢%(t)), which, when present,
result from interference between histories
in which o% varies differently. We corre-
spondingly take the presence of oscillations
in (3N(t)) as the signature of quantum co-
herence for interliquid hopping.

In FLT, (dN(t)) exhibits oscillations
with frequency Zt, (where Z is the overlap
between the quasiparticle and free-electron
wave functions at the Fermi surface) and
damping that vanishes in the limit of van-
ishing ¢, and 8N(t = 0)/L (where L is the
system size). Therefore, FLT exhibits a dra-
matic instance of macroscopic quantum co-
herence: not only are the oscillations ob-
servable, but they are essentially undamped.
The source of this persistence of oscillations
can be traced back to the fact that, al-
though 8N represents a macroscopic vari-
able that might be expected to couple to a
large number of uncontrolled (and poten-
tially dephasing) microscopic degrees of
freedom, FLT dictates that (dN(t)) is deter-
mined by the sum of many independent,
coherent quasiparticle channels. Because
each channel decouples from its environ-
ment in the limit of vanishing 8N(t = 0)/L,
coherence is unavoidable. However, for
non-Fermi liquids, such as the Luttinger
liquids of the coupled chains problem, there
is no such special protection for the coher-
ence of 3N.

In fact, whereas FLT is analogous to the
CLM with no coupling between the oscil-
lators and o%, coupled Luttinger liquids are
analogous to the CLM with finite coupling
to an ohmic bath of oscillators (7, 11). As
a result, the most likely behaviors for
(8N(t)) fall into three categories: (i) for
weak interactions, coherence and the char-
acteristic oscillations, (ii) for very strong
interactions, localization with (S3N(t—<0))
# 0, and (iii) for a range of intermediate
interactions, incoherence, with no oscilla-

tions in (SN(t)) but (dN(t—x»)) = 0. A
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remarkable result for the CLM is that the
final possibility occurs over a broad range of
coupling constants (12, 13), so that it is not
the case that the oscillations simply become
more heavily damped as the localization
behavior is approached. Rather, the oscilla-
tion frequency actually vanishes at some
intermediate coupling before the localiza-
tion sets in. The physical ingredients for
this behavior are present in the coupled
Luttinger liquid problem (11), and we be-
lieve that case (iii) should occur there as
“'ﬁ‘”.

If the oscillation frequency of (dN(t)) is
identically zero (over some range of cou-
plings where ¢, is the leading instability of
the uncoupled chains fixed point), then it is
likely that all interchain interference effects
are unobservable in the low-energy limit for
this range of couplings. After all, there is
nothing special about (dN(t)). In the CLM,
it is generally believed that the lack of
coherence in (o%(t)) signals a general loss of
quantum coherence, and, in fact, the model
was intended in part to explain the absence
of interference effects for macroscopic ob-
jects. This absence is manifestly generic,
rather than being limited to particular ex-
periments. It is therefore quite likely that
the disappearance of interference oscilla-
tions in (dN(t)) represents a generic loss of
coherence, rather than one limited to the
probe considered.

For two chains in the incoherent phase,
we expect no pair of split Fermi surfaces,
which translates, for infinitely many cou-
pled chains, into the absence of warping of
any higher dimensional Fermi surface. This
lack of warping implies that this regime
constitutes a new state of matter because
the Fermi surface shape gives a clear zero-
temperature, infinite-time distinction be-
tween the incoherent phase and a normal
metal. We therefore refer to such a phase as
a quantum-classical metal (QCM). We be-
lieve that this state is separated by a zero
temperature quantum phase transition from
a state where the interchain hopping is
coherent and a three-dimensional, Fermi
liquid metal occurs. There should be many
differences in physical properties between
these states: for example, in a QCM, the
transverse electrical conducrivity should
lack a Drude peak, and the single particle
Green's function should not exhibit a pole
on the real axis that disperses with k| (11).

It is important to emphasize that our
proposed phase is not one in which the
electrons are confined to the chains; such a
configuration would be the analog of case
(ii) above for the CLM. The latter is a
phase in which, in the language of the
renormalization group, t, is an irrelevant
operator. In our proposed phase, only the
coherence is confined, not the electrons;
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diffusive interchain motion still takes place,
and ¢, is a relevant operator.

Our proposal is not limited to the case of
coupled Luttinger liquid chains. Although
this was the best controlled case to study
theoretically and the one most closely re-
lated to the CLM, there are other possibil-
ities. In particular, a set of strongly inter-
acting two-dimensional systems whose iso-
lated ground states were non-Fermi liquid
metals would be natural candidates for in-
coherent interplane hopping. It is this pos-
sibility that we believe is experimentally
realized in the organic conductor

(TMTSF),PE,.

The Quantum-Classical Metallic
State in (TMTSF),PF,

The compound (TMTSF),PF, is a Bech-
gaard salt composed of linear stacks of tet-
ramethyltetraselenafulvalene cations (Fig.
1); the stacks are arranged into planes sep-
arated by PF, anions, which provide overall
charge neutrality and stabilize the structure.
The material is highly anisotropic with a
resistive anisotropy of 1:100:10° at room
temperature and has a single, half-filled
band (14). It is triclinic, so that the lattice
vectors are not orthogonal but, roughly
speaking, the a axis (the most conducting
direction) lies along the stacks, the b axis
(the next most conducting direction) lies in
the TMTSF planes, and the ¢ axis (the least
conducting direction) points out of the
planes. At ambient pressure, (TMTSF),PF,
is a spin density wave insulator, but at
pressures above about 6 kbar, the ground
state is superconducting. It is at such pres-
sures and in finite magnetic fields (15) that
we believe the incoherent interplane trans-
port is realized. The theoretical picture (11,
16) is that in zero field, the interplane
hopping is just barely sufficient to stabilize a

(=

three-dimensional Fermi liquid

(were it not for the superconduct-

ing transition). For a magnetic field applied
along the ¢ axis, which minimally disrupts
interplane motion, the superconductivity
can be removed while retaining interplane
coherence, and the behavior should be
roughly like that of a Fermi liquid. For other
orientations, the magnetic field interferes
with the interchain coherence (17) by add-
ing an effective inelasticity to the inter-
chain hopping (16). This addition is anal-
ogous to the € term in the CLM (Eq. 1);
such an inelasticity reduces coherence in
the CLM (12) and can be expected to do so
here as well. In fact, data show that even
moderate fields in the b direction complete-
ly remove interplane coherence.

The most natural experimental probes
for coherence effects are low-temperature
magnetotransport measurements. A number
of anomalies in such measurements attract-
ed our artention to the material. Consider
the data depicted in Fig. 2 (18). Such an
anisotropic material should have a Fermi
surface consisting of a pair of well-separated
sheets, and therefore, the magnetoresis-
tance (MR) in the most conducting direc-
tion is expected in FLT to be small and to
saturate quickly (19). Instead, the material
displays an enormous, angle-dependent MR
for fields rotated in the bc plane and current
in the a direction. Particularly striking are
the dip features that occur when the mag-
netic field parallels a real-space lattice di-
rection, the so-called “magic angles” orien-
tations. In our proposal, the dips are natu-
rally explained as places where the mag-
netic field is ineffective in disrupting inter-
plane hopping and coherence is not fully
destroyed. Such a picture has a number of
qualitative predictions, such as the narrow-
ing of the c-direction dip roughly linearly
with magnetic field, and the hierarchy of

Fig. 1. (A) The TMTSF molecule. (B) A schematic representation of the sample, with field sweep in be
plane. (C) Arrangement of the TMTSF molecules and (D) arrangement of the PF, (anion) molecules,
illustrating the “stacking” of the former, resulting in highly anisotropic bands.
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the appearance of the dips (the ¢ dip must
appear first as a function of field strength)
(11); however, it is away from the dips,
where the QCM should be realized, that the
strongest experimental consequences of the
confinement of coherent motion to the
planes should be apparent. In that state, it is
impossible to observe interference effects
between interplane histories, and therefore,
the orbital MR contribution from the com-
ponents of the magnetic field lying in the ab
plane must vanish identically.

Therefore, the MR data away from the
magic angles are also plotted in Fig. 2, not
only versus angle (20), but also versus the
component of the field perpendicular to the
ab plane. Note the extent to which the data
away from the magic angles collapse onto a
single curve, signaling the predicted inde-
pendence of the MR from in-plane field
strength. The data from within the magic
angle dips, where some coherence is present
in our picture, are not at all independent of
in-plane field strength. This deviation from
scaling is a marker for the transition from
incoherence to coherence; its vanishing
shows the transition to the incoherent
phase, expected to be truly realized only in

(/’ (degrees) c

B 5 8

H' cos 8

the limit of zero temperature and a pure
system, but closely approximated by the real
experimental data (Fig. 2).

There is at present no other theoretical
explanation for this behavior [for example,
all the scenarios in (21) fail to exhibit the
scaling observed in Fig. 2]. At a minimum,
the data imply that away from the dips, and
only away from the dips, the effect on the
resistivity in this direction of interference
effects due to fields in the ab plane is essen-
tially zero. Because there might be reasons
for this behavior other than the incoher-
ence of interplane hopping, we consider
further possible probes of the coherence of
interplane hopping.

The most natural quantity to consider in
probing c-axis coherence is the conductiv-
ity in this direction. In a simple noninter-
acting quasiparticle model with an isotropic
scattering rate, the conductivity tensor can
be calculated in the semiclassical relaxation
time approximation (22)

—o| & (k)v(k) i (2)
(] e 411_37% Y _aE

where e is the electron charge, T is the

relaxation time, and Gj(k) is the weighted
average of the quasiparticle velocity over a
semiclassical trajectory in phase space end-
ing at k (22). In the limit of large anisotropy
(the smallest bandwidth negligibly small
compared to the next smallest and so on),
the 7z component of the resistivity obtained
from this approach is just Rj[l +
(tlwgeH:a X ¢)?], where units are such that
fic = 1 R, is the zero field value, I is the size
of a unit cell in the ¢ direction, and vy is the
Fermi velocity along & (that is, in the most
conducting direction), a well-defined quan-
tity in the limit of large anisotropy. In low
fields, we expect coherence, and our theory
of the MR predicts that something like the
above behavior should be observed in the
c-direction resistivity, whereas in high fields,
one expects the magic angle dips and the
resistivity away from the dips to be indepen-
dent of the in-plane field strength. In recent
data (23) (Fig. 3), the crossover from the
low-field, approximately FLT behavior to
the magic angle behavior is striking. Again,
away from the magic angle dips, the resistiv-
ity depends only on the out-of-plane compo-
nent of the field, which is now the field
nearly parallel to the current. At a mini-
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Fig. 2. (A) The MR in the most conducting lattice direction, a, as fields of
various strengths are rotated in the plane of the other two lattice directions,
that is, from —b through ¢ on to b; 6 is measured from the perpendicular to
the b axis (Fig. 1B). Data were taken at 10 kbar and 0.5 K. (B) Subset of the
data from (A) for field orientations away from the magic angles. Data are
replotted as resistance versus field strength out of the ab plane. Note the
collapse onto a single scaling curve irrespective of field strength. (C) Data for
field strengths of 1.6, 4, and 6 T together with the expected MR from the
scaling curve of (B). Deviations from scaling occur only within the vicinity of
the magic angles that decrease rapidly with field.
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Fig. 3. (A) The MR per pendicular to the ab plane as fields of various strengths
are rotated as in Fig. 1. Data were taken at 10 kbar and 1.3 K (26). (B) Data
from (A) for 3, 5, and 7 T plotted as the natural logarithm of deviation from a
reference value versus the natural logarithm of magnetic field strength per-
pendicular to the ab plane. Away from the magic angles, the data exhibit
dependence on only one component of the magnetic field. The dependence
is well described by AR « (H cos 6)?, where p ~ 1.25. This nontrivial power
law is not compatible with existing FLT descriptions of MR. (C) Weak-field
(0.1 T) MR for be rotation. The dotted line is a fit to the data of the form R, +
alH x &|2, the semiclassical prediction for the limit of extreme anisotropy.
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mum, the data require that away from the
dips, and only away from the dips, the sum of
the interference effects artributable to fields
in the ab plane on the resistivity out of the ab
plane is nearly zero. Again, there is no the-
oretical proposal other than the incoherence
of the interplane hopping thar can account
for the observed effect, especially given the
qualitative agreement between the low-field
data and the expected behavior of a relative-
ly clean Fermi liquid.

Danner and Chaikin (5) have examined
another interference effect (24) that is sen-
sitive to the coherence of c-axis transport
and the existence of a three-dimensional
Fermi surface in (TMTSF),PF,. The results
are again naturally explained by the pres-
ence of coherence in fields whose projec-
tion along certain real space lattice vectors
is sufficiently small, but the total absence of
interplane coherence for other fields.

It is, of course, impossible ro demon-
strate the total absence of coherence exper-
imentally: one can only show that various
measured quantities are consistent with the
absence of interplane coherence, that is,
they exhibit no signs of interference effects
between histories involving interplane mo-
tion. It is remarkable, however, that three
different measures of interplane coherence
show the complete absence of such inter-
ference effects. The MR out of the ab plane
is particularly striking, because it most di-
rectly probes the c-axis charge transport
and, although its low-field behavior fits well
into the expectations of FLT, its behavior
in high fields is totally anomalous from the
FLT point of view.

If one accepts that there is no coherent
interplane motion, there is no other expla-
nation besides our proposal of relevant in-
terplane hopping that has been driven in-
coherent by in-plane interaction effects. If

the hopping were irrelevant—that is, if the
effective low-energy theory describing the
system had no out-of-plane hopping—the
unimportance of magnetic fields in the ab
plane would follow naturally. What would
not make sense, however, would be the
strong angular dependence of the c-direc-
tion MR (particularly the dips) or even the
mere existence of a substantial low-temper-
ature c-axis conductivity. Further, if the
low-energy theory had no c-axis hopping of
charge carriers, then the resistivity would
have to diverge as T — 0. The experimental
behavior in the incoherent phase (Fig. 4)
yields no evidence for such behavior down
to below 1 K.

Moreover, measurements at 50 mK
(Fig. 4) show no signs of a diverging resis-
tivity. Therefore, an explanation of the
unimportance of magnetic fields in the ab
plane based on the absence of c-axis hop-
ping is untenable. If the hopping exists
and is incoherent, it could be a property of
a low-energy fixed point or it could be the
result of inelastic scatrering or disorder.
However, because the essential features of
the MR remain down to at least 50 mK
(Fig. 4), an explanation based on inelastic
effects again appears untenable. For many
reasons, inelastic disorder scattering is also
unable to account for the loss of coher-
ence (25). For example, (i) the magic
angles and scaling are only observed in the
highest quality crystals; (ii) the low-field
data are consistent with a FLT type be-
havior with a scartering rate of abour 1 K,
a rate too low to credibly explain the
incoherence of c-axis transport; and (iii)
the magic angle dips in themselves dem-
onstrate a strong dependence of the in-
plane transport on the coherence of the
c-axis motion, a dependence that is impos-
sible if disorder dominates c-axis motion.

Fig. 4. Temperature dependence 0.35
of the resistivity perpendicular to
the ab plane both in the absence of

a magnetic field and in a field of 7 T Qi
along b (the latter condition is in the
incoherent phase). Data taken at an e I
applied pressure of 10 kbar. (Inset)
MR perpendicular to the ab plane r
for be field rotations asin Fig. 2, but . ;51
at 8.2 kbar and 50 mK (27). <&
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Conclusion

The experimental situation is
therefore remarkably compelling. All indi-
cations are that in the limit of a pure system
and zero temperature, (TMTSF),PF, exhib-
its a phase in which an applied magnetic
field (15) not only destroys superconductiv-
ity but drives the system to a state of matter
characterized by finite, relevant interplane
electron hopping but the complete absence
of observable interference effects between
histories involving interplane motion. More
succinctly, at zero temperarture, there is a
nonvanishing interplanar electron conduc-
tivity, but it is completely incoherent, in
contrast to the coherent in-plane transport.
The state is, therefore, a new phase of elec-
tronic matter, a non-Fermi liquid metal
characterized by “quantum” in-plane and
“classical” interplane transport—in short, a
quantum-classical metal.
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