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as sphingosine, sphingomyelin, ceramide, 
ceramide-1-phosphate, lysophosphatidyl 
serine, lysophosphatidyl ethanolamine, ly- 
sophosphatidyl inositol, lysophosphatidyl 
choline, leukotriene B4 and C4, platelet- 
activating factor, anandamide, 12-hydroxy- 
eicosatetraenoic acid (HETE), 15-HETE, 
and 13-hydroxydodecanoic acid, at concen- 
trations as high as 50 pM, were ineffective. 
LPA, a bioactive lipid structurally related to 
SPP, induced morphogenetic differentia- 
tion weakly at 20 to 50 pM (1 l). SPP 
induced morphogenesis at low doses (1 to 
20 pM) (Fig. 1). EDG-1 is known to acti- 
vate the mitogen-activated protein (MAP) 
kinase known as extracellular signal-regu- 
lated kinase 2 (ERK-2) through pertussis 
toxin ,(PTx)-sensitive Gi protein (12). 
However, PD98059 and PTx, which inhibit 
the ERK-2 signaling pathway and trimeric 
G, proteins (13), respectively, did not in- 
hibit EDG-1-mediated morphogenesis (8). 
However, C3 exotoxin, an inhibitor of Rho 
(14), completely prevented this morpho- 
genesis, suggesting a requirement for Rho 
(Fig. 1). 

HEK293EDG-1 cells aggregated strongly 
in suspension, whereas HEK293pCDNA 
cells did not (Fig. 2A). This aggregation 
was Ca2+-dependent and was completely 
prevented by EGTA. Incubation with the 
integrin antagonist RGD peptide did not 
affect cell-cell aggregation, indicating the 
lack of involvement of integrins. Cytocha- 
lasin B, an inhibitor of microfilaments and 
nonspecific aggregation of cells, also did not 
affect cell-cell aggregation. Because the 
cadherins mediate calcium-dependent ho- 
motypic adhesion mechanisms (15), we 
analyzed the amounts of cadherin fam- 
ily polypeptides in HEK293EDG-1 and 
HEK293pCDNA cells. Expression of both 
P- and E-cadherins was increased in 
HEK293EDG-1 cells (Fig. 2B). However, 
expression of cytoplasmic cadherin-associ- 
ated proteins, such as a-, p-, and y-catenin 
(15), was not altered. Moreover, the expres- 
sion of focal adhesion kinase and paxillin, 
which are involved in the formation of 
focal adhesion complexes (2), was also un- 
altered. The expression of vascular endo- 
thelial cadherin (VE-cadherin or cadherin- 
5) was not observed in either vector- or 
EDG-1-transfected HEK293 cells (8). 
HEK293EDG-1 cells had abundant well- 
developed adherens junction-like struc- 
tures (Fig. 2C). Moreover, consistent with 
the morphogenetic differentiation, expres- 
sion of P-cadherin in HEK293EDG-1 cells 
was enhanced by FBS and SPP and was 
blocked in both cases by C3 exotoxin. 
However, inhibition of the Gi pathway with 
PTx did not inhibit the EDG-1-induced 
P-cadherin expression (Fig. 2D). Together, 
these data suggest that SPP signals through 

EDG-1 to regulate the biogenesis or the 
maintenance of the adherens junctional 
complexes and morphogenetic differentia- 
tion. Rho was required for both EDG-1- 
induced cadherin expression and formation 
of adherens junctions, consistent with the 
observation that the small guanosine 
triphosphatases (GTPases) Rho and Rac are 
required for the establishment of cadherin- 
dependent cell-cell contacts (4). 

To provide further evidence that SPP is 

a ligand for EMS-1, we developed a radio- 
ligand binding assay. Specific 32P-labeled 
SPP binding was time-dependent and was 
observed only. in HEK293EDG-1 cells, 
whereas binding was negligible to vector- 
transfected cells (Fig. 3A). SPP binding to 
HEK293EDG-1 was saturable, and Scat- 
chard analysis indicated a dissociation con- 
stant (Kd) of 8.1 nM and a maximum bind- 
ing capacity of 661 frnol per lo5 cells (Fig. 
3B). Specific binding of [32P]SPP experi- 
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Fig. 2. Mechanisms underlying EDG-l-depen- 
dent morphogenesis. (A) Inductton of calcium-de- 
pendent cell-cell aggregation of HEK293pCDNA 

and HEK293EDG-7 cells was analyzed by the aggregation assay as described (25). Cytochalasin B (2 
pM), EGTA (5 mM), or RGD peptide (1 mglml) was added to the medium before the initiation of the 
assay. Data represent mean -c SD of triplicate determinations from a typical experiment that was 
repeated two times. (B) Expression of P- and E-cadherin polypeptides. Cell extracts from two 
HEK293pCDNA and three HEK293EDG-7 independently isolated clones were irnmunoblotted with 
various antibodies (Transduction Laboratories, Lexington, Kentucky) or with anti-M2; cad, cadherin: 
cat, catenin; FAK, focal adhesion kinase. (C) Formation of adherens junctions. Transmission electron 
micrographs of thin sections of HEK293EDG-7 (a and c) and HEK293pCDNA (b and d) cells cultured in 
the presence of FBS. (a and b) Note the aggregated, clustered nature of HEK293EDG-7 cells. Scale bar, 
5 pm. (c and d) Detail of a representative cell-cell junction from both cell types. Scale bar, 0.5 pm. (D) 
Ligand- and Rho-dependent expression of P-cadherin. HEK293EDG-7 cells were cultured in FBS 
(1 0?6), CFBS (1 0%), or FBS (1 0%) containing C3 exotoxin (1 0 pg/ml) or PTx (1 00 ng/ml) for 3 days (top) 
or were treated with the indicated concentrations (Conc.) of lipids with or without the C3 exotoxin for 3 
days in medium containing CFBS (1 0%) (bottom). Cell extracts were analyzed for P-cadherin expression 
by immunoblot analysis. Data are from a representative experiment that was repeated at least two times. 
SM, sphingomyelin; +VE, positive control P-cadherin protein from A431 cell extracts. The numbers to 
the left are molecular weight markers. 
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Fig. 3. Binding of SPP to EDG-1 (26). (A) Time dependence of specific r2P]SPP binding. Cells were 
incubated with 1 nM r2P]SPP for the indicated times, and specific binding was determined (26). (8) 
Binding isotherm of r2P]SPP to HEK293EDG-1 cells. Cells were incubated with the indicated concen- 
trations of P2P]SPP, and specific binding was measured. The inset shows the Scatchard plot of 
r2P]SPP binding to HEK293Effi-1 cells. (C) Competition of SPP binding by related lipids. 
HEK293EDG-1 cells were incubated in the presence of 1 nM (32PISPP without or with 100 nM of the 
indicated lipids, and total binding was measured. Data are means + SD from a typical experiment, which 
was repeated at least two times. Sph, sphingosine; LPS, lysophosphatidyl serine; LPC, lysophosphati- 
dyl choline; WE, lysophosphatidyl ethanol; LPI, lysophosphatidyl inositol; PA, phosphatidic acid; PAF, 
platelet-activating factor; h a ,  anandamide; Me-ha, methyl anandamide. 

enced competition only from unlabeled 
SPP and not from other lipids that did not 
induce morphogenetic differentiation (Fig. 
3C). Thus, binding of SPP to EDG-1 is of 
high affinity and high specificity, consistent 
with the possibility that SPP is a physiolog- 
ical ligand for EDG-1. SPP is present in 
serum (16), where it occurs at concentra- 
tions greater than the measured Kd for 
EDG-1. LPA, another serum-borne lyso- 
lipid, signals through the related EDG- 
2/vzg-1 receptor to regulate cell rounding 
and serum response factor-dependent tran- 
scription (7, 1 7). 

If SPP is a physiological ligand for 
EDG-1, it should activate EDG-l-regulat- 
ed signaling pathways. Transfection of 
cells with EDG-1 causes Gi-dependent ac- 
tivation of ERK-2 (12), and SPP activates 
ERK-1 and ERK-2 in various cells (18). 
Stimulation of ERK-2 activity by nanomo- 
lar concentrations of SPP was potentiated 
by expression of EDG-1, and this effect 
was blocked in cells treated with PTx (Fig. 
4A). Thus, activation of EDG-1 by SPP 
transduces two distinct intracellular sig- 
naling pathways. First, the Gi protein- 
coupled ERK-2 pathway is activated. Pre- 
vious studies have indicated that the By 
subunit of the heterotrimeric G protein 
activates the small GTPase Ras, which in 
turn stimulates the ERK pathway (19). 
Second, Rho-coupled pathways that regu- 
late morphogenesis are activated. Activa- 
tion of the Rho pathway by GPRs is me- 
diated by the G12/G13 family of heterotri- 
meric G proteins (20); however, the inter- 
mediate signaling steps are poorly 
understood. Indeed, similar activation of 
both pathways has been shown for LPA, a 
related bioactive lipid (3, 4). 

Ligand binding to GPRs induces iriter- 
nalization of receptors (21 ). To examine 
the cellular localization of EDG- 1, we ex- 
pressed the EDG-1 receptor fused with a 
COOH-terminal green fluorescent protein 
(GFP). The EDG-1-GFP polypeptide was 
localized primarily on the plasma mem- 
brane (Fig. 4B). Treatment of cells with 
100 nM SPP for 2 hours at 37OC caused 
translocation of EDG-1 into intracellular 
vesicles. Neither incubation with SPP at 
4OC nor incubation with other lipids that 
do not compete for high-affinity SPP 
binding to EDG-1 induced receptor traf- 
ficking into intracellular vesicles. More- 
over, localization of the GFP control 
polypeptide in the cytosol was not altered 
by SPP treatment. 

SPP, stored in platelets and released by 
platelet activation, is now recognized as a 
potent bioactive lipid with multiple bio- 
logical activities (22). Our results reveal a 
role for SPP as an extracellular ligand for 
the endothelial-derived receptor EDG-1 



that  regulates lllorpllogenetic differentia- 
t ion. Because serum concentrations of SPP  
are estimated to  be 60 times greater t h a n  
the  K ,  for h l~ ld ing  to EDG-1 ( 1  6) ,  our data 
argue that  SPP  may he a physiologically 
relevant ligand for EDG-1. 
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