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Kinetic Intermediates Trapped by Native 
Interactions in RNA Folding 

Daniel K. Treiber, Martha S. Rook, Patrick P. Zarrinkar,* 
James R. Williamson? 

In the magnesium ion-dependent folding of the Tetrahymena ribozyme, a kinetic inter- 
mediate accumulates in which the P4-P6 domain is formed, but the P3-P7 domain is not. 
The kinetic barriers to P3-P7formation were investigated with the use of in vitro selection 
to identify mutant RNA molecules in which the folding rate of the P3-P7 domain was 
increased. The critical mutations disrupt native tertiary interactions within the P4-P6 
domain and increase the rate of P3-P7 formation by destabilizing a kinetically trapped 
intermediate. Hence, kinetic traps stabilized by native interactions, and not simply by 
mispaired nonnative structures, can present a substantial barrier to RNA folding. 

RNA forms complex structures that are 
able to perform a variety of functions rang- 
ing from llgand binding to catalysis. How- 
ever, the mechanism by which an R N A  
molecule folds into a unique three-dunen- 
sional structure remains poorly understood. 
T o  study the Mgz'-dependent k ine t~c  fold- 
ing pathways of large, highly structured 
RNA molecules such as the Tetrahymena 
r~bozyme and ribonuclease (RNase) P, we 
have previously developed a klnetic ollgo- 
nucleotide hybrid~zat~on assay (1,  2 ) .  This 
assay exploits the selective accessih~lity of 
unfolded RNAs to sequence-specific oli- 
godeoxynucleotide probes, the binding of 
which confers sensitivity to cleavage by 
RNase H. Folding is initiated by the addi- 
tion of Mg2', and the fraction of unfolded 
RNA at var io~~s  tllnes is scored in a cleav- 
age reaction containing DNA probes and 
RNase 1-1. On addition of MeL+ to the 
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Tetrai~ymena ribozyine, the two structural 
domains that constitute the catalytic 
core-P4-P6 [base-paired (P) regions 4 to 6, 
positions 104 to 2611 and P3-P7 (P3, P i ,  
and P8)-form sequentially as kinetic fold- 
Ing units (1 ,  3). For~nation of P4-P6 1s rapid 
(60 minpl )  (4) ,  whereas P3-P7 forms slow- 
ly, on the minute tune scale (1) .  7111s order 
of k~ne t ic  foldlng events 1s supported by 
chemical modification (5), ultraviolet 
cross-linking (6), and x-rab- footprint (4 )  
analysis. In the proposed folding pathway 
(1 ,  3) ,  an intermediate (Iz)  accumulates In 
which only P4-P6 is folded, and the rate- 
limiting step for P3-P7 formation is the 
unirnolecular rearrangement of I2 to inter- 
mediate I,. Slow unirnolecular folding steps 
have also been ident~fied for the group I 
intron b l i  (7) and RNase P (2 ) ,  and they 
may be a general feature in the folding of 
large RNAs. 

u 

Mutations that increase the rate of fold- 
ing of proteins have provided ins~ght into 
the ~nechanism of slow folding steps (8). 
W e  developed an in vitro selection scheme 
to identify mutant Tetrai~ymena ribozyrnes 
in which the slow P3-P7 folding step (I2 + 
I,) is accelerated (9 ) .  Ribozymes that fold 
rapidly after Mg" addition were selected 
from a pool of RNAs contalnlng an average 
of four mutations per molecule. Slo~v-fold- 
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ing RNAs were selectively depleted from 
the pool by kinetic oligonucleotide hybrid- 
ization with probes targeting P3 and P7. A 
step was included in each cycle of selection 
to ensure that fast folding mutants formed 
an intact catalytic core (9) .  After nine 
rounds, the folding rate of the pool (G,) 
had increased by a factor of 4 relative to 
that of the in~t ial  pool (G,) and by a factor 
of 2 relative to that of the wild type (Fig. 1). 
Twenty-four individual molecules were 
cloned from the G, pool, and the folding 
rate of the P3-P7 domain for five of these 
clones was at least three to five times that of 
the wild type at 37°C (Fig. 1 and Table 1) 
(10, 11). 

Because each fast folding clone con- 
tained at least three mutations, individual 
point mutants were constructed. For the 
four clones analyzed, a s~ngle mutatlon was 
sufficient to reproduce the fast folding phe- 
notype (Table 1).  The A183U ( A  at posi- 

0 1 2 3 4 

Time (minutes) 

Fig. 1. Isolation of fast fod~ng RNAs after nine 
rounds of in vitro selection. The kinetics of P3-P7 
formation for r~bozyme generatons Go to G, and 
cloned individual molecules from G, were probed 
by kinetic oligonucleotide hybridizaton. Initiation 
of folding and the quench reaction were as de- 
scr~bed (9). The fraction cleaved at each foldng 
time was determined by denaturing PAGE and 
Phosphorimager analysis (Molecular Dynamcs). 
The apparent foldng rate constant (kfo1,) was ca-  
culated by f~ttng curves to a s n g e  exponental 
(10). Data were normalized to allow d~rect com- 
parison. RNAs and k.,, values: 7, G, pool (0.63 
mn-I), ., wild type (1.2 min-'), C, G, pool (2.33 
mn-'), and @, clone G,-10 (5.0 m n ' ) .  
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t ion 183 + U),  A1 7 lG, U167C, and of the P4-P6 domain (Fig. 2A), suggesting a 
+GI74 ( G  insertion at position 174) mu- common mechanism of action. The muta- 
tations are al l  localized in the P5abc region tions did not  greatly affect either catalysis 

Table 1. Kinetic and thermodynamic constants for the folding and activity of fast folding mutants. P3-P7 
folding kinetics for the clones and corresponding point mutants (second and fourth columns, respec- 
tively) were measured as in Fig. 1. Mutations that did not affect folding are not listed. The precision of the 
kfold values was generally a factor of -1.5. The stability of P3-P7 for each point mutant ([Mg2+]l,2) was 
measured by Mg2+ titration as described (7). RNA molecules were equilibrated for 25 min at 37°C in 0.2 
to 10.0 mM MgCI,. At each Mg2+ concentration, the fraction of molecules folded was determined by 
oligonucleotide hybridization targeting P3. [Mg2+],,, the concentration of Mg2+ required for half- 
maximal folding, was calculated by fitting curves to the Hill equation. For each point mutant, the integrity 
of the catalytic core was assessed by measuring the rate constant for the chemical step (kc) in a 
single-turnover cleavage reaction as described (3). Ribozyme (50 to 100 nM) was annealed in TE buffer 
and allowed to fold for 10 min at 37°C in kc buffer [50 mM MES (pH 5.5), 10 mM MgCI,, 10 mM NaCI, 
and 1 mM dithiothreitol]. The reaction was initiated by adding 5' 32P-labeled substrate (CCCUC- 
UAAAAA) and guanosine triphosphate (final concentrations, 0.5 nM and 0.5 to 2.0 mM, respectively) in 
kc buffer. The fraction of molecules cleaved at various times was determined by denaturing PAGE, and 
kc was calculated by fitting curves to a single exponential. kc values were constant (20.02 min-l) in the 
range of ribozyme and guanosine triphosphate concentrations tested, confirming that the conditions 
were saturating. The fraction of active molecules was similar for wild-type and mutant ribozymes (28). 

Clone P3-P7 k,,, Mutation P3-P7 kfold [Mg2+1,/2 kc 
(min-l) (min-l) (mM) (min-l) 

Wild type 1.2 1.2 1 .O 0.20 
A1 86U 4.7' A186U 4.7' <2t NDS 
Gg-10 5.0 A1 83U 5.0 1.4 0.1 9 
Gg-1 8 5.0 A171G 4.6 1.2 0.1 6 

U167C 4.5 1.2 0.1 3 
Gg-22 4.0 U167C 4.5 1.2 0.13 
Gg-24 6.0 +GI 741 4.5 1.4 0.18 

'For AJ86U, P3 and P7 folding kinetics were measured separately. The value listed is the average of these measure- 
ments, which were almost identical. Separate measurements for the other mutants were also similar, tEstimated 
in (16) with hydroxyl radical protection assays. SND, not determined. §Insertion of G at position 174. 

or the stability of P3-P7 (Table 1). Thus, 
although P5abc makes n o  direct contacts 
wi th P3-P7 in the three-dimensional struc- 
ture model (12) and the P4-P6 domain 
acquires its native structure before P3-P7 
formation (4), positions in P5abc affect the 
folding rate of P3-P7. 

The P5abc mutations are clustered 
throughout the "magnesium core" of P4-P6 
in the domain crystal structure (Fig. 2B) 
(13). Single-atom changes that disrupt the 
Mg2+ binding sites destabilize the entire P4- 
P6 domain (13). Given that all of the fast 
folding mutations are likely to disrupt the 
highly cooperative network of interactions 
within the core, destabilization of P4-P6 in I2 
may increase the rate of P3-P7 formation. 
The potentially destabilizing effects of the 
A171G and A183U mutations are especially 
apparent. A171 is within an adenosine plat- 
form motif in the loop of P5c (L5c) (13) that 
may stabilize P5c or mediate pairing between 
L5c and the P2 loop in the proposed P I4  
helix (12, 14). Furthermore, the % phos- 
phate oxygen of A1 7 1 directly coordinates 
Mg2+ (13). The A183U mutation disrupts 
two hydrogen bonds that directly bridge the 
helical stacks in P4-P6 (13). 

If the fast folding mutations destabilize 
P4-P6, then other destabilizing mutations 
such as A186U (1 5 ,  16) should also accel- 
erate folding. A186U disrupts five hydrogen 
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8.2. Localization of fast folding mutations In the PSabc region of 
3 P4-P6 domain. Positions of fast folding mutations in the ri- 
lzyme secondary structure (A) and the P4-P6 doman crystal 
ucture (B) (13) are indicated. 



bonds with three different nucleotides in 
the  three-way junction (13) (Fig. 2) .  This 
mutation accelerates P3-P7 formation bv 
the  same factor as that observed for the  
selected luutations (Table I ) ,  suggesting 
that destabilization of P4-P6 in I, is the  
common mechanisln of action ( 1 7). 

Given that destabilization of 1~atil.e P4- 
P6 interactions increases the rate of 723-727 
formation, we propose that I, is a k~ne t i c  
trap. In protein and R N A  fold~ng, the hall- 
mark of a kinetic trap IS that the  fold~ng rate 
is increased in  the oresence of a denaturant. 
Although denaturants typ~cally reduce the 
rate of protein folding, they can also increase 
the rate of protein (1 8) and R N A  (1 9)  fold- 
ilng by destabilizing kinetically trapped Inter- 
mediates. Urea markedly increased the rate 
of P3-P7 forlnat~on In the wild-type ri- 
bozyme (Fig. 3 )  but had a much smaller 
effect o n  the folding rate of the  A183U 
mutant. Hence, a kinetic trap that is present 
in the  folding of the wild-type ribozyme is 
dlnllnished by the A183U mutation (20). 

Kinetic trans In both R N A  and orotein 
fold~ng are often lnisfolded structures that 
slow foldillg because stable nonnative inter- 
actions must be disrupted to achieve the 
transition state. Incorrect heme coordina- 
tion In cytochrome c (21 ) and mispalring in 
tRNA (22) are examples of nonna t~ve  inter- 
actions that must be disruoted for f o l d i n  to 
proceed. Howel~er, in the  foldillg of bovine 
pancreatic trypsin inhihitor, a trapped inter- 
mediate is stabilized solely bv native interac- 
tions (1 8). Furthermore, in  tile ~na jo r  folding 
pathway of lyso;yme, an  intermediate with a 
folded a domain slotvs folding of the P do- 
main (23).  It has been suggested that the 
lysozytne intermediate is a kinetic trap in  
which the stability of a native cr domain 
renders the polypeptide rigid and "aggra- 
vates" the  conformational search of the  P 
domain (24).  W e  propose a similar mecha- 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Urea (molar) 

Fig. 3. Destab~lizat~on of a kinetic trap by fast 
folding mutations. The kinetics of P3 formation for 
wld-type (@) and A1 83U (0) ribozymes were mea- 
sured in the presence of various concentrations of 
urea. RNAs were folded as in Fig. 1 .  \ ~ i t h  the 
exception that 2x fold~ng buffer also conta~ned 
urea. Fold~ng was quenched with RNase H and 
oligonucleotides target~ng P3 (positions 270 to 
279). 

nism to explain the slow folding of P3-P7. 
T h e  kinetic trap (I:) in ribozyme folding 

exhibits both native (P4-P6) and nonnati1.e 
(P3-P7) structures and may also exhibit 
nonnative interactlolls a t  the  domain inter- 
face (6 ) .  Each of these structural features 
might restrict the  conformational flexibility 
of I: and slow P3-P7 formation. Houe l~er ,  
because mutatlolls that destabilize P4-P6 
dlrnlnlsh the  k l n e t ~ c  trap, the  contrlbutlon 
of the  nonnative structures to  the  stability 
of the  trap is either minimal or strictly 
dependent o n  the  presence of a stable P4- 
P6 domain. I 2  is thus a native klnetic trap 
because ~ t s  stability is de r~ved  pr~marily 
from native interacrlons. 

T h e  proposed natlve kinetic trap differs 
fi~ndamentally from the  canonical mispair- 
ing traps observed in tRNA (22) and ri- 
bozymes (25) and may define a new class of 
barriers in the  folding of multidomain 
RN,4s. Furthermore, our data show that 
stable intermediates are prevalent but n o r -  
essent~al features of R N A  foldillg and that 
destabilization of a n  rlterrnediate acceler- 
ates folding by facilitating escape from a 
natlve kinetic trap. These conclusions sup- 
port theoretical folding models and empha- 
size the  parallels between protein and R N A  
folding ( 3 ,  26).  
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Photoactive yellow protein (PYP) is a member of the xanthopsin family of eubacterial 
blue-light photoreceptors. On absorption of light, PYP enters a photocycle that ultimately 
transduces the energy contained in a light signal into an altered biological response. 
Nanosecond time-resolved x-ray crystallography was used to determine the structure of 
the short-lived, red-shifted, intermediate state denoted [pR], which develops within 1 
nanosecond after photoelectronic excitation of the chromophore of PYP by absorption 
of light. The resulting structural model demonstrates that the [pR] state possesses the 
cis conformation of the 4-hydroxyl cinnamic thioester chromophore, and that the process 
of trans to cis isomerization is accompanied by the specific formation of new hydrogen 
bonds that replace those broken upon excitation of the chromophore. Regions of flex- 
ibility that compose the chromophore-binding pocket serve to lower the activation 
energy barrier between the dark state, denoted pG, and [pR], and help initiate entrance 
into the photocycle. Direct structural evidence is provided for the initial processes of 
transduction of light energy, which ultimately translate into a physiological signal. 

Elaborate systems exist in a wide variety of 
species to gather light energy and convert it 
into chemical energy or into a structural 
signal that ultimately leads to a biological 
response. T h e  structural bases for these con- 
versions are not well understood. T h e  initial 
chemical step associated with photoactivity 
is often photoiso~nerization of a highly con- 
jugated protein prosthetic group that may 
generate an  altered signaling conformation. 
This is subsequently recognized by a diffus- 
ible or other messenger that delivers the 
signal to do\v~lstream effectors (1 ). T h e  best 
studied example is the generation of the 

Ineta I1 state of ma~n~l la l ian sensory rhodop- 
sin by photoisomerization of its opsin chro- 
mophore and the subsequent activation of 
several ~nolecules of tra~lsducin during the 
long half-life of the lneta I1 intermediate (2 ) .  
W e  describe the early structural changes that 
occur upon absorption of light in a member 
of a particularly simple class of bacterial pho- 
toreceptors: the xa~lthopsi~ls (3). 

T h e  santhopsin from the photoautotro- 
phic purple eubacterium Ectothiorhodospira 
halopiiila, kno\vn as photoactive yellow pro- 
tein (PYP), is a small, 14-kD, water-soluble 
protein in which a 4-hydroxy c i~l~la lnic  acid 
cl~romovhore is covalentlv linked throuoh a 
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mophore is completely buried with no  atom 
exposed to solvent (6) .  These properties 
contribute to the protein's characteristic ab- 
sorption peak at a wavelength of 446 11111 ( 4 ,  
7, 8). Upon photoelectronic excitation, PYP 
efficiently enters a fully reversible photo- 
cycle that contains at least two snectrallv 
distinct intermediate states, denoted [pR] 
and [pB], each presulnably associated with 
structural changes in the chromophore and 
its protein e ~ ~ v i r o n m e ~ l t  (Fig. I ) .  T h e  rate 
constants for interconversio~~ of the interme- 
diate states progressively decrease through- 
out the photocycle (71, and therefore, the 
presumed sigllalillg state [pB] accumulates 
under constant illumination that populates a 
saturated photostatiol~ary state (9). Time- 
resolved x-ray crystallographic studies with 
10-ms time resolutio~l of the decav from this 
photostationary state collfirln tha; the chro- 
mophore is in  the cis conformation (10) as 
predicted by chemical studies ( I  I ) .  T h e  Je-  
cay \\.as shown to involve ejection of the 
chromophore from its binding pocket, dis- 
placemellt of the side chain of Arg5' that 
closes the chromophore-bindi~~g pocket, ex- 
posure of the chrolnophore to the solvent, its 
protollatio~l ( I d .  121, and co~lcomitant ma- 
ior rearraneement of the H-bond network 
that stabilized the phenolate anion in the 
dark state (6, 13). T h e  chemical and crvs- 
tallograpllid studies so far have not identifkd 
the stage in the photocycle at which chro- 
mophore isomerization occurs, probed earlier 
structural changes in  the photocycle, or ill- 
dicated ho\v the [pB] state is generated. 
These ultrafast structural changes in PYP 
that ultimately lead to the formatio~l of the 
[pB] state are critical to its function as a 
photoreceptor. 

T h e  recent development of ~ ~ a n o s e c o ~ l d  
time-resolved x-ray crystallography (14, 15) 
provides the opportunity to study the pro- 
cesses leading to the formatio~l of the [pB] 
state in crystals of PYP (16) and, hence, to 
characterize early structural intermediates. 
The  experiments were conducted at the 
white bea~nl i~le  ID-9 at the European Syn- 
chrotron Radlatloll Facility (ESRF), Gre- 
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