
mM caused responses in oocytes expressing 
mGluRla (Fig. 5). It is possible that the 
activation of mGluRla would be triggered 
by the fluctuation of local [Ca2+], in the 
svnaotic cleft. 
' Thus, mGluRs l a ,  5, and 3 but not 

mGluR2 are activated by Ca2+, at physio- 
logical concentrations, and a single amino 
acid residue determines the sensitivity to 
Ca2+ ,. Also, the Ca2+,-sensing function of 
mGluRla can play a role in generating 
morphological changes in transfected cells. 
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Hyperinnervation of Neuromuscular Junctions 
Caused by GDNF Overexpression in Muscle 

Quyen T. Nguyen,* Alexander Sh. Parsadanian," 
William D. Snider, Jeff W. Lichtman? 

Overexpression of glial cell line-derived neurotrophic factor (GDNF) by muscle greatly 
increased the number of motor axons innervating neuromuscular junctions in neonatal 
mice. The extent of hyperinnervation correlated with the amount of GDNF expressed in 
four transgenic lines. Overexpression of GDNF by glia and overexpression of neurotro- 
phin-3 and neurotrophin-4 in muscle did not cause hyperinnervation. Thus, increased 
amounts of GDNF in postsynaptic target cells can regulate the number of innervating 
axons. 

Experimental application of growth factors 
can alter the density and distribution of 
axon branches (1);  hence, growth factor 
release mav be one means bv which target 
cells regulate the number of synaptic c&- 
nections they receive (2,  3). We sought to 
test this idea in a system where the comple- 
ment of axon branches innervating a target 
cell could be visualized and functionallv 
assessed. We generated mlce in which mus- ' 

cle fibers synthesized excess amounts of a 
specific neurotrophic factor, GDNF, and 
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studied innervation at the neuromuscular 
junction (NMJ). GDNF was chosen be- 
cause it is perhaps the most potent survival 
factor for motor neurons, both in vitro and 
in vivo (4-6). In addition, GDNF is syn- 
thesized by muscle and Schwann cells (4,  7, 
8) and is internalized and specifically trans- 
ported retrogradely by motor neurons 
through a receptor-mediated process (6). 

To  examine the effect of increased tar- 
get-derived GDNF on NMJ development, 
we generated several lines of Myo-GDNF 
mice (9) that overexpress GDNF under a 
muscle-specific (myogenin) promoter (10, 
1 1 ) (Fig. 1A). The myogenin promoter was 
chosen because it drives transgene expres- 
sion in muscle beginning in embryogenesis, 
about the time axons first approach muscle 
fibers, and continues expression into post- 
natal life (10). 
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Ten founder lines integrated the trans- lines were chosen for further study: the two 
gene Myo-GDNF (Fig. 1B) (9). On the with the highest expression of GDNF 
basis of the amount of mRNA detected on mRNA (lines 8658 and 7301) (Fig. 1, D, E, 
postnatal day 1 (PI) (12), four of the 10 G, and H) and two with GDNF mRNA 

Table 1. Comparison of GDNF mRNA and protein expressed by neonate and adult (4 to 5 months) 
wild-type, Myo-GDNF (low), and Myo-GDNF (high) mice. 

Myo-GDNF (low) Myo-GDNF (high) 
Age Wild type 

Total Transgenic Total Transgenic 

PI GDNF mRNA 30.6 2 2.0 99.2 2 3.7 68.6 269.8 2 22.0 239.2 
(grains1250 pm2) 

P3 GDNF protein 24.4 44.4 19.6 88.8 64.5 
(pg/mg protein) 

Adult GDNF protein 30.5 45.6 15.1 83.6 53.1 
(pg/mg protein) 

Myogenin hGH exonl g kb + 

6 kb + 

Wild Woe Mvo-GDNF (low) Mvo-GDNF (hiah) 

Fig. 1. (A) Schematic of Myo-GDNF transgene construct. The 4.4-kb construct contains 1.6 kb of 
myogenin promoter, 0.7 kb of mouse GDNF (mGDNF) cDNA, and 2.1 kb of human growth hormone 
(hGH) gene including polyadenylation signal (PA). N, Not I ;  B, Bam HI; X, Xho I. (B) Southern blot analysis 
of Myo-GDNF transgenic lines. The 0.7-kb band corresponds to transgene GDNF cDNA. The 6- and 
9-kb bands correspond to the endogenous GDNF gene. Progeny from lines 7301 and 8658 (asterisks) 
were used for the remaining studies. (C to E) Low-power dark-field photomicrographs of in situ 
hybridization at the level of the forelimb of PI pups from Myo-GDNF transgenic lines Myo-GDNF (low) 
and Myo-GDNF (high), and wild-type littermates with a probe specific for GDNF mRNA. The white ring 
in the center (B) is artifactual hybridization to bone. The wild type and the two different transgenic lines 
show differing extents of GDNF mRNA expression in developing muscles (M). Scale bars, 200 pm. (F to 
H) High-power bright-field views of silver grains [from the same sections as (C) to (E)]. Grains are specific 
for muscle cells. Scale bars, 5 pm. 

expression that was indistinguishable from 
that of the wild type (as control). These 
four lines were compared to wild-type lit- 
termates (Fig. 1, C and F). Because the 
overexpression of GDNF mRNA and pro- 
tein is greater in line 8658 than in line 
7301, these two high-expressing lines are 
denoted Myo-GDNF (high) and Myo- 
GDNF (low), respectively. In the two high- 
expressing lines but not in control muscles, 
quantities of GDNF protein at P3 as mea- 
sured by enzyme-linked immunosorbent as- 
say (ELISA) (1 3) were elevated and paral- 
leled the increases in mRNA expression 
(Table 1). 

Neuromuscular innervation was studied 
at multiple time points between birth and 
adulthood in all four transgenic lines and in 
wild-type animals. Normally in mammals, 
two or more motor axons innervate each 
NMJ at birth, but this number decreases to 
one over the first several postnatal weeks 
because of synapse elimination and associ- 
ated axonal branch withdrawal (14). How- 
ever, innervation of NMJs in the Myo- 
GDNF (high) and Myo-GDNF (low) mice 
was abnormal in several ways during the 
first several postnatal weeks. First, there 
were many more converging axons than 
normal (15) (Fig. 2). At some junctions, 
the number of inputs was several times the 
highest number of innervating axons ob- 
served in age-matched wild-type animals 
(Fig. 3). Despite the increased innervation, 
there was still only one NMJ on each mus- 
cle fiber, as in control muscles (Fig. 2). 
Second, in addition to the increase in the 
number of converging axons, the period of 
multiple innervation persisted longer than 
normal, doubling from 2 weeks to 1 month 
in Myo-GDNF (high) mice (Fig. 3A). In- 
terestingly, when NMJs in overexpressing 
muscles had lost on average all but two 
axons, the transitipn to single innervation 
was approximately as fast as in control an- 
imals when they were similarly innervated 
(Fig. 3A). 

The prolonged period of multiple inner- 
vation in these animals did not amear to be 

L L 

caused by a systemic maturational delay: 
Although the transgenic animals' weight 
tended to be slightly lower than that of 
control littermates during the first few post- 
natal weeks (90% of control at PO, 85% at 
P8. 70% at P14. and 83% at P23). eve ., , 
opening, fur growth, weaning, and repro- 
duction all occurred at appropriate times. 
We found that by adulthood, amounts of 
GDNF protein from the transgene dropped 
somewhat in both Myo-GDNF (high) and 
Myo-GDNF (low) mice (Table 1). Thus, 
we do not yet know if the eventual loss of 
multiple axonal convergence could be pre- 
vented altogether by maintained elevation 
of GDNF. The observed hyperinnervation 
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appeared to be related to the dose of GDNF 
because both the number of converging ax- 
ons per multiply innervated endplate and 
the time required for an entire muscle to 
become uniformly singly innervated corre- 
lated with the amount of GDNF expressed 
in the Myo-GDNF (high) and Myo-GDNF 
(low) lines (Fig. 3A). 

To  determine whether GDNF overex- 
pression may have induced innervation of 
muscle fibers by sensory or autonomic ax- 
ons, which express the GDNF receptor Ret 
(1 6) but would not be expected to be func- 
tional, we recorded synaptic responses from 
diaphragm muscle fibers of transgenics and 
wild-type controls while stimulating the 
phrenic nerve with varying voltages (1 7). 
At P9 to P10,80% of muscle fibers (n = 5 1, 
three animals) in the Myo-GDNF (high) 
line were multiply innervated. Of these, 
56% (23 of 41) were contacted by two 
axons, and 44% (18 of 41 ) were contacted 
by three or more axons (Fig. 4). In some 
cases, we found that as many as three inputs 
to a muscle fiber were sufficiently strong to 
drive the muscle fiber to contract (Fig. 4, 
inset). In contrast, only 20% of muscle 
fibers (n = 55, two animals) in wild-type 
controls were multiply innervated, and in 
all cases by two axons. Therefore, the extra 
axonal inputs form functional contacts and 
almost certainly arise from motor neurons. 

The hyperinnervation of muscle found 
in Myo-GDNF mice could have arisen be- 
cause of a greater number of motor neurons 
innervating the muscle as a whole (as might 
occur if GDNF spared motor neurons from 
naturally occurring cell death) or because of 
a greater number of axonal branches in the 
innervating nerve. However, retrograde la- 
beling of the motor neurons innervating the 
stemomastoid muscle with Fluoro-Gold 
(18) at P l l  and counts of myelinated axons 
in the nerve to the stemomastoid at P9 to 
PI0 (19) showed that the number of motor 
neurons or axon branches was only slightly 
higher in Myo-GDNF mice than in wild- 
type animals (Table 2). Thus, it seems more 
likely that the hyperinnervation is a conse- 
quence of more axonal branching within 
the muscle (that is, larger motor units). 

Motor unit sizes were determined from 
twitch tension measurements at P10 (20). 
Maximal muscle tension was elicited in 
Myo-GDNF (high) animals by activation of 
only 66% of the number of motor axons 
needed to elicit maximal muscle tension in 
wild-type controls, indicating a greater de- 
gree of overlap in muscle fiber innervation 
by different axons (Table 2). Because excess 
GDNF did not alter the number of muscle 
fibers (Table 2), we conclude that motor 
units in PI0 Myo-GDNF transgenic mice 
are at least 1.5 times the size of those in 
wild-type mice, and that these motor axons 

coinnervate the same NMJs more often 
than in wild-tv~e mice. , . 

During the period of greatest hyperin- 
nervation (birth to 3 weeks postnatal), 
Myo-GDNF mice exhibit a tremor (Fig. 5). 
A t  neonatal ages, the shaking is sufficiently 
obvious that transgenic animals can be dis- 
tinguished from their littermates without 
error. The tremor severity wanes as multiple 
innervation diminishes. The magnitude of 
the tremor was greater in amplitude and 
persisted over a longer developmental peri- 
od in the Myo-GDNF (high) line than in 
the Myo-GDNF (low) line. Normal rodent 
neonates have a tremor that is most obvious 
during the first few postnatal days and grad- 
uallv subsides over the next week (21 ). This . . 
tremor may be analogous to "jitteriness" in 
human neonates (22). Tremor disa~pear- 
ance corresponded to the loss of multiple 
innervation in each transgenic line, as it did 

in wild-type animals (23). The tremor 
therefore mav be a reflection of the laree 
number of mhscle fibers innervated by each 
axon during early development, such that 
each motor axon impulse resulted in an 
obvious muscle twitch. 

Muscle-specific overexpression of neuro- 
trophin-3 (NT-3) with the myogenin pro- 
moter (Myo-NT-3) did not cause extra in- 
nervation of muscle fibers at the NMJ (24), 
even though motor neurons expressed the 
NT-3 receptor trkC and responded to NT-3 
with increased survival (25-27) and even - ,  

though these animals had an increased 
number of proprioceptive sensory axons and 
target muscle spindles ( I  I ). Muscle-specific 
overexpression of NT-4 (Myo-NT-4) also 
did not cause extra innervation of muscle 
fibers (24), even though motor neurons ex- 
press the trkB receptor (26-28) and NT-4 
causes sprouting in adult rodents (29). 

Fig. 2. NMJs in mice expressing Myo-GDNF are hyperinnervated during development. Images are 
low-power fluorescence photomicrographs of sternomastoid muscles from a wild-type mouse (A) and 
a Myo-GDNF (high) mouse (B) at P8. Individual muscle fibers are running diagonally from top right to 
bottom left; postsynaptic AChRs are labeled red with TRITC-aBTX, and presynaptic axon neurofila- 
ments and nerve terminal synaptophysin are immunolabeled green. Nerve terminals overlying AChRs at 
the NMJ appear yellow. The majority of muscle fibers in the wild-type animal are contacted by only one 
axon at this age. Note the axon in the process of being eliminated, which appears as a retracting bulb 
(*). The majority of muscle fibers in the Myo-GDNF (high) animal are multiply innervated, often by three 
or more axons. Scale bar, 10 ILm. 

Table 2. Comparison of the numbers of motor neurons, axons, muscle fibers, and motor units in 
wild-type and Myo-GDNF (high) mice (n.s., not significant). 

Quantity Wild type MYO-GDNF (high) Differ- (%) Significance 

Number of motor neurons 81.5 5 9.1 (n = 6) 94.0 2 7.2 (n = 3) 115.3 n.s. 
(PI 1) 

Number of axons (P9, PI 0) 136, 130 (n = 2) 150 5 5.8 (n = 3) 11 2.8 n.s. 
Number of muscle fibers 1354,1346(n=2) 1283,1457(n=2) 101.5 n.s. 

(P11, P12) 
Number of motor units to 56.0 ? 2.3 (n = 8) 36.8 ? 1.65 (n = 4) 65.7 P = 0.0003 

maximal tension (PI 0) 
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The source o f  excess GDNF affects the fibrillary acidic protein (GFAP) promoter course of synapse elimination, even though 
amount o f  hyperinnervation. Overexpres- (30) had n o  effect o n  the number of axons motor neurons in these animals are less 
sion of GDNF by glial cells under the glial converging on muscle fibers or the time susceptible to axotomy-induced cell death 

as a consequence of GDNF (3 1 ). However, 
Fia. 3. IA) Delav of svn- A D - \ ,  , , 
apse elimination. Upper 
panel: NMJs in mice ex- 
pressing Myo-GDNF are 
innervated by more than 
one motor axon (multiply 
innervated) for a longer 
period of development 
than are junctions in nor- 
mal mice. Axons inner- 
vating the sternomastoid 
muscle in Myo-GDNF 
overexpressors (solid 
circles) and wild-type 
(open squares) litter- 
mates were immunola- 
beled with antibodies to 
neurofilament and syn- 
aptophysin and were 
viewed by confocal mi- 
croscopy. The results 
show a delay of about 2 
weeks in the loss of mul- 
tiple innervation for the 
Myo-GDNF (high) line. 
Lower panel: Graph of 
the average number of 
axons converging to in- 
nervate single muscle fi- 
bers as a function of 
postnatal age, showing a 
dose dependence of hy- 
perinnervation on the 
amount of GDNF for 
wild-type, Myo-GDNF 
(low), and Myo-GDNF 
(high) animals. (6) Bar 
graph showing distribu- 
tion of axons per NMJ at 

. . 

100- ...:,,. * Y ~ Q - G D ~ ! F  (htgh~ 
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P8 in wild-type and Myo- 
GDNF (high) animals. (C and D) Examples of confocal images of immunolabeled axons converging to 
sinale NMJs for Mvo-GDNF animals durina the first two wostnatal months. Relative to aae-matched 
control mice, musd~e fibers in young mice expressing M~O:GDNF~~~ innervated by more Gens. In (C), 
an NMJ innervated by eight axons (arrows) at P4 is shown; this number of converging axons is greater 
than we have observed in normal animals at any postnatal age. Scale bar, 5 pm. In (D), examples of 
NMJs at different postnatal ages are shown: P8 (NMJ with five converging axons), PI 4 (NMJ innervated 
by three axons), P22 (endplate innervated by three axons), and P63 (100% of muscle fibers are singly 
innervated). Scale bar, 5 pm (P8-P22), 8.3 pm (P63). 

Fig. 4. Extra innervation of 
muscle fibers in Myo- 
GDNF overexpressors is 
functional. Examples of in- 2 
tracellular recording trac- 
es of synaptic potentials 
elicited by gradual recruit- 
ment of motor axon inner- 
vation by progressively in- 
creasing the strength of 
stimulus to the phrenic 
nerve. Superimpositions 
of traces from a dia- 

we do not  yet know whether glial cells at 
the NMJ (terminal Schwann cells) express 
the GFAP-GDNF transeene. - 

The hyperinnervation seen wi th muscle- 
svecific overex~ression of GDNF is more 
extreme than that described after parenteral 
administration o f  neurotrophins and other 
neurotrophic factors. These previous ma- 
nipulations had modest effects o n  the time 
course o f  synapse elimination and had n o  
effect on  the number of innervating axons 
each target cell received (32). The effect 
wi th muscle-derived GDNF is also more 
~ronounced than that seen in the mutant 
mouse paralyse', in which a deficit in neuro- 
muscular activity is thought to delay syn- 
apse elimination but apparently does not  
cause extra axonal convergence (33). 

I t  is not known how GDNF causes hyper- 
innervation. Muscle-derived GDNF may act 
as a synaptotrophin to prolong the mainte- 
nance of synaptic connections that were es- 
tablished during early development (3). A l -  
ternatively, GDNF may have caused hyper- 
innervation by inducing motor axons to es- 
tablish extra terminal branches that are 
capable o f  forming synapses. In the latter 
case, the period of multiple innervation 
might be prolonged because of the additional 
time necessary to eliminate the abnormally 
large number of axons at each NMI. In ., 
either case, our results demonstrate that en- 
hanced trophic factor expression by postsyn- 
aptic cells can increase the amount of inner- 
vation they receive. Moreover, this synaptic 
plasticity is mediated by a growth factor out- 
side the prototypical neurotrophin family. 

phragm muscle fiber are shown for wild-type and Myo-GDNF (high) mice at W. Graded stimulation of the Fig. 5. Myo-GDNF animals display an activity- 
phrenic nerve evoked a single endplate potential from the wild-type fiber, indicating that the muscle fiber is dependent high-frequency tremor during the pe- 
singly innervated. Graded stimulation of the phrenic nerve evoked three distinct endplate potentials from the riod of hyperinnervation. The photograph (expo- 
Myo-GDNF muscle fiber, indicating that the fiber is innervated by three separate axons. All three of these sure, 1 s) shows a P4 Myo-GDNFmouse standing 
axons were capable of driving the muscle fiber to threshold (insert; scale represents 5 mV, 5 ms). next to its wild-type littermate. 
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Conservation of T Cell Receptor Conformation 
in Epidermal 78 Cells with Disrupted 

Primary VT Gene Usage 
Caroline A. Mallick-Wood, Julia M. Lewis, Lauren I. Richie, 
Michael J. Owen, Robert E. Tigelaar,* Adrian C. Hayday*t 

A feature that distinguishes 78 T cell subsets from most a(3 T cells and B cells is the 
association of expression of single T cell receptor (TCR) 7 and 8 variable (V) region gene 
segments with specific anatomic sites. Mice lacking the TCR V^5 chain normally ex­
pressed by most dendritic epidermal T cells were shown to retain a conformational 
determinant (idiotype) ordinarily expressed exclusively by such Vy5

+ cells. Conservation 
by shuffled 78 TCR chains of an idiotype associated with a specific anatomic site 
indicates that for TCR78, as for immunoglobulin, conformation is associated to a greater 
extent with the function or development of lymphocyte repertoires than is the use of 
particular gene segments. 

1 he efficacy of the adaptive immune sys­
tem depends on its capacity to recognize 
pathogens in a highly antigen-specific man­
ner. B cells and a(3 T cells recognize anti­
gens through surface immunoglobulin (Ig) 
and TCRs, respectively- Although 78 cells 
regulate immune responses to protozoal, 
bacterial, and viral infection (1, 2), neither 
their primary physiological functions nor « 
their antigen specificities have been fully 
clarified. 

A characteristic feature of 78 cells is the 
association of single 7 and 8 chains with 78 

cell subsets in specific anatomic sites- For 
example, most human peripheral blood 78 
cells express V 9 and V82 chains of rela­
tively limited diversity (3). More extreme 
examples occur in murine epithelia. Essen­
tially all reproductive tract 78 cells express 
a canonical V76-V81 TCR, whereas 60 to 
>99% of dendritic epidermal T cells 
(DETCs)—variation depending on strain 
and age of the mice—express a canonical 
V75-V81 TCR (4), which can be detected 
with the monoclonal antibody (mAb) 
17D1 (5). Ordinarily, 17D1 does not react 
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