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RNA Folding at Millisecond Intervals by 
Synchrotron Hydroxyl Radical Footprinting 

Bianca Sclavi, Michael Sullivan, Mark R. Chance,* 
Michael Brenowitz,* Sarah A. Woodson* 

Radiolysis of water with a synchrotron x-ray beam permits the hydroxyl radical-acces- 
sible surface of an RNA to be mapped with nucleotide resolution in 10 milliseconds. 
Application of this method to folding of the Tetrahymena ribozyme revealed that the most 
stable domain of the tertiary structure, P4-P6, formed cooperatively within 3 seconds. 
Exterior helices became protected from hydroxyl radicals in 10 seconds, whereas the 
catalytic center required minutes to be completely folded. The results show that rapid 
collapse to a partially disordered state is followed by a slow search for the active 
structure. 

T h e  speed of chemical reactions carried into the folding of tRNA established ap- 
out by riboiy~nes is often limited by confor- proximate time scales for the formation of 
mational changes in the RNA (1). As a RNA secondary ( l o p 4  to lop5 s) and ter- 
result, the process by which RNA ~nolecules tiary interactions (1Op%o lop '  s), with 
fold into their native confornlation has re- the reorganizat~on of incorrect secondary 
ceived much attention. Earlv investigations structures occurring more slowly (0.1 to 
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1 s) 12). Recent 'ivork has shown that , , 

folding of large RNAs is more complex 
(3) ,  involving tnultiple pathways (4).  In- 
dividual domains of an RNA may form at 
rates that d~ffer by orders of magnitude, 
with some transitions requiring minutes to 
reach completion (3-7). Identification of 
the ~ a t h s  bv which large RNAs fold has 
been hampe;ed by the Lck of experimen- 
tal methods capable of probing RNA con- 
formation with nucleotide resolution at 

subsecond time scales (8). Here, we de- 
scribe direct measurement of the conlplete 
foldlng pathway of the Tetrahymena ri- 
hozyine by hydroxyl radical footprinting 
using a synchrotron x-ray beam. 

Hydroxyl radical ribose oxidation and 
resulting strand cleavage are correlated with 
the solvent accessibility of the RNA back- 
bone (9, 10) and are insensitive to base 
sequence and secondary structure ( I I ). 
Generation of hydroxyl radlcals by the ra- 
d~olysis of water yields cleavage products 
that are comparable with Fe(I1)-EDTA-de- 
pendent reactions (7, 12). The high flux 
prov~ded by wh~te-light x-ray beams at 
the Nat~onal Synchrotron L~ght Source 
(NSLS) permits footprlnting of the rl- 
hoiyme to he accomplished w t h  millisec- 
ond time resolut~on (7). 

The ribozyme derived from the Tetrahy- 
menu group I intron (Fig. 1A) folds Into a 
well-defined tertlary structure in the pres- 
ence of Mg2-, and MgL+ 1s required for 
catalytic actlvtty ( I ) .  The ribozyme con- 
tains at least three domains of tertlary struc- 
ture (1 3) that, when separated, can reasso- 
clate to form the active r~boiyme (14). The 
domain containing paired reglons P4-P6 
(Fig. 1A) folds independently (1 0, 15), and 
formation of P4-P6 has been proposed to be 
the first step In the folding pathway of the 
r~boiyme (3, 16). In earlier experiments in 
which RNA was manually mixed with 
Mg'- before exposure to the x-ray beam, we 
showed that the tertiary structure of the 
P4-P6 domain is formed within 30 s, the 
initial time of the assay (7). 

To resolve early steps in the r~boiy~ne 
folding pathway, we installed a stopped- 
flow apparatus with an x-ray exposure 
chamber on NSLS beamline X-9A (17). 
The flux of X-9A absorbed by the sample 
was sufficient to cleave 20% of the RNA 
molecules with exposures as short as 10 111s 
(18). Folding reactions were begun by inix- 
ing RNA with buffer containing MgL+, to a 
final concentration of 10 mM (19). Sam- 
ples were irradiated at a series of times after 
mixing, and the hydroxyl radical cleavage 
products were separated by gel electro- 
phoresis (1 9). The ribozyme was fully active 
after passage through the stopped-flow ap- 
paratus (20), verifying that the RNA had 
folded correctly under these experinlental 
conditions. 

We determined the folding kinetics of 
the rihoiyme by quantitating the changes 
in solvent accessihility of individual sites 
as a function oi  titne (Fig. 2) (7, 21) .  After 
the addition of MgL+, specific nucleotides 
k~ithin the P4-P6 domain becatne protect- 
ed from cleavage within 100 Ins (22 ) ,  and 
the extent of protection reached a plateau 
within several seconds (Fig. 2). Compari- 
son of this plateau with control reactions, 
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in which the ribozyme was preequilibrated 
in Mg2+ before the start of the experi- 
ment, demonstrates that folding of P4-P6 
was complete within this time (Fig. 2, 
triangles). 

The rapidly protected sites correspond 
to nucleotides that were excluded from 
solvent by folding of the P4-P6 domain 
upon itself (Fig. 1, A and B). These rapidly 
protected sites include nucleotides in P5 
and P5a, an A-rich bulge, and a GAAA 
tetraloop that are involved in interactions 
that stabilize the tertiary structure of the 
domain (15, 23). Rate constants deter- 
mined for each of these regions (Fig. lA,  
orange) were the same within experimen- 
tal error. Thus, the tertiary interactions 
within the P4-P6 domain were established 
in a concerted manner at a rate of about 1 
s-' at 42°C. 

A subset of nucleotides in P5c (Fig. lA, 
green) was protected about twice as rapidly 
as other regions in the P4-P6 domain. Pro- 
tection of riboses in P5c results from local 
interactions that. bury the P5c backbone 
(15). P5a-P5c constitutes a Mg2+-rich sub- 
domain that folds independently of interac- 
tions with P4 and P6 (15, 24). Although 
the differences in the rate constants deter- 
mined for these nucleotides are at the limit 
of the precision of the data, these results 
suggest that formation of a metal ion "core" 
in P5a-P5c (24) is one of the earliest folding 
transitions of the ribozyme. This region 

could serve as a nucleation site for addition- 
al tertiary structure. 

Several groups of nucleotides are pro- 
tected from hydroxyl radicals by tertiary 
contacts that are present in the ribozyme 
but not in the isolated P4-P6 domain (15). 
Residues in P5 (1 18 to 121) and joining 
region 1514 (204 to 208) are protected by 
folding of P9.1 and P9.2 (25). The 5' and 
3' ends of the P4-P6 domain are part of a 
triple helix that mediates interactions 
with double helices P3 and P7 (14). Both 
groups of nucleotides (Fig. lA, pink) be- 
came protected more slowly (k - 0.3 s-') 
than the interior of P4-P6. Thus, tertiary 
contacts with the P3-P9 domain (P3, P7, 
P8, and P9) formed after the P4-P6 do- 
main was folded. This is consistent with 
the observation that tertiary interactions 
with P4-P6 stabilize the folded structure of 
P3-P9 (13, 25, 26). 

In agreement with this conclusion, nu- 
cleotides in P2, P2.1, and P9.1 were pro- 
tected from hydroxyl radical cleavage at 
similar rates (k = 0.2 to 0.4 s-') (Fig. lA, 
pink). These helices bridge the two central 
domains of the ribozyme, stabilizing the 
catalytic center by base pairing between the 
loops L2 and L5c and L2.1 and L9.1 (27). 
P2-P2.1 and P9.1-P9.2 are proposed to wrap 
around the exterior of the folded ribozyme, 
and protection from hydroxyl radical cleav- 
age results from contacts with the folded 
P4-P6 and P3-P9 domains (26, 27). Thus, 

much of the tertiary structure is formed in 
about 10 s. 

In contrast, P3, P7, and P9 required 
minutes (k = 0.02 to 0.06 s-') to become 
fully protected from hydroxyl radical cleav- 
age (Fig. 1A; yellow). This result is consis- 
tent with our earlier results (7) and with 
oligonucleotide hybridization and chemical 
modification data showing that P3 and P7 
are the last stems to form completely (3, 5, 
7). Protection of nucleotides in P6 (220 to 
222) is attributed to close packing with the 
stacked P3 and P8 helices (27), and it ap- 
peared at a similar rate (k = 0.03 s-') (Fig. 
1A). Thus, the P3-P9 sequences remain 
disordered until late in the folding process. 
Solvent accessibility of P3-P9 could result 
from either a highly extended coilformation 
or from a mixture of conformations with 
nonoverlapping footprints that are in slow 
exchange. 

The ability to probe solvent-accessible 
regions of an RNA backbone within the - 
first tens of milliseconds of a reaction 
provides a visualization of early steps in 
the folding pathway of the Tetrahymena 
ribozyme. An assumption of the model 
depicted in Fig. 3 is that much of the 
secondary structure is formed under the 
initial conditions of our assay (no Mg2+ 
and 42°C). After the addition of Mg2+, 
the earliest evidence of tertiary structure 
appeared within the P5a-P5c subdomain. 
Subsequent collapse of the P4-P6 domain 
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Fig. 2. Time dependence of hydroxyl radical pro- 
tection. Fractional saturation of individual protect- 
ed sites, 7, was determined from fits to the cou; 
pled-equations P = PI,, + (pup, - PI-d Y 
and Y = 1 - e -M, where p is the apparent satura- 
tion, p ,,,,, and p,,, are the lower and upper 
limits of the transition curve, respectively, k is the 
first-order rate constant, and t is time (in sec- 
onds). Data from three to six independent exper- 
iments were plotted simultaneously and fit 'to the 
first-order rate expression (solid line). Additional 
exponential terms were not supported by the 
data. Open symbols represent controls in which 
the ribozyme was preequilibrated with Mg2+. De- 
tails of the data analysis are described elsewhere 
(29). A similar plot was produced for each of the 
protected sites shown in Fig. 1A. (A) Protection of 
P5c, nucleotides 174 to 176; k = 2.7 (- 1.3, + 1.8) 
s- l . (6) A-rich bulge, nucleotides 183 to 189; k = 
0.9 (20.3) s-l. (C) P2, nucleotides 57 to 59; k = 
0.20 (20.05) s-l. (Insets) Expansion of first 3 s of 
time axis. 

B 

was concerted and occurred in a few sec- 
onds. Interdomain contacts w i th  P2-P2.1 
and P9.1 were established wi th in  10 s, 
implying further condensation o f  the 
RNA. Organization o f  the catalytic core, 
including formation of P3 and P7, is about 
tenfold slower (3, 7) and could involve 
either local fluctuations of the RNA chain 
or rearrangement o f  alternative secondary 
structures (4, 5, 28). Large movements o f  
P3-P9 could be accommodated by tran- 
sient opening o f  interactions between P2- 
P2.1 and P9.1. 

This study reports RNA folding kinet- 

f .  .. : . . .  : - . . . eM.g  

ics in which condensation o f  tertiary 
structure occurred at rates similar to  that 
of in vivo self-splicing (29). Folding o f  the 
P4-P6 domain o f  the Tetrahymena ri- 
bozyme was only tenfold slower (1  s-') 
than formation o f  tertiary interactions in 
tRNA ( 100 ms) (2). Folding o f  P4-P6 and 
interactions w i th  P2 r a ~ i d l v  reduce the 

L ,  

number o f  available conformations. The 
catalvtic center. however. remains disor- 
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come compact. Because formation of the 
native structure requires condensation o f  
the RNA and coordination of multiple 
Mg2+ ions (15,24), the fast folding events 
may be sensitive to  solvation and divalent 
ion  concentration. 
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Fig. 3. A model for the early steps of the Mg2+-dependent folding of the Tetrahymena ribozyme. 
Residues in P5c become protected most rapidly, about twofold faster than nucleotides in the interior 
of the P4-P6 domain. Nucleotides that are excluded from solvent by interactions with P2-P2.1 and 
the P3-P9 domain are protected more slowly. Ordering of the catalytic core occurs over several 
minutes (3, 5, 7) and may involve reorganization of alternative conformations after collapse to a 
partially disordered intermediate state. For simplicity, folding is depicted as a linear sequence of 
events, although there are likely to be multiple folding pathways with different intermediates (4). Some 
molecules in the population may reach the native state rapidly, whereas others fold slowly because 
of the presence of kinetic traps. 
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Kinetic Intermediates Trapped by Native 
Interactions in RNA Folding 

Daniel K. Treiber, Martha S. Rook, Patrick P. Zarrinkar,* 
James R. Williamson? 

In the magnesium ion-dependent folding of the Tetrahymena ribozyme, a kinetic inter- 
mediate accumulates in which the P4-P6 domain is formed, but the P3-P7 domain is not. 
The kinetic barriers to P3-P7formation were investigated with the use of in vitro selection 
to identify mutant RNA molecules in which the folding rate of the P3-P7 domain was 
increased. The critical mutations disrupt native tertiary interactions within the P4-P6 
domain and increase the rate of P3-P7 formation by destabilizing a kinetically trapped 
intermediate. Hence, kinetic traps stabilized by native interactions, and not simply by 
mispaired nonnative structures, can present a substantial barrier to RNA folding. 

RNA forms complex structures that are 
able to perform a variety of functions rang- 
ing from llgand binding to catalysis. How- 
ever, the mechanism by which an R N A  
molecule folds into a unique three-dunen- 
sional structure remains poorly understood. 
T o  study the Mgz'-dependent k ine t~c  fold- 
ing pathways of large, highly structured 
RNA molecules such as the Tetrahymena 
r~bozyme and ribonuclease (RNase) P, we 
have previously developed a klnetic ollgo- 
nucleotide hybrid~zat~on assay (1,  2 ) .  This 
assay exploits the selective accessih~lity of 
unfolded RNAs to sequence-specific oli- 
godeoxynucleotide probes, the binding of 
which confers sensitivity to cleavage by 
RNase H. Folding is initiated by the addi- 
tion of Mg2', and the fraction of unfolded 
RNA at var io~~s  tllnes is scored in a cleav- 
age reaction containing DNA probes and 
RNase 1-1. On addition of MeL+ to the 
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Tetrai~ymena ribozyine, the two structural 
domains that constitute the catalytic 
core-P4-P6 [base-paired (P) regions 4 to 6, 
positions 104 to 2611 and P3-P7 (P3, P i ,  
and P8)-form sequentially as kinetic fold- 
Ing units (1 ,  3). For~nation of P4-P6 1s rapid 
(60 minpl )  (4) ,  whereas P3-P7 forms slow- 
ly, on the minute tune scale (1) .  7111s order 
of k~ne t ic  foldlng events 1s supported by 
chemical modification (5), ultraviolet 
cross-linking (6), and x-rab- footprint (4 )  
analysis. In the proposed folding pathway 
(1 ,  3) ,  an intermediate (Iz)  accumulates In 
which only P4-P6 is folded, and the rate- 
limiting step for P3-P7 formation is the 
unirnolecular rearrangement of I2 to inter- 
mediate I,. Slow unirnolecular folding steps 
have also been ident~fied for the group I 
intron b l i  (7) and RNase P (2 ) ,  and they 
may be a general feature in the folding of 
large RNAs. 

u 

Mutations that increase the rate of fold- 
ing of proteins have provided ins~ght into 
the ~nechanism of slow folding steps (8). 
W e  developed an in vitro selection scheme 
to identify mutant Tetrai~ymena ribozyrnes 
in which the slow P3-P7 folding step (I2 + 
I,) is accelerated (9 ) .  Ribozymes that fold 
rapidly after Mg" addition were selected 
from a pool of RNAs contalnlng an average 
of four mutations per molecule. Slo~v-fold- 
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ing RNAs were selectively depleted from 
the pool by kinetic oligonucleotide hybrid- 
ization with probes targeting P3 and P7. A 
step was included in each cycle of selection 
to ensure that fast folding mutants formed 
an intact catalytic core (9) .  After nine 
rounds, the folding rate of the pool (G,) 
had increased by a factor of 4 relative to 
that of the in~t ial  pool (G,) and by a factor 
of 2 relative to that of the wild type (Fig. 1). 
Twenty-four individual molecules were 
cloned from the G, pool, and the folding 
rate of the P3-P7 domain for five of these 
clones was at least three to five times that of 
the wild type at 37°C (Fig. 1 and Table 1) 
(10, 11). 

Because each fast folding clone con- 
tained at least three mutations, individual 
point mutants were constructed. For the 
four clones analyzed, a s~ngle mutatlon was 
sufficient to reproduce the fast folding phe- 
notype (Table 1).  The A183U ( A  at posi- 
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Fig. 1. Isolation of fast folding RNAs after nine 
rounds of in vitro selection. The kinetics of P3-P7 
formation for r~bozyme generatons Go to G, and 
cloned individual molecules from G, were probed 
by kinetic oligonucleotide hybridization. Initiation 
of folding and the quench reaction were as de- 
scr~bed (9). The fraction cleaved at each foldng 
time was determined by denaturing PAGE and 
Phosphorimager analysis (Molecular Dynamcs). 
The apparent foldng rate constant (kfo1,) was ca-  
culated by f~ttng curves to a s n g e  exponental 
(10). Data were normalized to allow d~rect com- 
parison. RNAs and k.,, values: 7, G, pool (0.63 
mn-I), ., wild type (1.2 min-'), C, G, pool (2.33 
m n ' ) ,  and @, clone G,-10 (5.0 m n ' ) .  
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