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hormone responses in-vivo and that loss of its coactivator function results in partial 
resistance to hormone. 

S e x  steroid hormones have central roles in 
the control of puberty, sexual behavior, and 
reproductive filnctions. Their receptors he- 
long to the nuclear receptor superfamily of 
ligand-dependent transcription factors (1 ,  
2 ) .  Upon hormone binding, steroid recep- 
tors undergo conformational change, hind 
to their cognate DNA response eleillents on 
nuclear target genes, and recruit coactiva- 
tors and general transcription factors 
(GTFs) to form an active transcriptional 
complex, resulting in site-directed chroma- 
tin remodeling and enhancement of target 
gene expression ( 1 , 3-8).  SRC-1 is a coac- 
tivator for the steroid receptor superfamily; 
it functions in transcriptional activation 
through its histone acetyltransferase activl- 
ty ( H A T )  and nlultiple interactions w ~ t h  
agonist-hound receptors, other coactivators 
such as CBP or P300, other H A T  such as 
p/CAF, and some GTFs such as TBP and 
TIFIIB (7 ,  9-1 1). SRC-1 is a memher of a 
gene family that inchldes SRC-1, TIF2 (also 
termed GRIP-1 and SRC-2), and p/CIP 
(also termed RAC3, ACTR, AIB1, and 
SRC-3) (6,  9-16). Cell-free and In vitro 
transcription experinlents have indicated 
that the SRC-1 family meinhers enhance 
receptor-dependent transactivation of nu- 

clear genes (6,  9-1 6). A161 IS amplified 
and overexpressed In many hreast cancers 
and thus could have a role in tumorigenesis 
(16). 

T o  dissect the physiological role of 
SRC-1 in vivo, we used gene targeting to 
illsrupt the endogenous SRC-1 gene in em- 
hryonic stem (ES) cells. The  targeting vec- 
tor contamed 3.5-kh (5 ' )  and 2.5-kh (3 ' )  
mouse SRC-1 genolnic sequences flanking a 
GLVP cassette (1 7) and a neomycin-resis- 
tance gene (PGK-neo) (Fig. 1A).  In addi- 
tion, the herpes sinlplex virus thymidine 
kinase (HSV-TK) gene was located outside 
of the SRC-1 sequence and served as a 
negative drug-selection marker. After cor- 
rect recombination, the targeting e17ent in- 
serted an in-frame stop codon at the Met38' 
position and deleted -9 kh of genoinlc 
sequence extending downstream of h'let3s' 
Because the oligonucleotide sequence cor- 
responding to Aspm6 to Thr8" was iietect- 
ed in an Eco RV-Xha I fragment within the 
9-kh region, targeting deleted the SRC-1 
exon sequence encoding at least 446 amino 
acids (Met3s1 to Thr816). Except for the 
NH,-terminal hasic helix-loop-helix and 
Per-Arnt-Sim (hHLH-PAS) domains, all 
SRC-1 functional donlains for transcrip- 
tional activation. H A T  activity, and inter- 

Depanment of Cell B ~ d o g y  Baylo College of Med~c~ne,  actions i4'ith nrlclear receptc'rac~pj P300~ 
Houston. TX ~ ~ c ; s c ; ,  USA. and p/CAF were disrupted hy the targeting 
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with geneticin (G418) and FIAU (1 9), we 
identified 16 correctly targeted ES cell lines 
by Southern (DNA) analyses (Fig. 1, A and 
B). Three independent lines of chimeric 
founders were generated by microinjecting 
targeted ES cell lines into blastocysts donat- 
ed from a C57 strain. We used two lines to 
inbreed with a 129Sv mouse strain and 
outbreed with a C57 strain to produce off- 
spring. SRC-1 genotypic analyses by South- 
em blotting and polymerase chain reaction 
(PCR) confirmed that SRC-1-specific het- 
erozygous and homozygous mutants were 
obtained (Fig. 1C). Heterozygotes appeared 
to be normal and were indistinguishable 
from wild-type mice. In homozygotes, both 
the 8.5- and the 6.5-kb SRC-1 mRNAs 
were absent when analyzed by Northern 
blot analysis (20). To confirm the absence 
of the COOH-terminus of SRC-1 protein 
in homozygotes, we used a monoclonal an- 
tibody (7) specific to the region of amino 
acids 840 to 947 in protein immunoblotting 
extracts prepared from kidney and liver. 
The SRC-1 protein was undetectable in 
assays with extracts from the homozygous 
mutant (Fig. ID). Although the RNA en- 
coding the bHLH-PAS domain was ex- 
pressed in the mutants at a level similar to 
that in the wild-type mice (20), it would 
not have a dominant negative effect be- 
cause this domain interacted with neither 
the full-length SRC-1 nor other SRC-1 
family members such as TIFZ (21 ). 

SRC-1 null mutants exhibited no obvi- 
ous external phenotype. Both male and fe- 
male homozygotes were fertile and showed 
growth rates similar to wild-type mice. We 
therefore examined steroid action in target 
organs including uterus, prostate, and mam- 
mary gland. Uterine response to mechanical 
traumatization (decidual stimulation) is a 
progesterone receptor (PR)-dependent pro- 
cess (22). We treated ovariectomized wild- 
type and mutant mice with a high dose of 
progesterone and a low dose of estrogen, 
followed by mechanical stimulation of the 
left uterine horn of each animal (22). The 
unstimulated right uterine horn served as a 
control. The decidual response, exhibited as 
an increase in uterine horn size, was consis- 
tently observed in the stimulated left uterine 
horn in wild-type mice, but the uterine horn 
of the SRC-1 null mutant revealed only a 
partial response (Fig. 2, A and B). We also 
examined estrogen-induced uterine growth 
in SRC-1 null mutants. Wild-type mice re- 
sponded to estrogen treatment with a 4.3- 
fold increase in uterine wet weight. Uteri of 
homozygous SRC-1 mutants showed a small- 
er increase of about 2.8-fold (Fig. 2C). Thus, 
SRC-1 appears to be required for maximal 
uterine response to steroid hormone in vivo. 

To  assess androgen receptor function, we 
measured prostate growth in castrated male 

mice after they were treated with androgen. tion of testosterone for 7 days stimulated 
Eight days after castration, prostates in both prostate growth in wild-type animals; a 
wild-type and mutant mice regressed. Injec- smaller response was observed in SRC-1 

- 
ra- 
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mutant mice. The ratio of the weight of 
prostate and urethra to body weight re- 
vealed a 34% reduction in steroid-stimulat- 
ed growth in the absence of SRC-1 (Fig. 
3A). Although histological analysis did not 
reveal a structural disorder, the testes were 
smaller in homozygotes. The average ratio 
of testis weight to body weight was 19% 
lower in the SRC-1 mutants (Fig. 3B). 
Smaller testes also were observed in 
3-week-old null mutants. Thus tissue re- 
sponses to testosterone are also reduced in 
mice lacking SRC-1. 

We also tested whether endocrine feed- 
back control systems were affected. We 
measured estradiol, progesterone, and tes- 
tosterone concentrations in serum from 
age-matched wild-type and SRC-1 null mu- 
tants. Estradiol and testosterone concentra- 
tions in female null mutants were 1.2 and 
1.5 times those in wild-type animals, re- 
spectively. The SRC-1 null mutation does 
not elicit the typical hormonal changes ex- 
hibited in animals with disrupted estrogen 
receptor or PR (22-24). These results may 
reflect redundant coactivator function 
among multiple SRC-1 family members 
(1 4, 25). Indeed, a twofold overexpression 
of TIF2 mRNA was detected in certain 
tissues such as brain and testis in SRC-1 
null mutants, but expression of the p/CIP 
(RAC3) gene was unchanged (Fig. 3C). 
Thus TIF2 might compensate partially for 
the loss of SRC-1 in the null mutants. 

Mammary development is tightly regu- 
lated by steroid hormones. Although prena- 
tal morphogenesis of female mammary 

Fig. 3. Impaired response to testosterone in mice 
lacking SRC-1. (A) Stimulation of prostate growth. 
Twelve-week-old male mice (10 +/+ and 11 
-/-) were castrated on day 0 and treated with 
testosterone (3 mg/kg/day) by subcutaneous in- 
jection during day 9 through day 15. The total 
weight of prostate and a section of urethra be- 
tween bladder and penis was measured on day 
16. The urethra section was included for technical 
reasons. Then the ratios of prostate and urethra 
weight to body weight were calculated. The t test 
showed a significant difference (P < 0.01) in hor- 
mone-treated +/+ and -/- mice. The data rep- 
resent two independent experiments (mean + 
SEM). Without hormone treatment, the ratios of 
regressed prostate and urethra weight to body 
weight were similar (-5.5 x in +/+ and 
-/- mice. (8) Smaller testes in SRC-1 null mu- 
tants. The body weight and testis weight were 
measured for 12-week-old male mice (23 +/+ 
and 19 -/-). The ratio of testis weight to body 
weiaht was calculated (P < 0.01 bv t test). (CI 

gland is relatively independent of steroid 
hormones, extensive growth of mammary 
gland during puberty requires estrogen. 
Physiologically, both estrogen and proges- 
terone are essential for alveolar develop- 
ment during pregnancy (26). In 8-week-old 
wild-type females, mammary ducts grew ex- 
tensively and occupied almost the entire 
mammary fat pad. In contrast, the extent of 
mammary ductal branching as well as the 
number of branches was substantially re- 
duced* in the mammary glands of age- 
matched SRC-1 null mutants. The ductal 
tree occupied only half the area of the 
mammary fat pad (Fig. 4, A and B). By day 
18 of pregnancy, alveolar structures in wild- 
type mammary glands were highly devel- 
oped and appeared on all ductal sections, 
filling the interductal spaces. In the SRC-1 
mutant mammarv glands. alveoli were 
much less developed- in tdrms of number 
and size of alveoli, and very few alveoli were 
observed at the ends of ducts at the same 
stage of pregnancy (Fig. 4, C through F). 
Although mammary glands of SRC-1 null 
mutants can still produce milk, our results 
suggest that SRC-1 is required for normal 
mammary ductal elongation and alveolar 
development in vivo. - , 

We also analyzed mamm2ry gland devel- 
opment in response to estrogen and proges- 
terone treatment in overiectomized adult 
mice. Estrogen and progesterone stimulate a 
complex ductal arborization and extensive 
alveolar formation in mammary glands of 
wild-type mice (22). This differentiated 
phenotype mimics a stage of mammary 

~n&sis of mRNA expression for  TI^ and p;~i~'(RA~3).  Total RNA (30 kg) from brains (B), mammary 
glands (M), testes (T), and uteri (U) of three +/+ or -/- mice was separated in each lane of the gel. Its 
blot was analyzed with 32P-labled human TIF2 or RAC3 cDNA probes. Cyclophylin (Cyc) served as a 
control for RNA quantity. By densitometry, the density ratios of TIF2 RNA bands to the Cyc band were 
0.27 (+/+) and 0.45 (-/-) for brains and 0.71 (+/+) and 1.34 (-/-) for testes. The density ratios of 
RAC3 RNA bands to the Cyc band were 0.20 (B), 0.33 (M), 0.41 (T) and 0.23 (U) for +/+, and 0.29 (B), 
0.23 (M), 0.42 (T), and 0.31 (U) for -/-. 

gland development in early pregnancy. In 
the mammary glands of SRC-1 mutant 
mice, only partial ductal growth was ob- 
served after hormone treatment (Fig. 4, G 
through J). Thus SRC-1 is required for ef- 
ficient proliferation and differentiation of 
the mammary gland in response to estrogen 
and progesterone. 

Our results demonstrate that a steroid 
receptor coactivator (SRC-1) is required for 
efficient steroid hormone action in vivo. 

Fig. 4. Mammary gland development in SRC-1 
null mutant mice. Whole mounts of mammary 
glands were prepared and stained as described 
(22). (A and B) The fourth pair of mammary glands 
from 8-week-old virgins with the indicated SRC-1 
genotypes. (C and D) The fourth pair of mammary 
glands from mice pregnant for the first time with 
the indicated genotypes. (E and F) Higher magni- 
fication of the ducts and alveolar structures of the 
mammary glands in (C) and (D), respectively. (G 
and H) The fourth pair of mammary glands from 
13-week-old females treated with progesterone 
and estradiol. Eight-week-old females were ovari- 
ectomized on day 0 and then treated with proges- 
terone (1 kg per mouse per day) and estradiol(50 
kg per mouse per day) from day 14 to day 34. 
Whole mounts of mammary glands were pre- 
pared on day 35. (1 and J) Higher magnification of 
the mammary ducts and alveolar structures from 
(G) and (H), respectively. Scale bar in (A) also ap- 
plies to (B); scale bar in (C) also applies to (D), (G), 
and (H); and scale bar in (E) also applies to (F), (I) ,  
and (J). 
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Loss ofcoactivation functioll in  the  SRC- l  Docking Phospholipase A, on Membranes Using 
null lnutants may be partially co~npensated 
by increased expressioll of the  closely relat- Electrostatic Potential-Modulated Spin 
ed coactivator TIFZ. Cer t a i~ l  clinical syn- 
dromes of partial hormone resistance in  

Relaxation Magnetic Resonance 
\vhich receptors are intact might be ex- 
plained by impairment of nuclear receptor 
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A method involving electron paramagnetic resonance spectroscopy of a site-selectively 
spin-labeled peripheral membrane protein in the presence and absence of membranes 
and of a water-soluble spin relaxant (chromium oxalate) has been developed to deter- 
mine how bee venom phospholipase A, sits on the membrane. Theory based on the 
Poisson-Boltzmann equation shows that the rate of spin relaxation of a protein-bound 
nitroxide by a membrane-impermeant spin relaxant depends on the distance (up to tens 
of angstroms) from the spin probe to the membrane. The measurements define the 
interfacial binding surface of this secreted phospholipase A,. 

M a n v  interfacial enzymes such as pllos- 
pholiiases are \vater:soluble and L m ~ ~ s t  
bind to  the  membrane-water interface in  
order to  hydrolyie components of the  
membrane. Al though the  high-resolution 
structures of anueous forms of several 
phospholipases and lipases are knorvn (1 ), 
there are n o  reports that  reveal the  posi- 
t ioning of a n  interfacial enzyme at  t h e  
membrane-water interface. T h e  same can  
be said for lllost membrane-bound nro- 
te i~ls .  I n  the  case of 14-kD secreted phos- 
pholipases A2 (sPLA2s),  such as bee 
venom phospholipase A2 (bvPLA,),  t he  
interfacial recognitioll surface is thought 
to  surround the  active site slot: the latter is 
a deep cavity into which a single phospho- 
lipid molecule enters to reach the catalytic 
residues (2)  (Fig. 1).  Here we describe a 
high-resolution structure deterlnination tool 
based o n  electron paralnagnetic resonance 
(EPR) spectroscopy that allows peripheral 
membrane nrotei~ls such as sPLA,s to be 
oriented with respect to the membrane- 
aqueous interface. 

EPR methods have been developed 
tha t  make use of protein site-specific spin 
labeling and spill relaxants for probing the  
membrane penetration depth of segments 
of integral ~nembrane  proteins tha t  pass 

u 

through the  lnelnbrane (3) .  In  theory de- 
veloped below, it will be shown that  t h e  
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efficiency of relaxation of a nrotein-bound 
nitroxide spin probe by a water-soluble 
spin relaxant such as tris(oxa1ato)chro- 
mate(I11) (Crox)  is dependent OII t he  po- 
sitioning of the  lne~nbrane with respect to  
the  spin probe, even when the  probe is 
exposed to  the  aqueous phase. By measur- 
ing the  Crox-dependent relaxation of sev- 
eral nitroxides placed a t  defined locations 
o n  the  surface of bvPLA2, both  in  the  
nresence and absence of 11ile11ilbranes to  
which the  eniyllle binds, it is possible to  
position the  enzyme o n  the  membrane. 

In  order to  apply this method to bvPLA,, 
13 site-selectively spin-labeled enzynles lvere 
prepared (4), 12 with the spin label located 
o n  or near the putative interfacial recogni- 
tion surface (1 ,  2 )  and 1 with the  probe o n  
the  opposite side. T h e  ability of Crox to 
relax the  spin label of each bvPLAL mutant 
can be quantified by obtaining the continu- 
ous-\vave EPR spectra as a function of mi- 
crowave irradiation porver. This series of ex- 
periments was carried out in the presence 
and absence of 1C mivl Crox for the enzyme 
in the aqueous phase or bound to small 
unilalllellar vesicles of the nonhydrolyzable, 
allionic phospholipid 1,2-dirnyristoyl-SIX- 
glycero-3-pl~ospl~ometl~a~lol (DTPM) (5).  
bvPLAz binds tightly to such vesicles (6).  
For each data set, the power dependence of 
the peak to peak height of the central line of 
the first derivative EPR spectrum, AY, was fit 
by least squares to the power saturation roll- 
over equation (3,  7) 

where h l  = otP:.' is the microwave arnpli- 
tude ill gauss, Po is the  power incident o n  
the  sample, and a is the co1lr7ersioll effi- 
ciency factor for the  resonator (5)  (4.5 
G/W1''). T h e  quantities c, E, and P2 were 
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