
358, 302 (19921, A. Mranker, C. V. Robnson, S. E 
Radford, R. T. A p n ,  C. M Dobson, Science 262. 
896 (1 993) 

2i .  G .  Wdegger and T Kiefhaber. J. Mol. B1o1. 270, 291 
(1997). 

25, S. A Woodsol? and T. R. Cech. Biochemist~ 30, 
2042 (1991). 

26. D E. Draper Trends Blochem. Sci. 21 . 115 (1 996); 
D. Thir i~maa and S. A. Woodson. Accoiints Chem. 
Res. 29. 433 (1996); K A. D l  and S. Chan. Nature 
St~uct. Biol. 4. 10 (1997). 

27. M. S Rook. D K. Trelber, J. R W~ll~amson, In 
preparation 

28. For each mutant, the fraction of actve molecules at 
37°C was determined by measurng the knetc  burst 
In a multiple-turnover cleavage assay as descrbed 
jD. Herschlag and T R Cech. Biochem~sty 29, 
10159 (1990)l. In a Instances, the actlve rlbozyme 
concentraton was nearly equal to the total rbozyme 
concentraion T+s  result was obta~ned whether the 
ribozynies were prefoded In either 10 or 2 mM 
Mg", ndca tng  that the ln~~tat ions do not niar<edly 

Energy Transduction on the Nanosecond 
Time Scale: Early Structural Events 

in a Xanthopsin Photocycle 
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Claude Pradervand, Thomas Ursby, Dominique Bourgeois, 
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Photoactive yellow protein (PYP) is a member of the xanthopsin family of eubacterial 
blue-light photoreceptors. On absorption of light, PYP enters a photocycle that ultimately 
transduces the energy contained in a light signal into an altered biological response. 
Nanosecond time-resolved x-ray crystallography was used to determine the structure of 
the short-lived, red-shifted, intermediate state denoted [pR], which develops within 1 
nanosecond after photoelectronic excitation of the chromophore of PYP by absorption 
of light. The resulting structural model demonstrates that the [pR] state possesses the 
cis conformation of the 4-hydroxyl cinnamic thioester chromophore, and that the process 
of trans to cis isomerization is accompanied by the specific formation of new hydrogen 
bonds that replace those broken upon excitation of the chromophore. Regions of flex- 
ibility that compose the chromophore-binding pocket serve to lower the activation 
energy barrier between the dark state, denoted pG, and [pR], and help initiate entrance 
into the photocycle. Direct structural evidence is provided for the initial processes of 
transduction of light energy, which ultimately translate into a physiological signal. 

Elaborate systems exist in a wide variety of 
species to gather light energy and convert it 
into chemical energy or into a structural 
signal that ultimately leads to a b~ological 
response. T h e  structural bases for these con- 
versions are not well understood. T h e  in~t ia l  
chemical step associated with photoactivity 
is often photoisolnerization of a highly con- 
jugated protein prosthet~c group that may 
generate an  altered signaling conformation. 
This is subsequently recognized by a diffus- 
ible or other messenger that delivers the 
slgnal to do\v~lstream effectors (1  ). T h e  best 
studied exalnple is the generation of the 

Ineta I1 state of malnlllalian sensory rhodop- 
sin by photoisomerization of its opsin chro- 
mophore and the subsequent activation of 
several lnolecules of trallsducin during the 
long half-life of the lneta I1 intermediate (2). 
W e  describe the early structural changes that 
occur upon absorption of light in a member 
of a particularly simple class of bacterial pho- 
toreceptors: the xanthopsi~ls (3). 

T h e  san thops~n  from the photoautotro- 
phic purple eubacterium Ectothiorhodospira 
halopiilla, kno\yn as photoactive yellow pro- 
tein (PYP), is a small, 14-kD, water-soluble 
protein in which a 4-hydroxy c inna~nic  acid 
cl~romovl~ore is covalentlv linked throuoh a 
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mophore is completely buried with no  atom 
exposed to solvent (6). These properties 
contribute to the protein's character~stic ab- 
sorption peak at a wavelength of 446 11111 ( 4 ,  
7, 8). Upon photoelectronic excitation, PYP 
efficiently enters a fully reversible photo- 
cycle that contains at least two snectrallv 
d~stillct i~lterlnediate states, denoted [pR] 
and [pB], each presu~nably associated with 
structural changes in the chromophore and 
its protein env1ronmeIlt (Fig. I ) .  T h e  rate 
constants for interconversio~~ of the interme- 
diate states progressively decrease through- 
out the photocycle (71, and therefore, the 
presumed s ~ g ~ ~ a l i ~ ~ g  state [pB] accumulates 
under constant ~llumination that populates a 
saturated photostatio~~ary state (9). Time- 
resolved x-ray crystallographic studies with 
10-ms time resolution of the decav from this 
photostatlonary state c o ~ l f l r ~ n  tha; the chro- 
mophore is in  the cls conformation (10) as 
predicted by c h e ~ n ~ c a l  studies ( I  I ) .  T h e  Je-  
cay \\.as shown to involve eject1011 of the 
chromophore from its b ind~ng  pocket, dis- 
placelnent of the s ~ d e  chain of Arg5' that 
closes the chro~nopl~ore-bindll~g pocket, ex- 
posure of the chro~nophore to the solvent, its 
protollatloll ( Id .  121, and concolnitant ma- 
ior rearraneelnent of the H-bond network 
that stabilized the phenolate anion ~ I I  the 
dark state (6, 13). T h e  cheln~cal and crvs- 
tallograpllid studies so far have not identifkd 
the stage in the photocycle at which chro- 
mophore ~somer~zation occurs, probed earlier 
structural changes 111 the photocycle, or ill- 
dicated ho\v the [pB] state is generated. 
These ultrafast structural changes in PYP 
that ultimately lead to the fornlation of the 
[pB] state are critical to its function as a 
photoreceptor. 

T h e  recent development of l~anosecolld 
time-resolved x-ray crystallography (14, 15) 
provides the opportunity to study the pro- 
cesses leading to the forlnatioll of the [pB] 
state in crystals of PYP (16) and, hence, to 
characterize early structural intermediates. 
The  experiments were conducted at the 
white bealnline ID-9 at the European Syn- 
chrotron R a d ~ a t ~ o ~ l  F a c ~ l ~ t y  (ESRF), Gre- 
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7-ns laser pulse [full width at half maximum 
(FWHM)] at 495 n m  to small crystals at 287 
K (17, 18). The structure was probed at a 
series of time delays after the laser pulse, 
ranging from 1 ns to 1 ms, by an x-ray pulse 
of 150 ps duration (ESRF single-bunch 
mode) or a pulse train of 1.8 ps duration 
(ESRF 213-filling hybrid mode). Diffraction 
from the small crystals used in the experi- 
ment (1 7) was weak, and the structural signal 
expected was small (18). Complete x-ray 
data sets were therefore collected with rough- 
ly 14-fold redundancy and 10-fold averaging 
of each individual image (1 7) to yield accu- 
rate structure factor amplitudes and to permit 
outlier identification (Table 1). 

We  present results obtained at the short- 
est time delay o f  1 ns that reveal the earliest 
intermediate in the photocycle identifiable 
wi th the current methodology. We  associ- 
ate this intermediate wi th the [pR] state. 
Structure factor amplitudes derived from 
Laue intensities were used to calculate a 
difference Fourier map wi th coefficients 
I F 1, _ - 1 F I ,,, that reveals the structural 
differences between the earliest intermedi- 
ate, [pR], and the dark, p G  states (Fig. 3). 
The difference map contoured at 2.60 

Fig. 1. The PYP photocycle. Upon absorption of 
blue light, the electronic excited state of the chro- 
mophore, [P*], is generated by a transition from 1 
to zf in the conjugated system. Thermal relaxation 
from this electronic excited state to the first inter- 
mediate state, [pR] (31), is accompanied by a red 
shift of the absorption maximum (7). Biphasic 
thermal relaxation yields the second intermediate 
state, [pB], with a substantial blue shift in the ab- 
sorption maximum (7). The photocycle is com- 
pleted by protein-assisted, thermal, cis-to-trans 
reisomeriiation that recovers the dark state, pG 
(7, 11). The biphasic nature of the interconversion 
between states suggests that thermal relaxation 
occurs via multiple pathways and that the inter- 
mediate states are structurally heterogeneous (9). 
Therefore, we represent these states by square 
brackets: [Pq, [pR], and [pB]. This figure displays 
the essential features of the photocycle; however, 
more complicated models can be envisaged. 

[where a is the root-mean-square (rrns) val- 
ue of the difference electron densitv in the 
entire asymmetric unit] shows prominent 
features that are, as expected, largely con- 
fined to the local environment of the chro- 
mophore (Fig. 3). The lack of any features 
on the aromatic moiety of the chromophore 
(Fig. 3) is, however, unexpected and indi- 
cates that this moiety remains buried and 
that its center does not undergo significant 
translational motion in the transition to the 
[pR] state. Several prominent features in the 
difference map indicated specific changes in 

the positions of atoms of the chromophore 
and its local environment (Fig. 3). 

We built several trial models for the [pR] 
state that soueht to account for these fea- 
tures. Only o i e  accounted for features in 
omit maps in which the chromophore is 
omitted. This model could also be successful- 
l y  refined against the Laue data (Table 2) 
(19). Care had to be taken in refining a 
short-lived, unstable structure against such a 
small signal in the data, particularly because 
the standard protein parameters used in crys- 
tallographic refinement are derived from un- 

Fig. 2. The chromophore dis- 
position in pG (A) and [pR] (B) 
is compared with the chro- 
mophore of GFP (C) (32), 
formed by posttranslational au- 
tocatalytic conversion of SeP, 
TyP, and Glp7 to 444-hy- 
droxybenzy1idene)-imidazolidin- 
5-one (24). 

Fig. 3. 1 F I  , ns - I FI,  difference 
Fourier map. The 1 -ns difference 
map is superimposed on the pG 
structure (6) with important side 
chains in green and the chro- 
mophore in yellow. The model for 
the 1-ns structure is also shown in 
maroon. The difference features ex- 
ceeding 2.60 are shown as basket- 
weave contours. Blue and red con- 
tours indicate regions of positive 
and negative difference electron 
density, respectively. The most 
prominent positive feature (+5.00; 
denoted L) appears to result from 
repositioning of the vinyl C atoms of 
the chromophore. It is associated 
with negative features on the chro- 
mophore carbony10 (5.60; denot- 
ed M) and they S of Cysm (-4.60; 
denoted N) that together indicate 
motion of these atoms. These data 
suggest that a "crankshaft" motion 
of the chromophore tail occurs 
upon isomerization that does not 
require a flip of its aromatic moiety; 
the initial structural changes in the 
chromophore are then seen mainly 
in its tail. Another prominent nega- 
tive feature (3.80; denoted 0) be- 
low the a C of Cysag suggests that 
the backbone in this proximal region (20) of the chromophore pocket shifts toward the chromophore. 
Such a backbone motion is required if the aromatic moiety at the opposite, or distal, end of the 
chromophore is pinned. Trans-to-cis isomerization must cause a contraction of around 0.5 A in the 
overall chromophore length (as measured by the distance from the Cysag y S to the phenolate 0). A 
further set of features is associated with atoms of the distal region of the chromophore-binding pocket, 
near the phenolate moiety. Feature "P" on the 8,  side chain 0 of G I U ~ ~  indicates its motion toward TyP2 
and perhaps an increase in its temperature factor. 
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strained stable structures and may not be 
directly applicable to short-lived structures. 
The model that was successfully refined con- 
tained a cis conformation about the chro- 
mophore vinyl IT bond created through (i) 
torsion about the Cys69 x1 and x2 dihedral 
aneles associated with the bond between the 
y sulfur and the chromophore carbonyl C; 
(ii) minor changes in the proximal (20) 
polypeptide backbone dihedral angles; and 
(iii) torsion about the x1 and x2 dihedral 
angles of the side chains of Tyr42 and 
Glu* (Figs. 2B and 4B). That is, tram to cis 
isomerization was completed in less than 1 
ns. The chromophore remains in its binding 
pocket. The center of its aromatic moiety 
does not move, although the ring has rotated 
in its plane. The chromophore retains its 
H-bond to the hydroxyl of Tyr42, which is 
slightly displaced. The ThsO hydroxyl also 
shifts to maintain its role as the H-bond 
donor to the hydroxyl of Tyr42. The side 

chain of Glu* shifts away from Tyr42 toward 
the protein core. The distance between a 
G ~ u ~ ~  side chaiv 0 and the phenolate 0 
increases to >5 A and demonstrates that the 
H-bond in pG to the chromophore pheno- 
late 0 has been broken in the [pR] state. 
Glu* appears not to form a stronger H-bond 
to the phenolate of the chromophore at this 
stage of the photocycle, in contrast to the 
interpretation of Fourier-transform infrared 
spectroscopy difference spectra obtained at 
70 K in D20 (13). Our finding is more 
consistent with results from the Glu* + 
Gln46 mutant (21), in which the rate of the 
[pR]-to-[pB] transition is increased despite 
the inability of Gln to serve as a proton 
donor. No new H-bond associated with the 
side chain of Glu* can be identified in the 
[pR] state; however, G ~ u ~ ~  may remain stabi- 
lized by longer range electrostatic interac- 
tions with ionized groups in other regions of 
the protein. 

Fig. 4. Comparison of the pG and [pR] state structures: the chromophore and its environment are 
viewed in the pG structure (6) (A) and the refined structure of the [pR] state (B). In (C) and (D), the 
chromophore and the Cys69 and TyP8 residues are viewed from the proximal end of the binding pocket. 
The pG (C) and [pR] state (D) differ in the position of the tail carbony10 with respect to the plane of the 
conjugated system of the chromophore. The distance from the carbonyl 0 to the amide N of Cys69 
is 2.69 A in pG; the distance from the carbony10 to the amide N of Tyrg8 is 2.83 8, in [pR]. The distance 
between the amide Ns of Cys69 and TyP8 remains fixed at 6.07 A in both pG and [pR]. 

The rotation of the aromatic moietv of 
the chromophore in its plane moves the 
phenolate 0 toward the side chain of ArgS2 
(Fig. 4B). In the saturated photostationary 
state. the side chain of Ares2 moves awav - 
from the chromophore and opens the bind- 
ing pocket "hatch" (6, 10). The refinement 
of the [pR] state shows that the guani- 
dinium group of Args2 moves about 0.7 A 
out of the chromophore pocket toward the 
solvent, consequently lengthening the H- 
bonds between its guanidinium group and 
the carbonyl 0 s  of Tyr98 and Thr50. Its bond 
to Tvr98 reDresents the onlv direct link be- 
tween the distal and proximal portions of the 
bindine Docket other than those associated 
with tceLchromophore itself. 

Photoisomerization disrupts the distal H- 
bonding network of the phenolate in [pR] 
and requires that the cw and p carbons of 
Cys69 move toward the chromophore to 
maintain stabilization of the phenolate anion 
by the H-bond to the Tyr42 hydroxyl. This 
motion of the proximal main chain atoms is 

Table 1. Crystallographic data collection and re- 
duction. PYP- and PYP, .. refer to data taken 
before or after the laser pulse. For PYP, ns, the 
laser/x-ray pulse had a delay of 1 ns. 

Item PYPdd PYP1 ns 

Singles 
Observations 190,053 182,155 
Unique reflections* 10,475 10,475 
R,,, on F2 (%It 12.8 13.4 
R,,, on IF1 (%)$ 9.2 9.2 

Singles and multiples combined 
Unique reflections* 13,376 13,027 
Overall redundancy 14.2 14.0 
Rdahll ns (%I5 - 6.7 

Resolution Completeness (%)T 
range (All1 

-3.00 93.2 (93.2) 93.2 (93.2) 
3.00-2.38 95.3 (94.2) 95.3 (94.2) 
2.38-2.08 93.5 (94.0) 93.5 (94.0) 
2.08-1.90 92.0 (93.5) 92.0 (93.5) 
1.90-1.75 89.7 (92.7) 90.0 (92.8) 
1.75-1.65 86.7 (91.7) 87.0 (91 .8) 
1.65-1.57 71.5 (88.8) 71.8 (89.0) 
1.57-1.50 45.3 (83.4) 44.8 (83.4) 

'Unique reflections with Flu, > 2, where cr, is the rms 
deviation determined from mergin of stwcture 
amplitudes. +R- = P I P  - (F2j/IF2. where F2 
is the square of the structure factor amplitude of an ob- 
served refection, calculated by scaling the integrated 
intensity by a general scale factor, and (F2) is the 
mean from multiple obse~ations and symmetry-related 
measurements. SR,,, = 211~1 - ( 1  FI)IILI FI , 
where IF[ is the structure factor amplitude (IF[) is 
the average amplitude from multiple observations. 
PR = PIFldark - s.1~1, n s l l ~ l ~ l d a r k ,  where  IF^^& and IF/, ns are the obse~ed structure factor 
amplitudes for PYP,,, and PYP, .., respectively, and 
S is the scaling factor. llAll data were integrated to 
1.5 A resolution; however, only the data to 1.9 A were 
used in structural refinement. qCompleteness by 
resolution shells for singles and multiples combined. 
Cumulative completeness is also shown in parenthe- 
ses. Binning is based on equal shell volume. 
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accompanied by breaking of the H-bond be- 
tween the chromophore carbony10 and the 
amide group of Cydj9. In [pR], the carbonyl C 
of the chromophore tail adopts a highly 
strained, pseudo-sp3 geometry (Fig. 4, B and 
D). The H-bond between the carbony10 of 
the chromophore tail and the amide group of 
Cys69 is broken in [pR] as the carbonyl reori- 
ents and forms a new H-bond with the back- 
bone amide group of Tyrg8. In pG, the car- 
bonyl 0 of the chromophore tail lies above 
the conjugated plane of the chromophore 
(Fig. 4C), near the Cys69 amide group. In 
[pR], the 0 is on the other side of the ring, 
H-bonded to the backbone amide group of 
Tyrg8 (Fig. 4D). The carbonyl 0 cannot lie 
in the plane of the chromophore ring in the 
cis isomer without severe energetic penalties 
due to substantial steric hindrance between 
the O and ring Hs. In the saturated photo- 
stationary state representing [pB], the car- 
bonyl O reforms its H-bond with the amide 
group of Cys69 (1 0); thus, the transition from 
[pR] to [pB] must traverse this high energy 
barrier. This provides a structural explana- 
tion for why the interconversion from [pR] to 
[pB] is much slower than the interconversion 
from [P*] to [pR] (7). 

The regions of the backbone that move in 
the transition from pG to the [pR] state 
largely correspond to regions of nonideal sec- 
ondary structure in pG. Helix C, in the distal 
region of the chromophore-binding pocket, is 
underwound at its COOH-terminal end, as 
evident ino long backbone H-bond distances 
of >3.2 A between Glu46 and Thr50 and 
Gly4' and Gly51, which indicates that the 
backbone of helix C is strained in pG. The 
proximal backbone adjacent to Cysa is also 
flexible. The main chain between Ala67 and 
Thr70 forms two overlapping type 111 P turns 

Table 2. Crystallographic refinement of the [pR] 
state. 

Item Value 

Atoms per asymmetric unit 1168 
Refined atomic positions 54 
Residues per asymmetric u n ~ t  125 
Residues with alternate 14 

conformation* 
Residues with refined alternate 7 

conformation* 
Final dark-state occupancy'i 0.85 
Final 1 ns light-state occupancyt 0.15 
Rc,stf 0,180 
'free 0.185 
'Residues with alternate conformations include those 
from the origna structure determination of pG and those 
corresponding to the [pR] state. Only the [pR] alternate 
conformations were reined, ?The f ~ n a  occupances 
are normalized such that they add to unity. tR,,,, 
denotes the standard ciystallograph~c R factor: 
hkZFob (hk l )  s~Fcalc(hkl)~hkZFobs(hkl)' where Fobs(hkl) 
and F,,,,~,,,, are the observed and calculated structure 
factor amplitudes of a reflection with indices h, k. I, and s 
is a scale factor. 

(22) that have elongated, main chain H- 
bond distances and nonideal backbone dihe- 
dral angles. The second P turn also overlaps 
with a single turn of T helix, identified by a 
canonical H-bond between the main chain 
carbonyl O of Thr70 and the amide of Tyr76. 
The proximal and distal regions are the sole 
sites of protein backbone motion between 
the pG and [pR] states. The lack of strong 
interresidue main chain H-bonds in pG evi- 
dently provides PYP with the necessary flex- 
ibility in critical regions to permit the sub- 
stantial structural changes that must accom- 
pany isomerization in a chromophore that is 
buried and completely solvent-inaccessible in 
its binding pocket. This feature plays a piv- 
otal role in establishing an accessible free- 
energy pathway between the dark state and 
subsequent intermediates in the photocycle 
upon excitation with blue light. 

The flexibility in the chromophore and its 
protein environment is quite different in 
green fluorescent protein -(GFP) from Ae- 
quorea victoria. Despite a strong similarity in 
the chromophore structure of the two pro- 
teins (23), the tail of the GFP chromophore 
is covalently locked in its conformation and 
evidently lacks the flexibility of the PYP 
chromophore and its binding pocket (Fig. 
2C). GFP does not have a photocycle like 
PYP, but converts the energy of the absorbed 
photon into highly efficient fluorescence 
emission. Several mutants of GFP derive en- 
hanced fluorescence quantum yields from 
further restriction of the conformational flex- 
ibility of the chromophore region (24), thus 
hindering a thermal relaxation pathway and 
increasing fluorescence emission. In contrast, 
PYP has a low fluorescence quantum yield 

(25) and a high quantum yield for 
entering the photocycle (Q = 0.35) (7, 26). 
Flexible parts of the chromophore and its 
binding pocket in PYP may direct specific 
changes in conformation, thus allowing effi- 
cient entrance into a photocycle that pro- 

state, [pB]. Although the half-life of [pR] is 
probably too short to bind diffusible second 
messenger molecules, there may be another 
PYP ligand in the signal transduction system 
that binds pG and has a substantially reduced 
affinity for [pR]. On formation of [pR], the 
ligand would be quickly released. Such a 
molecule may, by binding pG in the dark, 
play a role in photocycle quenching similar 
to the arrestin and rhodopsin kinase quench- 
ing pathway in mammalian sensory rhodop- 
sin (27). 

The structure of PYP in the dark is 
cocked and ready for structural changes. 
Light provides the large amount of energy 
to promote isomerization, and thus pulls the 
trigger. 
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innervation, structural integrity, and me-
chanoelectrical transduction. Although as 
many as 100 genes may be involved (I), 
only a small number of genes have been 
identified that cause nonsyndromic hearing 
loss: human connexin 26 (QJB2) (2), hu­
man myosin VIIA (MY07A) (3), human 
diaphanous (4), and mouse myosin VI 
(My06) (5). Another POU-domain tran­
scription factor, POU3F4 (POU domain, 
class 3-, transcription factor 4), causes hu­
man X-linked mixed deafness, DFN3 (6). 

We are studying the genetic basis of 
progressive hearing loss in an Israeli Jewish 
family. The family traces its ancestry to 
Italy and to subsequent migrations through 
various North African and Middle Eastern 
countries, including Tunisia, Libya, and 
Egypt, with branches of the family now 
living in Israel, the United States, and Bel­
gium (7). Five generations demonstrate au­
tosomal dominant inheritance of progres­
sive deafness (Fig. 1A). The earliest record 

Mutation in Transcription Factor POU4F3 
Associated with Inherited Progressive 

Hearing Loss in Humans 
Oz Vahava,* Robert Morell,* Eric D. Lynch,* Sigal Weiss, 

Marjory E. Kagan, Nadav Ahituv, Jan E. Morrow, Ming K. Lee, 
Anne B. Skvorak, Cynthia C. Morton, Anat Blumenfeld, 
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The molecular basis for autosomal dominant progressive nonsyndromic hearing loss in 
an Israeli Jewish family, Family H, has been determined. Linkage analysis placed this 
deafness locus, DFNA15, on chromosome 5q31. The human homolog of mouse Pou4f3, 
a member of the POU-domain family of transcription factors whose targeted inactivation 
causes profound deafness in mice, was physically mapped to the 25-centimorgan 
DFNA15-linked region. An 8-base pair deletion in the POU homeodomain of human 
POU4F3 was identified in Family H. A truncated protein presumably impairs high-affinity 
binding of this transcription factor in a dominant negative fashion, leading to progressive 
hearing loss. 
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