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A method involving electron paramagnetic resonance spectroscopy of a site-selectively 
spin-labeled peripheral membrane protein in the presence and absence of membranes 
and of a water-soluble spin relaxant (chromium oxalate) has been developed to deter- 
mine how bee venom phospholipase A, sits on the membrane. Theory based on the 
Poisson-Boltzmann equation shows that the rate of spin relaxation of a protein-bound 
nitroxide by a membrane-impermeant spin relaxant depends on the distance (up to tens 
of angstroms) from the spin probe to the membrane. The measurements define the 
interfacial binding surface of this secreted phospholipase A,. 

M a n v  interfacial enzymes such as pllos- 
pholiiases are \vater:soluble and L m ~ ~ s t  
bind to  the  membrane-water interface in  
order to  hydrolyie components of the  
membrane. Al though the  high-resolution 
structures of anueous forms of several 
phospholipases and lipases are knorvn (1 ), 
there are n o  reports that  reveal the  posi- 
t ioning of a n  interfacial enzyme at  t h e  
membrane-water interface. T h e  same can  
be said for lllost membrane-bound nro- 
te i~ls .  I n  the  case of 14-kD secreted phos- 
pholipases A2 (sPLA2s),  such as bee 
venom phospholipase A2 (bvPLA,),  t he  
interfacial recognitioll surface is thought 
to  surround the  active site slot: the latter is 
a deep cavity into which a single phospho- 
lipid molecule enters to reach the catalytic 
residues (2)  (Fig. 1).  Here we describe a 
high-resolution structure deterlnination tool 
based o n  electron paralnagnetic resonance 
(EPR) spectroscopy that allows peripheral 
membrane nrotei~ls such as sPLA,s to be 
oriented with respect to the membrane- 
aqueous interface. 

EPR methods have been developed 
tha t  make use of protein site-specific spin 
labeling and spill relaxants for probing the  
membrane penetration depth of segments 
of integral ~nembrane  proteins tha t  pass 

u 

through the  lnelnbrane (3) .  In  theory de- 
veloped below, it will be shown that  t h e  
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efficiency of relaxation of a nrotein-bound 
nitroxide spin probe by a water-soluble 
spin relaxant such as tris(oxa1ato)chro- 
mate(I11) (Crox)  is dependent OII t he  po- 
sitioning of the  lne~nbrane with respect to  
the  spin probe, even when the  probe is 
exposed to  the  aqueous phase. By measur- 
ing the  Crox-dependent relaxation of sev- 
eral nitroxides placed a t  defined locations 
o n  the  surface of bvPLA2, both  in  the  
nresence and absence of 11ile11ilbranes to  
which the  eniyllle binds, it is possible to  
position the  enzyme o n  the  membrane. 

In  order to  apply this method to bvPLA,, 
13 site-selectively spin-labeled enzynles lvere 
prepared (4), 12 with the spin label located 
o n  or near the putative interfacial recogni- 
tion surface (1 ,  2 )  and 1 with the  probe o n  
the  opposite side. T h e  ability of Crox to 
relax the  spin label of each bvPLAL mutant 
can be quantified by obtaining the continu- 
ous-\vave EPR spectra as a function of mi- 
crowave irradiation porver. This series of ex- 
periments was carried out in the presence 
and absence of 1C mivl Crox for the enzyme 
in the aqueous phase or bound to small 
unilalllellar vesicles of the nonhydrolyzable, 
allionic phospholipid 1,2-dirnyristoyl-SIX- 
glycero-3-pl~ospl~ometl~a~lol (DTPM) (5).  
bvPLAz binds tightly to such vesicles (6).  
For each data set, the power dependence of 
the peak to peak height of the central line of 
the first derivative EPR spectrum, AY, was fit 
by least squares to the power saturation roll- 
over equation (3,  7) 

where h l  = otP:.' is the microwave arnpli- 
tude ill gauss, Po is the  power incident o n  
the  sample, and a is the co1lr7ersioll effi- 
ciency factor for the  resonator (5)  (4.5 
G/W1''). T h e  quantities c, E, and P2 were 
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allowed to vary during curve fitting. The 
parameter c is a scaling factor, and P2 is a 
power parameter that depends only on the 
properties of the nitroxide (7): 

Here, R, and R2 are the spin lattice and 
spin-spin relaxation rates (in gauss) and 
are related by the electron gyromagnetic 
ratio ye to the relaxation times TI and T2 
as shown (7). The parameter E is a mea- 
sure of the curvature of the power depen- 
dence and is 312 for a homogenous line 
and 112 for a completely inhomogeneous 
line shape (7). This parameter enables us 
to obtain very high-quality fits to the data, 

Fig. 1. bvPLA, (gray) po- 
sitioned on the mem- 
brane surface (purple) 
with the use of the EPR 
data in Table 1 and the 
theory developed in this 
study. The nitrogen and 
oxygen of each spin label 
(N-0.) are colored blue 
and red, respectively. 
The distance from each 
spin label to the mem- 
brane is as shown in Fig. 
3. Spin labels 13 and 15 
are hidden from view. A 
short-chain phospholipid 
analog inhibitor in the ac- 
tive site slot, as seen in 
the x-ray structure (14), is 
shown in green (1). This 
inhibitor is replaced by a 
DTPM molecule in these 
studies. Each membrane 
sphere has a radius of 
2.2 A, and thus there are 
about three spheres per 
phospholipid. The image 
was created with MOL- 
SCRIPT and Raster3D (25). 

Fig. 2. Power saturation 
rollover curves for 12C-sl 
and K66C-sl. Curves are 
shown for bvPLA, mu- 
tant in buffer with and 
without Crox ([Crox] and 
buffer) and bound to 
membranes with and 
without Crox ([Crox] + 
DTPM and DTPM). The 
fit to Eq. 1 is shown by 
the solid lines. The units 
of AY are arbitrary. 

as it absorbs the effects of inhomogeneous 
broadening and partially slowed rotational 
tumbling of the nitroxide. 

The change in the fitted value of P2 on 
addition of Crox is taken as a measure of 
the effect of this metal on relaxation. The 
presence of Crox increases both R, and R2 
as follows (8): 

R, = R: + x [Crox] 

R2 = R! + x [Crox] 

where x is the relaxivity of Crox (9) and 
the superscript zero refers to the absence of 
Crox. The quantity AP, is defined as the 
difference in P, values in the presence and 
absence ( e )  of Crox: 

4 (Gauss) 

AP2 = P2 - P! -- X(R: + ~4 . [Crox] 
(4) 

Thus, AP, is directly proportional to the 
concentration of Crox in the vicinity of the 
spin probe; because R: >> Ry, the term that 
is quadratic in [Crox] is small and neglected 
(8). AP, is measured in the presence and 
absence of DTPM vesicles, and these two 
quantities are used to obtain the exposure 
factor (@) as follows: 

The superscript "local" refers to the effec- 
tive concentration of Crox near the spin 
label and the presence of the membrane 
reduces this concentration. The equality on 
the right side of Eq. 5 follows directly from 
Eq. 4. The quantity 1 - @ is a measure of 
the ability of the membrane to shield the 
protein-bound nitroxide from Crox in the 
aqueous phase (there is negligible Crox in 
membranes). 

Power saturation rollover curves for the 
mutant in which isoleucine 2 is replaced 
with spin-labeled cysteine (I2C-sl) and 
K66C-sl are shown in Fig. 2 along with the 
fit to Eq. 1. Values of E and P2 for all mutants 
are listed in (1 O), and values of @ are listed 
in Table 1. Ideally, one would expect e to 
be independent of the presence of the mem- 
brane, but it is not (1 0,  1 1 ). K66C-sl has its 
spin label on the face of bvPLA, that is 
opposite the putative interfacial recognition 
surface, and, as expected, @ for this mutant 
is close to unity (maximum exposure; Fig. 2 
and Table 1). At the other extreme are 
I2C-sl, K14C-sl, and I78C-sl, which display 
values of @ close to zero (Fig. 2 and Table I), 
and thus the membrane confers nearly com- 
plete protection from Crox relaxation on 
these nitroxides. The other nine mutants 
display @ values of intermediate magnitude 
(Table 1). 

4 (Gauss) 
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T h e  key to  understanding the  data i n  derived structure. T h e  data in  Table 1 and 
Table 1 is that  the  highly negative surface (10) also show that values of @ are signifi- 
electrostatic potential of DTPM vesicles cantly larger when the neutral spin relaxant 
reduces the  concentration of anions in  nickel~ethvlellediamillediacetic acid) is used 
solution near the  membrane relative to  instead of ~ r o x ,  proving that there i s  a sig- 
their bulk concentrations.  This results nificant electrostatic cornvonent to @. 
fro111 the  Boltzrnann equation, which says Because the  effect of k r o x  o n  the  EPR 
tha t  the  concentration of Crox is a f~ lnc -  parameters was measured for bvPLA, in  
t ion of the  electrostatic notential  due to  solution and bound to  membranes. to a first 
t he  metnbrane approximation the  effect of the  electrostatic 

potential a t  each nitroxide due to the  pro- 

C C ~ < , , ( ~ )  = C C ~ ~ ~ ( ~  = ")exp tein alone is removed f r o ~ n  the  problem RT because @ is the  ratio (APL)+mr,,,br ,,,, 
(6 )  (AP,) ~,,,,,,, ,,,,,. Strictly speaking, this is 

Here Cc,L,, ( r )  is the  molar collcentration true if the  electrostatic potential a t  each 
of Crox a t  a normal distance r from the  svin label of the  vrotein-membrane com- 
membrane; $(r)  is the  electrostatic poten- 
tial; z,:,,, is t he  charge o n  Crox; and F, R,  
and T have their ilsual meanings. Poisson's 
equation describes the  electrostatic poten- 
tial around any set of charges, and  for a 
planar membrane surface of uniform 
charge density, the  potential depends only 
o n  r. T h e  final result is the  Poisson-Bolts- 
mann  equation appropriate for a planar 
charged membrane (12) ,  which call be 
written as a first-order differential equa- 
t ion as fol lo \~s:  

Here C. is the bulk molar concentration of 

plex is equal to the  sum of the  potentials 
fro111 the  membrane and protein alone. T o  
examine this in  tnore detail, we llutnerically 
solved the llonlinear Poisson-Boltzmann 
equation for bvPLA, bound to DTPM ves- 
icles as given by Fig. 1 in  50 mM monova- 
lent salt solution and for enzyrne and vesi- 
cles alone (19).  T h e  electrostatic potential 
of the  complex was generally similar to  the  
sum of the  potentials due to enzyme and 
vesicles alone. Very close to the membrane 
[near spin labels a t  positions 2 and 14, for 
which values of @ near zero were measured 
(Table I ) ] ,  however, the  low-dielectric en- 
zyme enhances the  negative electrostatic 
potential of DTPbI  vesicles by causing the  
Faraday electric field lines to bend around it 
and increase in  density (20). However, this 
does not  affect the  conclusion that these 
residues are closest to the  membrane. Over- 

each ellctrolyte of charge z, in  solution, and all, the  results suggest that the  first-order 
E is the dielectric of bulk water ( a  value of approach of simply ignoring the  nolllillear 
78). Given the experimental value of +(@) electrostatic effects is valid. 
= -77 2 3 mV for our system (13) ,  Eq. 7 A clear result of the present study is that 
can be solved numerically to obtain $(r),  bvPLA2 sits o n  the membrane surface rather 
and C,,,, (r)  is obtained using Eq. 6. than digging into the  membrane. This is 

Theoretical exposure factors @ (r)  can consistent with monolayer pressure studies 
be calculated as 

(by analogy to Eq. 5 )  and compared with 
experitnental @ values (Table 1 )  to obtain 
the normal distance of each s ~ i n  label to the 
membrane. T o  do  this, it was assumed that 
the x-ray structure determined for bvPLA2 in 
solution (14) is tnaintained for the enzyme at  
the inte~face and that the  membrane that 
contacts the etlzylne is a plane. Marquardt- 
Levenberg regression analysis (15) was car- 
ried out by varying the proteill-to-membrane 
distance and the Euler angles for the rotation 
of bvPLA, about its center. Several trials 
were executed with svstematic variation of 
the initial conditions. '~n all cases, the anal- 
ysis converged to a single bvPLA2-mem- 
brane orientation. Figure 3 shows the  re- 
markably good fit of experimental @ to cal- 
culated @ (16-18) and Fig. l shows the  

Fig. 3. Regresson analyss of the bvPLA,-mem- 
brane orientation. The s o d  line shows calculated 
values of <I) a s  a function of the distance from the 
spin label to the membrane ( r ) ,  and the c rces  are 
the expermental @ as a function of the modeled 
distance from the spin label to the membrane for 
each res~due. 

showing poor penetration of sPLA, into a n  
anionic phospholipid rnonolayer a t  the  air- 
water interface (21). T h e  opening to the 
active site slot of bvPLA, faces the mem- 
brane (Fig. I ) ;  however, this opening is not 
firmlv against the membrane. This result is , - 
unequivocal as several diagnostic spin labels 
(at  positions 51, 53, 82, 85, and 92) are 
clearly not as close to the  membrane as those 
a t  positions 2 and 14 (Table 1) .  This implies 
that the alkyl chains of a long-chain phos- 
pholipid bound in  the active site slot of the 
enzyrne at the interface are partly in contact 
with the interior of the bilaver, with the 
hydrophobic walls of the activd site slot, and 
with solvent water [because these exveri- 
ments were done in the  presence of CaCl,, a 
molecule of DTPM occupies the active site 
of bvPLA2 at the interface (22)l. 

The  surface of bvPLA2 that contains the 
opening to the active site slot contains eight 
cationic residues and only one anionic resi- 
due. bvPLA2 and other sPLA2s bind Inore 
tightly by orders of magnitude to anionic 
vesicles than to zwitterionic ones, and it has 
been hvvothesized that these surface cations , 
drive interfacial binding by means of electro- 
statics. However, our recent study shows that 
these cationic residues. individuallv and col- 
lectively, are not very important for interfa- 
cial binding, because mutating them to glu- 
talnates has virtually no  effect on the binding 
of bvPLA, to anionic vesicles (23). T h e  
nresent studv shows that the membrane con- 
tact surface of bvPLA, corresponds to a 
prominent patch of hydrophobic residues 
found on all sPLA,s and that all basic resi- 
dues except K14 are not in close contact with 
the metnbrane [see figure 1 of (23)l. T h e  
hydrophobic residues are not deeply inserted 
into the hvdronhobic interior of the bilaver 
but SotnehOw irovlde a microinterfacial dn- 
vironlnent that drives interfacial binding to 
the "polar" phospholipid headgroups (23).  

Table 1. Exposure factor (11 for spin- 
labeled bvPLA,s. 

Mutant @* 

2C-SI 0.01 2 0.04 
N1 3C-SI 0.38 2 0.03 (0.78 2 0.04).1- 
K1 4C-SI 0.03 2 0.02 
S15C-SI 0.17 2 0.02 (0.32 ? 0.03)'l- 
R23C-sl 0.33 2 0.02 
F24C-SI 0.25 -t 0.13 
T51 C-SI 0.30 -t 0.03 
T53C-SI 0.30 i 0.01 
K66C-SI 0.85 ? 0.08 
78C-SI 0.01 ? 0.01 
F82C-SI 0.27 2 0.12 
K85C-SI 0.58 2 0.13 
D92C-sl 0 44 2 0 03 

"Calculated accordng to Eq. 5 wlth the use of the exper- 
mental EPR data ( l o ) ,  tNumbers in parenthes~s 
were obtained w th  the use of 10 mM nlcke(ethylenedta- 
minediacetlc acid) Instead of Crox 
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The nature of these interactions remains to 
be understood. It is interesting to note that 
interfacial binding of cellulases to the "hy-
drophilic" surface of microcrystalline cellu­
lose is driven by hydrophobic residues, in­
cluding tryptophans on a cellulose-binding 
domain (24). Finally, the structure shown in 
Fig. 1 provides a physical basis for the kinetic 
data that indicate that the interfacial recog­
nition and catalytic sites are distinct (22). 

The docking technique described in this 
study should be useful for determining the 
relative position of any macromolecule of 
virtually any size and of known three-di­
mensional structure with respect to any sur­
face with known electrostatic properties, as 
long as there are no gross conformational 
changes in the structures of the components 
when they bind to each other. However, 
useful membrane proximity data should also 
be obtainable for flexible membrane-bound 
peptides. 
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Immunological Origins of Binding and Catalysis 
in a Diels-Alderase Antibody 

Floyd E. Romesberg,* Ben Spiller,* Peter G. Schultz,f 
Raymond C. Stevensf 

The three-dimensional structure of an antibody (39-A11) that catalyzes a Diels-Alder 
reaction has been determined. The structure suggests that the antibody catalyzes this 
pericyclic reaction through a combination of packing and hydrogen-bonding interactions 
that control the relative geometries of the bound substrates and electronic distribution 
in the dienophile. A single somatic mutation, serine-91 of the light chain to valine, is 
largely responsible for the increase in affinity and catalytic activity of the affinity-matured 
antibody. Structural and functional studies of the germ-line precursor suggest that 
39-A11 and related antibodies derive from a family of germ-line genes that have been 
selected throughout evolution for the ability of the encoded proteins to form a polyspe-
cific combining site. Germ line-encoded antibodies of this type, which can rapidly 
evolve into high-affinity receptors for a broad range of structures, may help to expand 
the binding potential associated with the structural diversity of the primary antibody 
repertoire. 

1 he immune system solves the problem of 
molecular recognition by generating a large 
library of structurally distinct antibodies 
and amplifying those with the requisite 
binding affinity and specificity in an affin­
ity-based selection. By programming this 
system with chemical information about a 
reaction mechanism—for example, the 
structure of a putative transition state—one 
can examine the evolution of both binding 
energy and catalytic function (1). Function­
al and structural analysis of this process can 
provide insights into both the molecular 
basis for the remarkable efficacy of this 
combinatorial system and the mechanisms 
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by which binding energy can be used to 
lower the activation energies of reactions 
(1-5), We now describe one such study of 
the antibody 39-A11 (6), which catalyzes a 
Diels-Alder reaction, a widely used and 
mechanistically well studied reaction in or­
ganic chemistry, but one that is rarely found 
in biological systems. The three-dimension­
al x-ray crystal structures of the 39-A11 
Fab'hapten complex and of the germ-line 
precursor have been determined, and the 
immunological origins of this and related 
antibodies have been characterized. 

Antibody 39-A11 was generated to the 
bicyclo[2.2.2]octene hapten 4, a mimic of 
the boatlike transition state of the Diels-
Alder reaction. This antibody catalyzes the 
cycloaddition reaction of diene 1 and dieno­
phile 2 to give the Diels-Alder adduct 3 
(Scheme 1) (6). Structurally related haptens 
have been used to generate other antibodies 
that catalyze Diels-Alder reactions, suggest­
ing that this is a relatively general design 
strategy (7, 8). Antibody 39-A11 was 
cloned and expressed as a humanized chi­

meric Fab (9), and the structure of the 
complex of the recombinant 39-A11 Fab 
fragment and hapten 4 was determined at 
2.4 A resolution (Fig. 1 and Table 1). 

Well-defined density for the hapten was 
observed in the 1F0 — 1FC omit map (Fig. 
1). The hapten is bound in a cleft ~ 9 A 
wide and —12 A deep, with —194 A2 of the 
hapten surface (79% of the total solvent-
accessible surface excluding the linker arm) 
buried within the Fab. There are 89 van der 
Waals interactions and two hydrogen bonds 
between the hapten and antibody, with 
most of these contacting the heavy chain. 
The bicyclo[2.2.2]octene moiety of hapten 
4, which corresponds to the cyclic 4 + 2 IT 
electron system of the transition state, is 
buried in a hydrophobic pocket, free of 
solvation. The walls of this cavity consist of 
the side chains of residues PheH100b [anti­
body nomenclature described in (20)], 
AsnH35, TrpH47, ValL 9 \ ProL96, GlyH33, 
TrpH5°, AlaH95, and ArgH10° (where H and 
L represent heavy and light chains of the 
antibody, respectively). The carbonyl oxy­
gen of the carbamate moiety at the bridge­
head position of 4 (the CI substituent in 
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