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Role of PML in Cell Growth and the 
Retinoic Acid Pathway 

Zhu Gang Wang," Laurent Delva," Mirella Gaboli, Roberta Rivi, 
Marco Giorgio, Carlos Cordon-Cardo, Frank Grosveld, 

Pier Paolo Pandolfi-i 

The PML gene is fused to the retinoic acid receptor a (RARa) gene in chromosomal 
translocations associated with acute promyelocytic leukemia (APL). Ablation of murine 
PML protein by homologous recombination revealed that PML regulates hemopoietic 
differentiation and controls cell growth and tumorigenesis. PML function was essential 
for the tumor-growth-suppressive activity of retinoic acid (RA) and for its ability to induce 
terminal myeloid differentiation of precursor cells. PML was needed for the RA-depen- 
dent transactivation of thep21WAF7/C'P7 gene, which regulates cell cycle progression and 
cellular differentiation. These results indicate that PML is a critical component of the RA 
pathway and that disruption of its activity by the PML-RARa fusion protein may be 
important in APL pathogenesis. 

A c u t e  promyelocytic leukemia is a distinct 
subtvne of iuveloid leukemia that is in\,ari- , 
ably associated a i t h  chromosomal translo- 
cations ~n\,ol~:i~-ig the RARa locus ( 1  ). In 
99% of APL cases, RARa is fused to the 

Z. G. Wang, L. Delva, M. Gaboli. R. Rlv~. M. G~orglo. ? P. 
Pandofi, Depaltment of Hunan Genetics and Moeckar 
Boogy  Program. Memor~al Soan-Ketterng Cancer Cen- 
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Scrences, Cci-neii Univers~tv, 1.275 York Avenue, Nebhi 

PML gene, leading to the production of a 
PblL-RARa chimeric protein (2) .  

Retinoic acld receptors are nuclear hor- 
mone receptors that act as RA-mduc~ble 
transcriptiollal activators, in their het- 
erodilner~c form, with retino1d-X receptors 
(RXRs), a second class of nuclear reti~loiii 
receptors (3). Retinoic acid controls f~unda- 
~nental de~:elopmental processes, induces ter- 
ini11ii1 differentiation of mveloid heinopoietic 

York, NY 10021, USA progenitors, and has tumor- and cell-grolvth- 
C Cordon-Cardo, Departlnent of Pathology, Memorial 
Sloan.Ketterlng Cancer Center, 1275 YorkA\,enue, New suppressive actlr~it~es (4). PML 1s an interfer- 
York, N" 10021, USA on (1FN)-inductble gene (5) that encodes a 
F. Grosveld, Department of Cell B~ology and Genetics, RING.flnger protein typically collcentratej 
Faculty of Medcine, Erasmus Unversty Post Office Box 
'738, 3000 DR, Rotterdam, Netherlands. ~ v i t h l ~ l  discrete speckled nuclear structures 

called PML nuclear bodles (PkIL KBs) or 
"Ttiese aktho-s cor-it~bbuted equelly to i h ~ s  work. 

wiloi,l correspondence s,,obld he addressed E-mail PML oncogenlc dolllallls ( 2 ,  5). Through Its 
p-pandof@sk rnsxcc org ab111ty to heterodimerize with PLllL and 

n~~7w.sc1e~lce~~la,n.org SCIENCE VOL 279 0 6 LIARCH 1998 1547 



RXR, PMLRARa is thought to interfere normal function of PML and its contribution 
with both PML and RARIRXR-RA path- to APL pathogenesis are unknown. 
ways, rhus acting as a double dominant neg- To investigate these aspects, we disrupt- 
ative oncogenic product (5,6). However, the ed the PML gene in the mouse germ line (7, 

- - 
A NEO 8 

B Probe A Probe B Probe NEO c Probe A 

WT PML -1- 

Fig. 1. Targeted disruption of the PML gene. (A) Map of the murine 5' PML genomic region determined 
by restriction mapping, Southem blot hybridization, and DNA sequencing (15). The targeting vector is 
derived from a 6.8-kb Eco RI fragment of the PML gene. TheTK and Neo selectable markers are shown 
as hatched boxes (7). Also shown is the endogenous PML genomic region after correct integration of 
the targeting construct by homologous recombination and the three probes used for Southem blot 
analysis (solid lines) (7). E, Eco RI; K, Kpn I ;  N, Nar I;  No, Not I;  A, Apa I ;  B, Bam HI; and Ec, Eco RV. (B) 
Southern blot analysis with A, B, and Neo probes of Barn HI-digested DNA from recombined ES cell 
clones and ABI untransfected ES cells confirms proper recombination. (C) Southern blot analysis with 
the probe A of Eco RI-digested tail DNA from littermates obtained from intercrossing two PML+/- mice. 
DNAs from two mice show the disappearance of the wild-type ( WT) band. R, recombinant bands. (D) 
Northern blot showing that the homozygous PML mutation abolishes PML mRNA expression. For 
up-regulation of PML expression, PML-I- and PML+/+ MEFs were treated with murine IFNa+p. The 
integrity and amount of RNA as well as stimulation by lFNs were shown by rehybridizing the same blot 
with p-actin and IF1 204 probes; h, hours; 28 Sand 18S, ribosomal RNA. (E) PML-I- and PML+/+ MEFs 
were studied by immunofluorescence in basal conditions or upon IFN treatment for 24 hours (7). 
PML-/- MEFs do not show any PML nuclear staining. The nuclei of the PML-/- cells were visualized by 
costaining with 4'6'-diamidino-2-phenylindole (DAPI) (right). PML-Ab, PML rabbit antiserum. 

8). By homologous recombination in mu- 
rine embryonic stem (ES) cells, we substi- 
tuted part of exon 2 of the PML gene, 
which encodes the RING-finger domain, 
with a neomycin resistance gene cassette 
(Fig. 1, A to C). Mice homozygous for the 
PML mutation (PML-I-) were born with 
the expected Mendelian frequency, were 
indistinguishable at the gross phenotypic 
level from PML+I+ and PML+I- litter- 
mates, and were fertile; however, the 
PML-I- mice were extremely susceptible to 
spontaneous Botryomycotic infections (9). 
Successful disruption of the PML gene was 
inferred from the lack of PML mRNA and 
PML NBs in mouse primary embryonic fi- 
broblasts (MEFs) from PML-1- embryos 
(Fig. 1, D and E) (7). 

Analysis of peripheral blood (PB) from 
PML-1- mice (10) revealed a marked re- 
duction of circulating granulocytes (neutro- 
phils: PML+I+, 1518 * 220 cellslpl; 
PML-I-, 795 & 243 cells/pl; P < 0.02; 
basophils: PML+I+, 247 2 169 cellslpl; 
PML-I-, 69 5 19 cells/pl; P < 0.01; eo- 
sinophils: PML+I+, 478 & 142 cellslpl; 
PML-I-, 136 5 74 cellslpl; P < 0.03) and 
an overall reduction of circulating myeloid 
cells (monocytes: PML+I+, 365 +- 196 cells/ 
p1; PML-I-, 203 2 77 cells/pl; P < 0.05), 
which caused leukopenia. Flow-cytometric 
analysis of cells from the spleen, lymph 
nodes, thymus, and bone marrow (BM) and 
differential counts of BM cells demonstrat- 
ed a reduction of both granulocytes and 
monocytes in the BM of PML-1- mice 
( 1 1 ). Thus, PML-1- mice have an impaired 
capacity for terminal maturation of their 
myeloid cells. 

PML overexpression in cultured cells is 
accompanied by growth inhibition (1 2). To 
assess the effects of PML inactivation on 
cell proliferation, we studied the growth of 
early passages of MEFs (1 3), which normal- 
ly express PML (Fig. 1E) and whose prolif- 
erative properties are well characterized 
(14). At low density, PML+I+, PML+I-, 
and PML-1- cultures were morphologically 
indistinguishable. However, PML-I-MEFS 
grew faster than PML+I+ MEFs (Fig. ZA), 
as confirmed by 3H-labeled thymidine in- 
corporation (Fig. 2B). PML+I- MEFs 
showed an intermediate growth rate (Fig. 2, 
A and B). In situ terminal deoxynucleotidyl 
tranferase labeling experiments revealed 
comparable numbers of apoptotic cells (15). 
Furthermore, PML inactivation markedly 
enhanced the ability of MEFs to form col- 
onies (Fig. 2C). The S phase population of 
PML-1- MEFs was increased with a con- 
comitant decrease in the GdG, population 
(Fig. ZD), a change analogous to that ob- 
served in retinoblastoma-I- MEFs (14). 
PML-1- MEF monolayers achieved higher 
cellular densities and formed foci (Fig. 2, E 
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and F) but, unlike fully transformed cells, 
were unable to grow in a semisolid medium. 

These findings suggest that PML is a 
negative growth regulator and therefore 
may function as a tumor suppressor. Al- 
though the incidence of spontaneous tumors 
in the PML-I- cohort was not increased 
during the first year of life, mutant mice 
succumbed to infections, severely compro- 
mising the long-term assessment of tumor 
incidence (9). We therefore studied tumori- 
genesis in two experimental models designed 
to accelerate tumor formation (16, 17). In 
the first, we exposed the skin of mice [be- 
cause PML is highly expressed in keratino- 
cytes (Fig. 3B)] to a single application of the 
tumor initiator dimethybenzanthracene 
(DMBA) followed by treatment for several 
weeks with the tumor promoter 12-0-tetra- 
decanoylphorbol-13-acetate (TPA), a pro- 
tocol that gives rise to papillomas that oc- 
casionally progress to carcinomas after sev- 
eral months (1 6). PML-1- mice developed 
more papillomas (Fig. 3A), although the 
frequency of tumors undergoing malignant 
transformation was similar in the two 
groups (PML+/+, 1.8%; PML-I-, 2.3%). In 
the second model, DMBA was injected into 
the salivary gland of PML-I- and PML+/+ 
mice, a procedure that normally produces 
sarcomas and fibrosarcomas ( 1 6, 1 7). 
PML-1- mice developed more tumors than 
control mice (greater than twofold; P < 
0.04) (Fig. 3, D to I) (16). Unexpectedly, 
50% of the tumors observed in the PML-I- 
group were T and B cell lymphomas (only 
one B cell lymphoma arose in the wild-type 
cohort; P < 0.02), and 21% were fibrohis- 
tiocytoma-like lesions (rare tumors with a 
histiocytic-macrophagic cellular compo- 
nent) (Fig. 3E). Lymphomas in PML-1- 
mice were aggressive metastatic malignan- 
cies (Fig. 3D). They appeared to be of 
clonal origin because the infiltrating lym- 
phoid population homogeneously expressed 
either CD4 or CD8 markers (T lymphomas)' 
and either K or A chains (B lymphomas) 
(Fig. 3, H and I). Macrophage tumoricidal 
activity, natural killer cell, and cytotoxic T 
lymphocyte activities, which are required 
for efficient surveillance against tumors, 
were normal in PML-/- mutants (9); how- 
ever, upon concanavalin A activation, 
splenic lymphocytes in PML-1- mutants 
showed a proliferative advantage despite 
normal production of interleukin-10 (IL- 
lo), IL-4, IL-6, and IFN-y (15). PML can, 
therefore, antagonize the initiation, promo- 
tion, and progression of tumors of different 
histological origins. 

We next investigated whether PML was 
required for the growth-suppressive activity 
of RA. Retinoic acid markedly inhibited the 
growth of PML+I+ MEFs but had little effect 
on the growth of PML-1- MEFs (Fig. 4, A 

and B). Treatment with RA did not increase 
cell death in these experiments (15). 

Because RA induces terminal myeloid 
and granulocytic differentiation (3, 4, la), 
we tested whether the reduction in myeloid 
cells in the PML-1- mice resulted from an 
impaired response of PML-1- progenitors 
to RA (19). In in vitro methylcellulose 
colony assays of hemopoietic progenitors, 
BM cells from PML-1- and PML+/+ mice 
were comparable in their ability to form 
erythroid and myeloid colonies (Fig. 4C). 
In the presence of RA, the number of my- 
eloid colonies obtained from the PML+/+ 
progenitors was increased as expected (18, 
19), but this effect was completely abrogat- 
ed in PML-1- cells (Fig. 4D). Thus, the 
presence of PML is crucial for the growth- 

inhibitory activity of RA, as well as for RA 
induction of myeloid differentiation. 

To determine if PML-RARa could re- 
store RA activity, we evaluated the RA re- 
sponsiveness of BM cells from PML-/- 
PML-RARa transgenic mice (19). We ob- 
tained these mutants by crossing PML-I- 
mice with PMLRARa transgenic mice that 
express the fusion gene only in the myeloid 
promyelocytic compartment (19). Retinoic 
acid significantly reduced the number of my- 
eloid colonies derived from PML-/- PML 
RARa BM cells, suggesting that PML- 
RARa can directly mediate RA growth-in- 
hibitory activity in a PML-independent 
manner (Fig. 4D). 

To explore the mechanism by which PML 
mediates RA function, we tested whether 
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Fig. 2 Growth properties of MEFs of d i m t  PML genotypes. (A) Growth curves. Each time point is the 
average of triplicate measurements. Doubling time of MEFs: PML-I-, 26.4 + 3.1 hours; PML+/-, 29.8 + 
3.3 hours; PML+/+, 32.9 + 3.9 hours (13). (B) Plilthyrnidine incorporation. Cells (5 x lo3 per well) were 
distributed in 96-well plates and cultured in the presence of pl-llthymidine. Each time point is the average 
of triplicate measurements (13). PML+/+, open bars; PML+/-, solid bars; PML-I-, hatched bars. (C) 
Clonogenic efficiency (13). The colonies (>I0 cells) were scored under the microscope 8 days after 
plating. The scoring of colonies at day 16, when the colonies were bigger in size and detectable by the eye, 
gave superimposable results. (D) Analysis of cell cycle stages in PML+/+ (left) and PML-I- (right) MEFs. 
Cultures were pulsed with BrdU, labeled with an antibody to BrdU to detect DNA synthesis (vertical axis) 
and propidium iodide to detect total DNA (horizontal axis), and analyzed by two-dimensional flow cytom- 
etly (13). (E) Loss of contact inhibition in PML-I- MEFs. Cells were seeded at 3 x lo5 cells in 60-mm 
dishes and, after 2 weeks, fixed and stained. PML-/- MEFs grew to a higher density than PML+/+ MEFs 
of the same passage. Scale bar, 60 pm. (F) pl-llthyrnidine incorporation of PML-I- and PML+/+ MEFs 
cultured at confluence. The conditions were as in (B), except that 4 x 1 O4 cells per well were seeded. 

:iencemag.org SCIENCE VOL. 279 6  MAR^ 1998 1549 



PML is required for the Mdependent trans- tivated by nuclear receptors, including moter-reporter construct and assessed the re- 
activation of the cyclindependent kinase in- RXRalRARa (20). We transfected PML-/- sponse to R4 treatment. Consistent with 
hibitor g21 gene, which can be ac- and PML+/+ MEFs with a p21 WAF'1C1P' pro- previous results (20), R4 stimulated in 

Fig. 3. Role of PML in tumorigenesis. (A) Rate of 
appearance of papillomas in PML-/- (n = 14) and 
PML+/+ (n = 14) mice treated with DMBA and TPA. 
Graph shows the average number of papillomas + 
SE, and the arrow indicates the time when the tumor 
promotion treatment with TPA was terminated. One 
of two independent experiments is shown (1 6). (Band 
C) PML expression in the skin and lymphocytes. (B) 
lmmunohistochemical analysis of the skin was per- 
formed on paraffin tissuesectionsfrom newbom mice 
with a PML rabbit antiserum (7). PML is readily de- 
tectable in its nuclear speckled configuration in kera- 
tinocytes. Scale bar, 50 pm. (C) Splenic lymphocytes 
were studied by immunofluorescence (7) (top). Nuclei 
were visualized by DAPl (bottom). PML NBs are de- 
tectable in all lymphocytes. PML is also expressed in 
thymic and BM lymphocytes (15). (D and E) His- 
topathological analysis of the tumors that developed 
in PML-I- mice. Twenty-five mice of each group 
were injected with DMBA (16). Tumors in PML-/- 
.[fourT cell lymphomas, three B cell lymphomas, three 
malignant fibrohistocytomas (MFH), one angiosarco- 
ma, and three fibrosarcomas] and PML+/+ [one B cell 
lymphoma, one MFH, two fibrosarcomas, two soft 
tissue sarcomas, and one benign papilloma] mice 
were identified by external examination after 4.86 + 
0.53 and 5.67 -c 0.69 month3 (P < 0.02), respective- 
ly, upon DMBA injection, after which animals were 

Weeks of promotion 

killed for pathological examination. (D) Marked splenomegaly in a PML-/- 
mouse that developed a T cell lymphoma (right), as compared with the 
spleen of a wild-type age-matched control mouse (left). Scale bar, 0.5 cm. 
These lymphomas were metastasizing tumors that involved the spleen, 
thymus, lymph nodes, liver, and vertebrae. (E) Hematoxylin and eosin 
staining of a subcutaneous tumor with large dysplatic histiocytes (arrows) 
displaying multinucleation and numerous prominent nucleoli. This tumor 
was diagnosed as an MFH. Scale bar, 50 pm. (F to I) lmmunophenotyping 

of lymphomas from PML-I- mice. (F) The tumor is positive for the T cell 
surface antigen CD3 and negative for the B cell surface antigen 8220 
(inset). (G) The tumor is positive for the B cell surface marker 8220 and 
negative for the T cell surface antigen CD3 (inset). These tumors were 
diagnosed as T and B cell lymphomas, respectively. The homogeneous 
expression of CD4 or CD8 (T lymphomas) (H) and K or A (B lymphomas) (I) 
surface markers supports the clonal origin of these tumors. Scale bars, 25 
Pm. 
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Fig. 4. Effect of PML on RA growth-suppressive and differentiating activities. (A and 

E F WT PML 4- 6) Growth of PML+/+ and PML-I- MEFs in the presence of RA. (A) Each time point 
is the average of triplicates from a 13.5 days post coitum (d.p.c.) early passage 
preparation of PML+/+ and PML-/- MEFs. Cells werecultured with or without 1 pM 
RA. (B) The data are expressed as a percentage of growth of RA-treated versus 

IcAcnw ii---eti'- * untreated cells (untreated = 100% of growth), at day 6 of culture. The values are 
averages calculated from triplicates of three (n = 3) experiments performed with 

13.5 d.p.c. preparations of PML ' ' ' (open bars) and PML- '  (hatched bars) MEFs and five (n = 5) independent experiments 
performed with two different 15.5 d.p.c. preparations of PML"' and PML-/- MEFs. (C) Hemopoietic colonies from in vitro 

0 -  BM cultures (79) from two PML-/- and two PML+/+ mice, scored in triplicate, are shown. Bars are as in (6). (D) Aberrant 
R A - + - + and impaired RA differentiating activity in PML-' and PML-/- PMURARa hemopoietic progenitors (79). The data are 

expressed as a percentage of colony formation of RA-treated (1 FM) versus untreated cells (untreated = 100%). The bars 
indicate the mean values + SD. Triplicate measurements from two PML-/- (hatched bars), two PML+/+ (open bars), and two PML-' PMURARa (solid bar) 
mice are shown. (E) PML-I- and PML+'+ MEFs were transiently transfected by calcium phosphate precipitation with the p21WAF"C'P' promoter-luciferase 
reporter plasmid pGL2 (10 pg per transfection) (20), together with TK-p-galactosidase (2 kg), in the presence or absence of 1 pM RA. Transactivation is 
expressed as a percentage of luciferase activity, as deduced from arbitrary light units normalized to p-galactosidase activity. The values shown are averages + 
SD calculated from triplicate platings, from one representative experiment out of three. Bars are as in (B). (F) Protein immunoblot analysis of p21WAF1/C'P1 
expression in PML-'- and PML+'+ BM cells upon treatment with RA at concentrations of M, M, or M for 72 hours. 
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PMLtl- MEFs the  basal activity of the 
p21Vi'AF'1"1'" pronioter by two to three times 
(Fig. 4E). In the absence of PML, the RA-  
dependent transactivation of the promoter 
was fully abrogated (Fig. 4E). Accordingly, 
concentrations of RA at 1Op' or 1C-% did 
not activate the endogenous p21i~'F"C11'1 
gene in  PML-I- BM cells (Fig. 4F). Thus,  
PML 1s essential for the  RA-dependent 
induction of p21v-AF11c1p1. Because 
p21""F'/C"1 up-regulation can result In 
terlnlnal dlfferentlation of hemopoietic 
cells (201, the  lack of ~ 2 1 \ ~ ~ ~ ' ~ ~ ~ ~ '  i i l d ~ c -  
tion in  PML-I- cells might partially e s -  
plain the  .;ale of PML In controlling he- 
lnopoietic cell differentiation. 

Our findings demonstrate that PML con- 
trols cell proliferation, tumorigenesis, and the 
differentiation of hemopoietic precursors. 
These f~~ilnctions are, at least in part, based o n  
the ability of PML to interact with the R A  
pathway and In particular its ability to medi- 
ate R A  growth-suppressive and differentiat- 
ing activities. Preliminary results indicate 
that PML can be part of the RXRIRAR 
transcription complex (21), providing a di- 
rect esplanatlon for its effect o n  RA func- 
tion. This f~ lnc t io~ i  is coilslsteiit with the role 
of PML in the EW-dependent transactivation 
of speclfic genes such as p21wAF11C1P' and 
with the  development of T and B cell 
lympholiias in mlce deficient In R A R a  
(22) .  These results provide a framework for 
understanding the  inolecular pathogenesis 
of APL. Whereas APL might result from 
the  f~lnct ional  interference of PML-RARa 
with two independent pathways, PML and 
RXR/RAR, we shoxv here that these pro- 
teins act,  a t  least in  part, in  the  same 
pathway. Thus,  by simultaneously interact- 
ing xvith RXR and PML, PML-RARa may 
inactivate this pathway at multiple levels, 
leading to the  proliferative advantage and 
the  block of hemopoietic differentlatlon 
that  characterize APL. 
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