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Recognition of Stress-Induced MHC Molecules 
by Intestinal Epithelial y6 T Cells 

Veronika Groh,* Alexander Steinle, Stefan Bauer, 
Thomas Spies* 

T cells with variable region Val yS T cell receptors (TCRs) are distributed throughout the 
human intestinal epithelium and may function as sentinels that respond to self antigens. 
The expression of a major histocompatibility complex (MHC) class I-related molecule, 
MICA, matches this localization. MlCA and the closely related MICB were recognized by 
intestinal epithelial T cells expressing diverse Val yS TCRs. These interactions involved 
the ala2 domains of MlCA and MICB but were independent of antigen processing. With 
intestinal epithelial cell lines, the expression and recognition of MlCA and MICB could 
be stress-induced. Thus, these molecules may broadly regulate protective responses by 
the Val yS'T cells in the epithelium of the intestinal tract. 

T cells expressing yS TCRs recognize 
antigens without restriction by polymor- 
phic MHC class I or class I1 molecules and 
their associated peptide ligands (1-3). Of 
two main subsets in humans, V,2/Vs2 T 
cells predominate in the circulation and 
respond to bacterial 'infections by recog- 
nizing soluble nonpeptide antigens (4). 
The  other subset defined by expression of 
Vsl ,  however, is of unknown function and 
no  antigens have been identified. These T 
cells represent 70 to 90% of the yS T cells 
in the intestinal epithelium (5) .  Because 
they are oligoclonal and uniformly distrib- 
uted, they are believed to recognize self 
antigens that may be stress-induced (6 ,  7). 

The localization of the intestinal intra- 
epithelial V,1 yS T cells is matched by the 
restricted expression of MICA, a divergent 
MHC class I-related molecule of unknown 
function (8). Its characteristics include the 
lack of association with P2-microglobulin 
(P,M), stable expression without conven- 
tional class I peptide ligands, and the ab- 
sence of a CD8 binding site (8, 9) .  Notably, 
the 5'-end flanking regions of the genes for 
MICA and a closelv related molecule. 

MICB, include putative heat shock ele- 
ments similar to those of hsp70 genes, and 
the encoded mRNAs are increased in heat 
shock-stressed epithelial cells (8). 

T o  exulore a functional relation, we 
established T cell lines from lymphocytes 
extracted from Intestinal epithelial tumors 
(10). Other adequate sources of human 
intestinal epithelium are generally un- 
available. Freshlv isolated tumor cells gave 
positive stainings with monoclonal anti- 
bodies (mAbs) 2C10 and 6D4, which are 
specific for MICA and for MICA and 
MICB, respectively (8 ,  11, 12). Vsl  yS T 
cells isolated by cell sorting were grown as 
two lines, S1A and SIB, which were cul- 
tured in the presence of cytokines and 
irradiated C1R cells transfected with 
cDNA for MICA or MICB, respectively 
(10,  13). After expansion, the T cell lines 
were tested for phenotype and function. 
They were homogeneously positive for 
Vsl yS TCRs, CD4-, and CD8- (Fig. 1A).  
As is characteristic of intestinal intraepi- 
thelial T cells, they expressed the cxE P7 
integrin (1 2,  14). In chromium release 
assavs with C1R- MICA or C1R-MICB 
cells as targets, the S1A and SIB T cells 

Fred Hutchnson Cancer Research Center, Clncal Re- 
search Division, 1100 Fairv~ew Avenue North, Seattle, were cytotoxic against both '' these trans- 
WA 981 09, USA. fectants, but not  against untransfected 
*To whom correspondence should be addressed. E-mall: (Fig. l B )  1. CD8t 
vgroh@fred.fhcrc.org, tspies@fred.fhcrc.org cell lines grown and tested under identical 

www.sciencemag.org SCIENCE VOL. 279 13 MARCH 1998 1737 



conditions gave negative results. The same 
observations were made with T cell lines 
from a second intestinal epithelial tumor 
and when T cells were expanded in the 
absence of MICA and MICB (12). 

We used the 61B line to analyze the 
apparent recognition of MICA and MICB. 
MICA transfectants of Daudi cells, which 
lack P2M and surface MHC class I (16), 
were as effectively lysed as Daudi-P,M- 
MICA double transfectants with normal 
expression of class I (Fig. 2A) (1 3). Trans- 
fectants of the lymphoblastoid cell line 
mutant 5.2.4, which lacks expression of 
most MHC class I1 molecules (17), were 
also recognized (Fig. 2B) (13), as were 
transfectants of mouse T cell lymphoma 
EL4 cells (12). No lytic activity was ob- 
served against B cell lines with diverse 
MHC haplotypes. Thus, the 61B T cell 
responses were independent of MHC class 
I and class I1 and were not secondary to 
cross-reactivity with some alleles of these 

10' 102 103 10' lo3 
Q 

fluorescence 
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Fig. 1. Val y6 T cell lines from intestinal epithe- 
lium recognize C1 R transfectants expressing 
MlCA or MICB. (A) Surface phenotype of the 61 B 
T cells by immunofluorescence stainings and 
flow cytometry with the following mAbs: ap  TCR 
(anti-TCR- a/p-1) (shaded profile), yS TCR (anti- 
TCR-$8-I), Val (mAb STCSI), CD4 (mAb Leu- 
3a), and CD8 (mAb Leu-2a) (10). Note that mAb 
anti-TCR- a/p-1 weakly stains y8 TCRt T cells. 
The open profile is an isotype-matched control 
staining. Similar profiles were obtained with the 
61A T cells. (B) In chromium release assays, the 
61A and 61 B T cells lysed C1 R-MICA and C1 R- 
MICB transfectants but not untransfected Cl R 
cells. Data are means of triplicate experiments 
with less than 55% deviation. E:T, effector-to- 
target cell ratio. 

molecules. Cytotoxicity against the trans- 
fected target cells was inhibited when 
these cells were preincubated with mAbs 
2C10 or 6D4 (Fig. 2, C and D). The 
epitopes recognized by these mAbs are 
within the 011012 domains of MICA and 
MICB, as determined by stainings of C1R 
transfectants expressing mouse class I 
H-2Db or Kb hybrid molecules in which 
the 011012 or 013 domains have been sub- 
stituted with the corresponding sequences 
of MICA (8,  12). The SIB T cells lysed 
C1R-MICAala2-Db cells, but not C1R- 
MICAa3-Kb cells (1 2). Thus, V81 yS T cells 
from intestinal epithelium were restricted by 
MICA and MICB and recognized an epitope 
or epitopes associated with the 011012 do- 
mains of these molecules. 

We examined whether the recognition 
of MICA involved antigen processing and 
presentation of peptide ligands. With con- 
ventional MHC class I, the peptides are 
generated by proteasomes in the cytosol and 
are translocated into the endoplasmic retic- 
ulum by the transporters associated with 
antigen processing (TAP) (18). Treatment 
of C1R-MICA cells with lactacystin, which 
blocks proteasome functions (19), had no 
effect on the recognition of MICA by the 
61B T cells, but this did not preclude the 
presence of long-lived MICA-peptide com- 
plexes. However, the transfected mutant 

5.2.4 cells, which lack TAP (1 7), were also 
proficient targets (Fig. 2B); this result im- 
plies that MICA has no function in the 
MHC class I pathway. 

We sought physical evidence for MICA- 
peptide complexes by gel filtration chro- 
matography of acid-dissociated immuno- 
precipitates that were isolated with mAb 
2C10 from lysate of C1R-MICA cells after 
metabolic labeling with tritiated amino 
acids. The eluted fractions contained a 
single peak of radiolabeled polypeptide 
that was of high molecular weight and 
corresponded to MICA (Fig. 2E) (20). 
Analysis of MHC class I complexes isolat- 
ed with mAb W6/32 (anti-HLA-A, -B, 
and -C) yielded fractions of high and low 
molecular weights (Fig. 2F) (21). Thus, 
under these experimental conditions, 
there was no evidence for an association of 
MICA with peptides. This was consistent 
with its recognition by the 61B T cells 
independent of conventional class I anti- 
gen processing. 

These results were in agreement with 
previous models of antigen recognition by 
yS T cells (2, 3) and supported a role of 
MICA and MICB as self antigens. We used 
intestinal epithelial cell lines to investigate 
the expression, regulation, and T cell rec- 
ognition of these molecules. Semiconfluent 
DLD-1, Lovo, HCT116, and HUTU-80 

A +lg control . +mAb 6W 
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Fig. 2. Val 76 T cell responses are restricted by MlCA and MICB and are independent of p,M and 
conventional class I antigen processing. (A and B) The 61 B T cells lysed Daudi-MICA (p,M-, class I-), 
Daudi-p,M-MICA (class I + ) ,  and 5.2.4-MICA (DR-, DQ-, TAP) transfectants but showed no or minimal 
lytic activity against the untransfected cells. (C and D) Binding of mAbs 2C10 (anti-MICA) and 6D4 
(anti-MICA and -MICB) inhibited lysis of C1 R-MICA and C1 R-MICB targets, respectively. Treatment with 
the anti-HLA-A, -B, and -C mAb W6/32 (21) or isotype control IgG had no effect. (E and F) Gel filtration 
analysis of acid-dissociated immunoprecipitates isolated with mAbs 2C10 or W6/32 from C1 R-MICA 
cells after metabolic labeling with FHIamino acids (20). 
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cells that were rapidly proliferating ex- 
pressed large amounts of MICA and MICB. 
They were lysed by the S1B T cells in a 
specific interaction that was inhibited by 
mAb 6D4 (12, 22). 

The expression of MICA in intestinal 
epithelium may be stress-induced rather 
than constitutive (8). In proliferating cell 
lines, however, transcription of the hsp70 
gene is activated in the absence of cellular 
stress (23). We used Lovo,'HCT116, and 
HUTU-80 cells grown as nonproliferating 
confluent monolayers to investigate the 
expression of MICA and MICB before and 
after heat shock induction. Uninduced 
cells had very low steady-state levels of 
MICA and MICB mRNA and expressed 
small amounts of the encoded surface mol- 
ecules. However, heat shock induction re- 
sulted in large increases in mRNA and 
protein expression (Fig. 3, A and B) (24). 
Concurrently, hsp70 mRNA was potently 
induced, whereas class I HLA-B mRNA 
and surface class I HLA-A, -B, and -C 
detected with mAb W6/32 on HCT116 
and HUTU-80 cells (Lovo lacks P,M and 
thus class I surface expression) were un- 
changed (Fig. 3A) (I  2). The heat shock- 
treated cells were sensitized to lysis by the 
S1B T cells, whereas minimal lytic activity 
was observed with the uninduced target 
cells. As with the proliferating cell lines, 
cytotoxicity was inhibited by mAb 6D4 
(Fig..3C). Thus, the expression of MICA 
and MICB and their recognition by the 
61B T cells were regulated by cell stress. 
Because these results were obtained with 
cell lines derived from intestinal epitheli- 
um, which is the only peripheral site 
where expression of MICA has been ob- 
served (8), MICA and presumably MICB 
were functionally associated with V,1 y6 
T cells in this compartment. 

We investigated whether MICA and 
MICB were recognized by T cells expressing 
diverse yS TCRs and sought evidence for 
TCR engagement. A total of 16 T cell 
clones derived from the S1A and 61B lines 
showed functional activity against C1R- 
MICA and C1R-MICB targets. Analysis 
of cDNA sequences identified five distinct 
y and S chain pairs (Fig. 4, A and B) (25). 
The y chains included V,1.3, 1.4, 1.5, or 
1.8, and J,2.1 or 2.3. All of the S chains 
expressed Vgl and Jgl with diverse junc- 
tions encoded by one or two D segments 
and nontemplated N region nucleotides 
(Fig. 4A) (1, 26). Because prolonged cul- 
ture frequently resulted in loss of function- 
al activity of T cell clones, these sequenc- 
es were a minimal representation of differ- 
ent Vsl yS T cells capable of recognizing 
MICA and MICB. We tested the ability of 
T cell clones 1, 3, and 5 to recognize 
C1R-MICA targets in the presence of the 

V,1 mAb STCS1 (1 0 ,  15). With all three 
clones, inhibitory effects were observed 
(Fig. 4C). These data showed that MICA 
and MICB were recognized by V,1 y6 T 
cells expressing diverse TCRs and support- 
ed an engagement of these molecules by 
these TCRs. The diversity of TCRs im- 
plied that most, if not all, intestinal epi- 
thelial V,1 y6 T cells may be capable of 
interacting with MICA and MICB. 

Our results define a T cell subset-MHC 
ligand interaction. Intestinal epithelial 
V,1 yS T cells recognize epithelial cell 
lines without restriction by polymorphic 

MHC class I or class II.molecules (27). We 
have now shown that stress-induced MHC 
class I-related molecules, MICA and 
MICB, function as target antigens recog- 
nized by these T cells. A number of allelic 
variants of MICA of uncertain signifi- 
cance have been identified (28). We ob- 
served no differences in the recognition by 
the S1B T cells of C1R transfectants ex- 
pressing three alleles representing most of 
the sequence variation in the a1a2 do- 
mains of MICA (29). Thus, although 
MICA and MICB are encoded in the 
MHC, their recognition was "MHC-unre- 

Fig. 3. Stress-induced expres- e 8, ,,e %Q 6 %Q b 80 

0 <\'$a p 4. $a <\'$a $ <\' <a sion and T cell recognition of A ,# + A~ e+L+,.&,r-3 MlCA and MICB on quiescent 
intestinal epithelial cell lines. 
Lovo, HCT116, and HUTU-80 
cells cultured for 8 days as 
confluent monolayers had very 
low steady-state levels of 
MlCA and MICB mRNAs by 
blot hybridization of total cellu- 
lar RNAs (A) (24). They ex- 
pressed small amounts of the 
encoded cell surface proteins 
by indirect immunofluores- 
cence staining with mAb 6D4 
and flow cytometry (shaded 
profiles in B) and were poorly 
lysed by the 61B T cells (C). 
Heat shock treatment strongly . 
increased MlCA and MICB 
mRNA (A) and protein expres- 
sion (filled profiles in B), and also 
sensitized target cells to lysis, 
which was inhibited by mAb 
6D4 (C); hsp70 mRNA was po- 
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(A). The hsp70 blot was ex- 
posed to film for a much shorter time. Open profiles in (B) are isotype IgGl control stainings. HS, heat shock. 
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2. Vyl.E/J72.3 TWD WG KKL ~ 6 1 1 ~ 6 1  LGE PLP TDKL 
3. Vyl.llJY2.3 TWD Q NYYKKL ~ 6 1 1 ~ 6 1  LGE SLTRA ,,, Five different y and 6 chain 
4. g.31~uz.i TWDR PLNA WIKT ~ 6 1 1 ~ 6 1  LG VSSSYPWGIIKPH DKL Sequence pairs were identi- 
5. vy1.31~72.o TWDR LE KL V61/J61 LGEL ALWGIRIW DKL fied by reverse transcription- 

PCR and direct sequencing 
B c among the 16 T cell clones 

clone 1 derived from the 61A and 
61 B lines. Of the V and J re- - clone 2 q +lg contrd 

clone 3 -,, STCSl gion sequences flanking the 
variable N or N(D)N regions, 

% - clone 3 clone 5 only a few amino acids are 
Y) 

shown (25). Abbreviations 
clone 4 for the amino acid residues 

C1 R-MICA 
clone 5 % specific lysis 

O C l R  
are asfollows: A, Ala; D, Asp; 
E, Glu; G, Gly; H, His; I ,  Ile; K, - Lys; L, Leu; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, ~ 4 ;  W, Trp; and Y, 

20 40 60 Tyr. (B) T cell clones expressing the different y6 heterodimers were cytotoxic 
% 'peci" against C1 R-MICA targets. (C) Inhibition of cytotoxicity of T cell clones express- 

ing TCR sequences 1,3, and 5 by V,1 mAb 6TCS1 (70). Control IgGl antibody was used under the same 
conditions. Data shown are representative of several independent assays and were obtained at a 
constant effector-to-target ratio of 5 to 1. 
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stricted." This was. in accord with the 
recognition of all of the intestinal epithe­
lial cell lines tested. Because MICA and 
MICB were recognized on diverse target 
cells without an apparent requirement for 
antigen processing, and there was no evi­
dence for associated peptide ligands, it seems 
probable that these molecules alone con­
ferred specificity in the recognition by the 
V81 yb T cells. This inference would be 
consistent with current models of 78 T cell 
recognition of antigen but remains tentative 
until the absence of peptide or nonpeptide 
ligands is conclusively demonstrated. 

The stress-induced expression of MICA 
and MICB and their recognition by di­
verse V81 yb T cells may serve as an 
immune surveillance mechanism for the 
detection of damaged, infected, or trans­
formed intestinal epithelial cells, or may 
stimulate T cell secretion of growth factors 
for the maintenance of epithelial ho­
meostasis, as originally proposed for mu­
rine intraepithelial T cells expressing in­
variant 78 TCRs (7). The irregular distri­
bution of MICA in variable areas of intes­
tinal epithelium may reflect such an 
induction (8). 
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