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A feature that distinguishes yS T cell subsets from most ap T cells and B cells is the 
association of expression of single T cell receptor (TCR) y and S variable (V) region gene 
segments with specific anatomic sites. Mice lacking the TCR Vy5 chain normally ex- 
pressed by most dendritic epidermal T cells were shown to retain a conformational 
determinant (idiotype) ordinarily expressed exclusively by such V,5+ cells. Conservation 
by shuffled yS TCR chains of an idiotype associated with a specific anatomic site 
indicates that for TCRyS, as for immunoglobulin, conformation is associated to a greater 
extent with the function or development of lymphocyte repertoires than is the use of 
particular gene segments. 

T h e  efficacy of the adaptive immune sys- 
tem depends on its capacity to recognize 
pathogens in a highly antigen-specific man- 
ner. B cells and cwp T cells recognize anti- 
gens through surface immunoglobulin (Ig) 
and TCRs, respectively. Although yS cells 
regulate immune responses to protozoal, 
bacterial, and viral infection (1 ,  Z), neither 
their primary physiological functions nor 
their antigen specificities have been fully 
clarified. 

A characteristic feature of yS cells is the 
association of single y and S chains with yS 

cell subsets in specific anatomic sites. For 
example, most human peripheral blood yS 
cells express Vy9 and V,2 chains of rela- 
tively limited diversity (3). More extreme 
examples occur in murine epithelia. Essen- 
tially all reproductive tract yS cells express 
a canonical V,6-V,1 TCR, whereas 60 to 
>99% of dendritic epidermal T cells 
(DETCs)-variation depending on strain 
and age of the mice-express a canonical 
Vy5-V,1 TCR ( 4 ) ,  which can be detected 
with the monoclonal antibody (mAb) 
17D1 (5). Ordinarily, 17D1 does not react 
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with any other yG cells, including those of 
the reproductive epitheliumthat share with 
DETCs use of the identical V,1 chain. Such 
site-specific homogeneity of antigen recep- 
tor expression had not been observed in 
previous studies of ap T cells and B cells. 
To  investigate this feature of yG cells, we 
examined the effect on DETC development 
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of V,5 gene disruption (6) (Fig. 1). 
To confirm V,5 gene disruption, we 

stained epidermal sheets (7) from V,5-/- 
and V,5+/+ littermates with mAbs to V,5, 
TCRG, and C D ~ E  (Fig. 2). V,5+ cells were 
readily detectable in epidermis from V,5+/+ 
mice, but not in that from V,5-/- mice. 
Nonetheless, dendritic CD3+TCRG+ 
DETCs were present in V,5-/- mice at 
densities not significantly different from 
those in V,5+/+ controls (153 + 26 versus 
221 2 79/mm2, respectively; P = 0.54). 

Because normal DETCs do not readily 
develop in mice lacking either TCRG (8) or 
p72 SYK, a putative transducer of signals 
from the DETC TCR (9), the development 
of a DETC repertoire in V,5-/- mice im- 
plied that other y6 TCRs could substitute for 
V,5-V,1. To determine whether those 

Fig. 1. Disruption of the V,5 gene. A 7-kb Balb/c genomic clone that contains both V,5 and Vy6 coding 
regions was used to generate the V,5 disruption construct. The V,5 gene was disrupted by insertion of 
a neomycin resistance gene (neo) under the control of a phosphoglycerate kinase gene promoter into an 
Eco RV site in the Vy5 coding region. A 3-kb Bgl I I  fragment was deleted to generate a unique Bgl I I  site 
[(B)], into which two herpes simplex virus thymidine kinase genes (TK) were inserted. The 3-kb Bgl I I  
fragment was subsequently used as a probe in Southern blot analysis, detecting a 7-kb Eco RI (R) 
genomic fragment in the germline configuration and a 6-kb Eco RI fragment from the recombinant allele. 
Lane 1, Eco Rl-digested DNA from targeted 129 embryonic stem cell clone 21.2; lanes 2 to 4, Eco 
Rl-digested tail DNA of V,5+'+, V,5-/- male, and V,5-/- female mice, respectively. 

TCRs were similar in structure to the canon- 
ical DETC TCR, we examined the "replace- 
ment" repertoire with mAb 17D1. This mAb 
was generated by immunizing Lou/M rats 
with a DETC line, fusing splenocytes with 
the SP2/0 myeloma, and screening the re- 
sulting mAbs for reactivity with DETCs but 
not with peripheral T or natural killer cells. 
From a DETC clone (1D2), both 17D1 and 
a pan antibody to TCRG (3A10) immuno- 
precipitated proteins (10) of sizes similar to 
those previously described for the 1D2 yG 
TCR (1 1) (Fig. 3A). Moreover, pretreat- 
ment of lysates with 3A10 removed all 17D1 
immunoreactivity, whereas pretreatment 
with 17D1 removed all 3A10 immunoreac- 
tivity (Fig. 3A). These results placed the 
17D1 epitope on the TCR. However, 17D1 
yielded negligible staining with either re- 
productive tract y6 cells or five hybrid- 
omas that express the same V,1-D,2-J,2 
chain as DETCs (1 2), but paired with V,6 
rather than with V,5 (Table 1). Thus, 
17D1 reactivity could not be attributed 
simply to the expression of V,1-D,2-J,2. 
Indeed, among 19 hybridomas and cell 
lines expressing different TCR yG chain 
combinations (Table I), 17D1 reacted 
only with those expressing both V,1 and 
V,5, consistent with it defining a charac- 
teristic DETC TCR conformation. 

Unexpectedly, however, the same con- 
formation was detected in epidermal sheets 
from V,5-/- mice (Fig. 2). Flow cytometry 
of epidermal cells (1 3) from individual mice 
showed that 33 ? 13% (n = 6) of the 
TCRyG+ DETCs from V,5-/- mice were 
17D1+, compared with a value of 78 2 18% 

Fig. 2. Epidermal sheets prepared from V,5+/+ (A to D) and V,5-I- (E to H) magnification, x400. Data are representative of 10 fields of 0.042 mm2 per 
mice and stained with antibodies to Vy5 (A and E), antibodies to CD3 (B and specimen, two to six specimeris per mouse, two mice per experiment, and 
F), antibodies to TCRG (C and G), or mAb 17D1 (D and H) (7). Original three experiments. 
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(n = 5) for V,5+/+ littermates. To investi- 
gate the basis for 17D1 epitope expression 
on V,5-/- DETCs, we applied reverse tran- 
scription polymerase chain reaction (RT- 
PCR) analysis (14) to a 17D1+ DETC 
clone (30B4) derived from V,5-/- DETC 
mice (1 5). Transcripts of V,1-J,4 and Vsl- 
J,2, but not of V,4, -5, -6, or -7 or V,4 or 
V,6, were detected (16). Sequencing re- 
vealed a simple, in-frame V,1-J,4 join, 
identical to that of the thymic hybridoma 
AA37 (1 7). The join, devoid of non-tem- 
plate-encoded nucleotides, might have 
been generated by recombination mediated 
by small stretches of sequence homology, 
which is common in fetal thymic V(D)J 
recombination (8, 18). Sequencing of the 
V,1-J,2 product likewise revealed a simple, 
in-frame join, identical to the canonical 
V,1-D,2-J,2 junctions present in day-13 to 
day-17 fetal thymocytes, in DETCs, in re- 
productive tract y6 cells, and in a subset of 
the cell lines and hybridomas listed in Ta- 
ble 1 (4, 12). 

Independent evidence for the associa- 
tion of this V,1-Vsl chain pairing with the 
17D1 epitope was provided by PCR and 
restriction fragment length polymorphism 
(RFLP) analysis (19) of polyclonal 17D1+ 
DETCs that were sorted by flow cytometry 
from a different V,5-/- mouse. The analy- 
sis detected the canonical V,1-J,2 rear- 
rangement and only a single V,1-J,4 rear- 
rangement, which was of the size predicted 
for the in-frame 30B4 join. Moreover, the 
predominant sequence obtained from the 
polyclonal population was identical to that 
of 30B4, with the exception of a conserva- 
tive (serine to threonine) switch at the V-J 
junction (1 6). 

Flow cytometry confirmed that clone 
30B4 expressed V,1 (Fig. 3B), as did other 
V,5-, 17D1+ cells. V,1 expression has been 
previously detected in the epidermis of nor- 
mal mice and in hybridomas derived there- 
from (20), but not in combination with ei- 
ther V,1 or the 17D1 epitope. Several 
17D1- lines and clones that were likewise 
isolated from V,5-/- epidermis expressed 
various TCRs, including V,7 (Fig. 3B), V,4, 
and V,1. V,7 is often present in the gut 
paired with V,4 (21, 22), but has not previ- 
ously been identified in the epidermis. No 
V,7+ DETC clones stained with antibodies 
to V,4, although a Vs4+V,7- DETC line 
was isolated. Thus, DETCs in V,5-/- mice 
constitute a distinct repertoire, including 
V,1+ cells that retain the l7Dl-defined 
TCR conformation, ordinarily characteristic 
of V,5-V,1 DETCs. 

Conventional V,5-V,1 DETCs secrete 
interleukin-2 (IL-2) in response to 
PAM2.12 transformed keratinocytes (23). 
This TCR-dependent activity was also ex- 
hibited by the 17D1+ clone 30B4, and by 

Fig. 3. 17D1 epitope and antikeratinocyte reac- + tivity displayed by V,5 DETCs. (A) DETC clone 
ID2  was surface-labeled with '"'I and lysed > 
with 1% NP-40, and the resulting lysate was 
analyzed by immunoprecipitation, SDS-PAGE, I 
and autoradiography (70). The mAb 3A10 to V,4 - 
TCRG (lane 2) and 17D1 (lane 4) ~recipitated two 
proteins of 42 and 50 kD, the sizes expected for C 
the 102 TCR ( 7  7); control hamster IgG (lane 1) 
and rat IgM (lane 3) did not. Pretreatment of 
lysate with 3A10 removed all 17D1 react~vity 
(lane 5), and pretreatment with 17D1 removed 
all 3A10 reactivity (lane 6). Molecular size stan- 
dards (in kilodaltons) are indicated on the right. 20.8 
(B) DETC line 7-17 (derived from an AKRIJ 
mouse) and clones 30134 and UlOE1 (derived 
from Vy5- '  mice) were stained and analyzed 
by FACS as described (13) with 1701 and anti- 
bodies to Vy5, to Vyl, to Vy7, or to V,4. (C) 
DETC lines 2-10-86 (Vy5+, 17D1') and 5-6 
(Vy5-, 17D1') and clone 3084 (V75-. 1701') Cell line or clone 

were cultured (20 hours. 37°C) in medium only or in the presence of irradiated PAM2.12 keratinocytes. 
Culture supernatants were tested for the ability to support the growth of the IL-2-dependent CTLL cell 
line as measured by ["]thymidine incorporation (cells were harvested at 48 hours, after a 24-hour 
pulse). Data are expressed as units of IL-2 per milliliter and are means -C SEM of triplicate wells (28). 

Table 1. Analysis of cell lines and hybridomas of known TCR composition by flow cytometry (73) for 
reactivity with mAb 17D1 and mAbs to TCRy8 (3A10 or GL3). 

Hybridoma 
or cell line 

TCR composition 
Reactivity 

BW5147* - - 
153' V,5-V81 + + 
1 D2tS V,5-V61 + + 
11YS V,5-V81 + + 
V17* V,5-V62 - + 
66'$ V,6-V,l - + 
21 *$ V,6-V,l - + 
9OBPLlSO V,6-V,l - + 
90BPL2$§ V,6-V61 - + 
90BPL3$§ V,6-V,l - + 
33BTE14098 V,6-V61 - + 
1 v,4-v,7 - + 
KN6* V,4-V65 - + 
KN102' V,4-V65 - + 
KN106* V,7-V65 - + 
T I  9511 V,l -V66.2 - + 
AA3711 v,1 -v,6.2 - + 
BB2711 V,l -V66.2 and V,4 - + 
Y24511 V,l -V8Z49 and V,4 - + 
Y93A.111 V,1 -V,6. 1 and V,4 - + 
'Fetal thymocyte hybridomas (12, 29) were analyzed by M. Bonneville, tDETC clone ID2 was produced by 
Takashima et a/. (30). $Seven cell lines and hybridomas with the same Val-D,2-J,2 canonical join (72 29, 
31). $Hybridomas provided by W. Born (31). ((DETCs expressing noncanonical TCRs as well as the thymocyte 
hybridomas AA37 and BB27 were provided by E. Shevach. 
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the 17D1' line 5-6 isolated from V,5p1p 
mice (Fig. 3C). Similar to normal DETCs, 
30B4 and 5-6 also lysed PAM2.12 cells. 
Thus, 17D1+ cells from V,5-deficient mice 
could respond to keratinocytes in a manner 
similar to that of such cells derived from 
normal mice. 

Finally, because V,5+ cells normally de- 
velop before other TCRyst  subsets (24), 
we used flow cytometry and PCR-RFLP to 
examine whether V,5 mutation overtly af- 
fected the development of the remaining 
TCRyst  repertoire. No gross disruption 
was apparent. For example, canonical V,6- 
J,1 rearrangements were abundant in the 
reproductive tract of both V,5+It and 
V,5-I mice (16). 

Our data show that an outwardly normal 
DETC population developed in the absence 
of V,5. Among different TCR y and 6 
pairings used by V , 5  DETCs, at least one 
(V,1 -V,1) retained the conformational 
epitope defined by mAb 17D1 that is nor- 
mally restricted to V,5+ DETCs. Thus, sim- 
ilar to most B cells and a p  T cells, the 
epidermal y8 cell subset is associated more 
with an  antigen receptor conformation 
than with simple linear epitopes encoded by 
the particular V, and V, gene segments 
normally used by DETCs. 

Because other TCRs can create the 
17Dlt  conformation, it remains to be ex- 
plained why the DETC repertoire is nor- 
mally dominated by a single V,5-V,1 com- 
bination. We propose that the high fre- 
quency of the canonical rearrangement of 
V,5-J,1 and Val-J,2 simply reflects the 
most frequent mechanism used to establish 
the 17Dl epitope. This high frequency ap- 
pears to be determined largely by short 
stretches of nucleotide sequence homology 
between the V(D)J gene segments (8, 18). 
Indeed, canonical in-frame V,5-J,1 and 
V,1-J,2 rearrangements are common even 
in mice in which mutations prevent the 
expression of the TCR (8,  25). Although 
this can be interpreted as evidence against 
selection on the DETC TCR, our observa- 
tion that the 17D1 epitope is commonly 
conserved among DETCs, even in the ab- 
sence of the usual TCR y8 chain pairing, 
suggests that the functional efficacy of this 
epitope may have selected for the retention 
of the short regions of homology, and not 
vice versa. 

vergence may be resolved by clarification of 
the ligands for 17Dlt  and 17D1- DETCs. 
However, it cannot be assumed that the 
17D1 epitope on the DETC TCR defines 
the conformation of the complementarity- 
determining region (CDR) 3, which, by ex- 
trapolation from Ig and TCRaP,  is likely to 
be an important contact site for antigen. 
Both an anti-clonotypic antibody and super- 
antigens bind to TCRaP conformations 
mapping partly or wholly outside CDR3 
(26), and both can markedly and selectively 
activate the relevant a p  T cells in vivo. The 
17D1 epitope may similarly manifest an 
equally important conformation of the 
DETC TCR. 
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offspring displayed no obvious skin or hair abnormal- 
ities and were clinically 'indistinguishable from wild- 
type littermates. 
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Roles for ORC in M Phase and S Phase 
Andrew Dillin and Jasper Rine* 

The origin recognition complex (ORC), a six-subunit protein, functions as the replication 
initiator in the yeast Saccharomyces cerevisiae. Initiation depends on the assembly of the 
prereplication complex in late M phase and activation in S phase. One subunit of ORC, 
Orc5p, was required at Gl/S and in early M phase. Asynchronous cells with a temper- 
ature-sensitive orc5-1 allele arrested in early M phase. In contrast, cells that were first 
synchronized in M phase, shifted to the restrictive temperature, and then released from 
the block arrested at the Gl/S boundary. The G,/S arrest phenotype could not be 
suppressed by introducing wild-type Orc5p during GI. Although all orc2 and orc5 
mutations were recessive in the conventional sense, this dominant phenotype was 
shared with other 0 ~ 5  alleles and an orc2 allele. The dominant inhibition to cell-cycle 
progression exhibited by the orc mutants was restricted to the nucleus, suggesting that 
chromosomes with mutant ORC complexes were capable of sending a signal that 
blocked initiation on chromosomes containing functional origins. 

I n  Saccharomyces cereoisiae, replication ini- 
tiates from speclflc DNA sequences called 
autonomous replication sequences (ARSs), 
many of which have proven to be chrorno- 
soma1 origins of replication. A six-subunit 
protein complex, the ORC, binds to ARSs 
in an ATP-dependent manner and is re- 
quired for initiation (1-3). Homologs of 
O R C  subunits have been identified in other 
eukaryotes including humans, suggesting 
that the mechanism by which O R C  ini- 
tiates replication is highly conserved (4). 
Additionally, these homologs are essential 
for in  vitro replication of Xenopus egg ex- 
tracts (5-7) and for amplification of the 
chorion gene cluster of Drosophila (8).  

Eukaryotes can initiate replication at  a 
given origin only once per cell cycle, and 
there are hundreds of origins whose activa- 
tion is coordinated. Some origins initiate 
early and others initiate late in S phase. 
O R C  remains bound to origins throughout 
the cell cycle (9),  so initiation of replica- 
tion, at least in  S. cereoisiae, is not regulated 
by simply controlling the binding of O R C  
to origins. 

Orlgin initiation is regulated by a two- 
stev mechanism. The first steo, referred to . , 
historically as origin licensing, occurs in M 
phase, and the second step, origin activa- 
tion, occurs in S phase (10). Once a li- 
censed origin has been activated during S 
phase, it is incapable of initiating again 
until it is licensed in the next M phase. The  
factors that make uw a licensed origin are - 
not diffusible, because otherwise these fac- 
tors could diffuse from a late origin that had " 

not initiated to a recently initiated early 
origin, allowing its reinitiation. 

O R C  has properties consistent with its 
being the target-of factors that control ini- 
tiation. From S phase to late M phase, the 
in vivo footprint a t  a n  origin is similar to 
the footprint created in vitro by purified 
ORC, suggesting that O R C  is the only fac- 
tor bound during this time. During late M 
phase, when origins are licensed, the foot- 
print is extended, reflecting the assembly of 
a prereplication complex (pre-RC) (9). Ge- 
netic and molecular data suggest that the 
pre-RC contains ORC, CdcGp, and the 
MCM family of proteins (1 1-1 3). Mutation 
of the MCM genes causes defects in  
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an ORC-dependent manner, suggesting 
that O R C  interactions with MCM proteins 
make an orlgin competent to lnltiate repli- 
cation (6). 

This study revealed that at least one 
subunit of the O R C  complex, Orc5p, was 
required for at least two steps in  the cell 
cycle, Gl/S and early M phase. The  execu- 
tion point for the Gl/S function occurred 
before Start, probably in M phase. More- 
over, the level of ORC5 function required 
for entry into M phase was higher than the 
level of function required for entry Into S 
phase. 

Strains with either 0x2-1 or 0x5-1 re- 
cessive rnutatlons are compromised for rep- 
lication initiation, but dlffer in their arrest 
point in the cell cycle upon shift to  the 
nonpermissive temperature. Haploid cells 
with a defective Orc2 protein (Orc2p) ar- 
rest wlth 1 C  DNA content (16). In con- 
trast, orc5-l mutant cells arrest with a n  
apparent 2 C  DNA content, suggesting that 
these cells are in G2 or M phase of the cell 
cvcle (1 2 )  (Fie. 1) or arrested in late S " 

phase, with most of the genome replicated. 
A late S phase arrest would suggest that the 
orc5-l allele was defective at a small subset 
of origins of replication, perhaps the late- 
initiatine ones. Arrest after S ohase would u 

argue that the function of Orc5p was not 
confined to S vhase. T o  distinguish be- - 
tween these possibilities, we examined the 
arrest phenotype of orc5-l mutant cells. 

W e  performed pulsed-field gel electro- 
phoresis (PFGE) on the chromosomal DNA 
of arrested orc5- 1 cells (1 7) .  Chromosomal 
DNA of wild-type (WT)  cells arrested in S 
phase by treatment with hydroxyurea does 
not enter the gel matrix (18). In contrast, 
the fully replicated chromosomal DNA of 
cells arrested either in  G,  bv a-factor or in 
M phase by nocodazole eAte;ed the gel and 
migrated in  a characteristic manner. By this 
assav. orc5-1 cells arrested with a 2C DNA , , 
content and contained fully replicated 
chromosomal DNA similar to that of orc5-1 

c e l l s  grown at 23°C and to that of WT cells - 
Dlvislon of Genetics, University of California at Berkeley, minichrornosome propagation (141, and grown at either 23" or 37°C (Fig. 2). 
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