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Role of PML in Cell Growth and the
Retinoic Acid Pathway
Zhu Gang Wang,* Laurent Delva,” Mirella Gaboli, Roberta Rivi,

Marco Giorgio, Carlos Cordon-Cardo, Frank Grosveld,
Pier Paolo Pandolfit

The PML gene is fused to the retinoic acid receptor a (RAR«) gene in chromosomal
translocations associated with acute promyelocytic leukemia (APL). Ablation of murine
PML protein by homologous recombination revealed that PML regulates hemopoietic
differentiation and controls cell growth and tumorigenesis. PML function was essential
for the tumor-growth—suppressive activity of retinoic acid (RA) and for its ability to induce
terminal myeloid differentiation of precursor cells. PML was needed for the RA-depen-
dent transactivation of the p27WAF7/CiP1 gene, which regulates cell cycle progression and
cellular differentiation. These results indicate that PML is a critical component of the RA
pathway and that disruption of its activity by the PML-RARa fusion protein may be

important in APL pathogenesis.

Acure promyelocytic leukemia is a distinct
subtype of myeloid leukemia that is invari-
ably associated with chromosomal translo-
cations involving the RARa locus (I). In
99% of APL cases, RAR«a is fused to the
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PML gene, leading to the production of a
PML-RAR« chimeric protein (2).
Retinoic acid receptors are nuclear hor-
mone receptors that act as RA-inducible
transcriptional activators, in their het-
erodimeric form, with retinoid-X receptors
(RXRs), a second class of nuclear retinoid
receptors (3). Retinoic acid controls funda-
mental developmental processes, induces ter-
minal differentiation of myeloid hemopoietic
progenitors, and has tumor- and cell-growth—
suppressive activities (4). PML is an interfer-
on (IEN)-inducible gene (5) that encodes a
RING-finger protein typically concentrated
within discrete speckled nuclear structures
called PML nuclear bodies (PML NBs) or
PML oncogenic domains (2, 5). Through its
ability to heterodimerize with PML and -
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RXR, PML-RARa is thought to interfere
with both PML and RAR/RXR-RA path-
ways, thus acting as a double dominant neg-
ative oncogenic product (5, 6). However, the

normal function of PML and its contribution
to APL pathogenesis are unknown.

To investigate these aspects, we disrupt-
ed the PML gene in the mouse germ line (7,
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Fig. 1. Targeted disruption of the PML gene. (A) Map of the murine §' PML genomic region determined
by restriction mapping, Southem blot hybridization, and DNA sequencing (75). The targeting vector is
derived from a 6.8-kb Eco Rl fragment of the PML gene. The TK and Neo selectable markers are shown
as hatched boxes (7). Also shown is the endogenous PML genomic region after correct integration of
the targeting construct by homologous recombination and the three probes used for Southem blot
analysis (solid lines) (7). E, Eco RI; K, Kpn I; N, Nar I; No, Not |; A, Apa |; B, Bam HI; and Ec, Eco RV. (B)
Southemn blot analysis with A, B, and Neo probes of Bam HI-digested DNA from recombined ES cell
clones and AB1 untransfected ES celis confirms proper recombination. (C) Southern blot analysis with
the probe A of Eco Ri-digested tail DNA from littermates obtained from intercrossing two PML*/~ mice.
DNAs from two mice show the disappearance of the wild-type (WT) band. R, recombinant bands. (D)
Northem blot showing that the homozygous PML mutation abolishes PML mRNA expression. For
up-regulation of PML expression, PML~/~ and PML*/* MEFs were treated with murine IFNa+8. The
integrity and amount of RNA as well as stimulation by IFNs were shown by rehybridizing the same blot
with B-actin and IFI 204 probes; h, hours; 28 S and 18 S, ribosomal RNA. (E) PML~/~ and PML*/* MEFs
were studied by immunofluorescence in basal conditions or upon IFN treatment for 24 hours (7).
PML~/~ MEFs do not show any PML nuclear staining. The nuclei of the PML~/~ cells were visualized by
costaining with 4’6’ -diamidino-2-phenylindole (DAPI) (right). PML-Ab, PML rabbit antiserum.
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8). By homologous recombination in mu-
rine embryonic stem (ES) cells, we substi-
tuted part of exon 2 of the PML gene,
which encodes the RING-finger domain,
with a neomycin resistance gene cassette
(Fig. 1, A to C). Mice homozygous for the
PML mutation (PML /") were born with
the expected Mendelian frequency, were
indistinguishable at the gross phenotypic
level from PML*/* and PML*/~ litter-
mates, and were fertile; however, the
PML~/~ mice were extremely susceptible to
spontaneous Botryomycotic infections (9).
Successful disruption of the PML gene was
inferred from the lack of PML mRNA and
PML NBs in mouse primary embryonic fi-
broblasts (MEFs) from PML~/~ embryos
(Fig. 1, D and E) (7).

Analysis of peripheral blood (PB) from
PML~/~ mice (10) revealed a marked re-
duction of circulating granulocytes (neutro-
phils: PML*/*, 1518 % 220 cells/ul;
PML~/~, 795 * 243 cells/pl; P < 0.02;
basophils: PML*/*, 247 * 169 cells/ul;
PML~/=, 69 = 19 cells/pl; P < 0.01; eo-
sinophils: PML*/*, 478 = 142 cells/ul;
PML ', 136 = 74 cells/ul; P < 0.03) and
an overall reduction of circulating myeloid
cells (monocytes: PML*/*, 365 + 196 cells/
pl; PML™/=203 + 77 cells/ul; P < 0.05),
which caused leukopenia. Flow-cytometric
analysis of cells from the spleen, lymph
nodes, thymus, and bone marrow (BM) and
differential counts of BM cells demonstrat-
ed a reduction of both granulocytes and
monocytes in the BM of PML™/~ mice
(11). Thus, PML™/~ mice have an impaired
capacity for terminal maturation of their
myeloid cells.

PML overexpression in cultured cells is
accompanied by growth inhibition (12). To
assess the effects of PML inactivation on
cell proliferation, we studied the growth of

* early passages of MEFs (13), which normal-

ly express PML (Fig. 1E) and whose prolif-
erative properties are well characterized
(14). At low density, PML*/*, PML*/~,
and PML ™/~ cultures were morphologically
indistinguishable. However, PML~/~ MEFs
grew faster than PML*/* MEFs (Fig. 2A),
as confirmed by 3H-labeled thymidine in-
corporation (Fig. 2B). PML*/~ MEFs
showed an intermediate growth rate (Fig. 2,
A and B). In situ terminal deoxynucleotidyl
tranferase labeling experiments revealed
comparable numbers of apoptotic cells (15).
Furthermore, PML inactivation markedly
enhanced the ability of MEFs to form col-
onies (Fig. 2C). The S phase population of
PML~/~ MEFs was increased with a con-
comitant decrease in the Go/G, population
(Fig. 2D), a change analogous to that ob-
served in retinoblastoma—'~ MEFs (14).
PML~/~ MEF monolayers achieved higher
cellular densities and formed foci (Fig. 2, E
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and F) but, unlike fully transformed cells,
were unable to grow in a semisolid medium.

These findings suggest that PML is a
negative growth regulator and therefore
may function as a tumor suppressor. Al-
though the incidence of spontaneous tumors
in the PML™/~ cohort was not increased
during the first year of life, mutant mice
succumbed to infections, severely compro-
mising the long-term assessment of tumor
incidence (9). We therefore studied tumori-
genesis in two experimental models designed
to accelerate tumor formation (16, 17). In
the first, we exposed the skin of mice [be-
cause PML is highly expressed in keratino-
cytes (Fig. 3B)] to a single application of the
tumor initiator dimethybenzanthracene
(DMBA) followed by treatment for several
weeks with the tumor promoter 12-O-tetra-
decanoylphorbol-13-acetate (TPA), a pro-
tocol that gives rise to papillomas that oc-
casionally progress to carcinomas after sev-
eral months (16). PML ™/~ mice developed
more papillomas (Fig. 3A), although the
frequency of tumors undergoing malignant
transformation was similar in the two
groups (PML*/*, 1.8%; PML~/~, 2.3%). In
the second model, DMBA was injected into
the salivary gland of PML~/~ and PML*/*
mice, a procedure that normally produces
sarcomas and fibrosarcomas (16, 17).
PML '~ mice developed more tumors than
- control mice (greater than twofold; P <
0.04) (Fig. 3, D to I) (16). Unexpectedly,
50% of the tumors observed in the PML =/~
group were T and B cell lymphomas (only
one B cell lymphoma arose in the wild-type
cohort; P < 0.02), and 21% were fibrohis-
tiocytoma-like lesions (rare tumors with a
histiocytic-macrophagic cellular compo-
nent) (Fig. 3E). Lymphomas in PML~/~
mice were aggressive metastatic malignan-
cies (Fig. 3D). They appeared to be of
clonal origin because the infiltrating lym-
phoid population homogeneously expressed

either CD4 or CD8 markers (T lymphomas)’

and either k or A chains (B lymphomas)
(Fig. 3, H and I). Macrophage tumoricidal
activity, natural killer cell, and cytotoxic T

lymphocyte activities, which are required -

for efficient surveillance against tumors,
were normal in PML ™/~ mutants (9); how-
ever, upon concanavalin A activation,
splenic lymphocytes in PML™/~ mutants
showed a proliferative advantage despite
normal production of interleukin-10 (IL-
10), IL-4, IL-6, and IFN-y (15). PML can,
therefore, antagonize the initiation, promo-
tion, and progression of tumors of different
histological origins.

We next investigated whether PML was
required for the growth-suppressive activity
of RA. Retinoic acid markedly inhibited the
growth of PML*/* MEFs but had little effect
on the growth of PML~/~ MEFs (Fig. 4, A
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and B). Treatment with RA did not increase
cell death in these experiments (15).
Because RA induces terminal myeloid
and granulocytic differentiation (3, 4, 18),
we tested whether the reduction in myeloid
cells in the PML™/~ mice resulted from an
impaired response of PML ™/~ progenitors
to RA (19). In in vitro methylcellulose
colony assays of hemopoietic progenitors,
BM cells from PML~/~ and PML*/* mice
were comparable in their ability to form
erythroid and myeloid colonies (Fig. 4C).
In the presence of RA, the number of my-
eloid colonies obtained from the PML*/*
progenitors was increased as expected (18,
19), but this effect was completely abrogat-
ed in PML™/~ cells (Fig. 4D). Thus, the

presence of PML is crucial for the growth-

A B
= ERER 2
3 :
= -
o SE
3 253
o -m
s 22 5
- - -
2 By
E z
3 e
x 0
3
Time (days)
D WT
3
10 Gy /Gg=56.3
S=149
GyMa2838
1024
S
B
o
1
10 1
100 T T T T
0 200 400 600 800
DNA
E WT PML-/-

Time (days)

inhibitory activity of RA, as well as for RA
induction of myeloid differentiation.

To determine if PML-RARa could re-
store RA activity, we evaluated the RA re-
sponsiveness of BM cells from PML~/~
PML-RARa transgenic mice (19). We ob-
tained these mutants by crossing PML ™/~
mice with PML-RAR« transgenic mice that
express the fusion gene only in the myeloid
promyelocytic compartment (19). Retinoic
acid significantly reduced the number of my-
eloid colonies derived from PML~/~ PML-
RARa BM cells, suggesting that PML-
RARa can directly mediate RA growth-in-
hibitory activity in a PML-independent
manner (Fig. 4D).

To explore the mechanism by which PML
mediates RA function, we tested whether
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Fig. 2. Growth properties of MEFs of different PML genotypes. (A) Growth curves. Each time point is the
average of triplicate measurements. Doubling time of MEFs: PML—/—, 26.4 + 3.1 hours; PML*/~, 29.8 +
3.3 hours; PML*/*+, 32.9 + 3.9 hours (73). (B) [PH]thymidine incorporation. Cells (5 x 10% per well) were
distributed in 96-well plates and cultured in the presence of [PH]thymidine. Each time point is the average
of triplicate measurements (73). PML*/*, open bars; PML*/~, solid bars; PML~/~, hatched bars. (C)
Clonogenic efficiency (73). The colonies (>10 cells) were scored under the microscope 8 days after
plating. The scoring of colonies at day 16, when the colonies were bigger in size and detectable by the eye,
gave superimposable results. (D) Analysis of cell cycle stages in PML*/* (left) and PML~/ (right) MEFs.
Cultures were pulsed with BrdU, labeled with an antibody to BrdU to detect DNA synthesis (vertical axis)
and propidium iodide to detect total DNA (horizontal axis), and analyzed by two-dimensional flow cytom-
etry (13). (E) Loss of contact inhibition in PML=/~ MEFs. Cells were seeded at 3 X 10° cells in 60-mm
dishes and, after 2 weeks, fixed and stained. PML~/~ MEFs grew to a higher density than PML*/* MEFs
of the same passage. Scale bar, 60 pm. (F) [PH]thymidine incorporation of PML~/~ and PML*/* MEFs
cultured at confluence. The conditions were as in (B), except that 4 X 10* cells per well were seeded.
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PML is required for the RA-dependent trans-
activation of the cyclin-dependent kinase in-
hibitor p21WAFICIPl gene which can be ac-

Fig. 3. Role of PML in tumorigenesis. (A) Rate of
appearance of papillomas in PML=~ (» = 14) and
PML** (n = 14) mice treated with DMBA and TPA.
Graph shows the average number of papillomas *
SE, and the arrow indicates the time when the tumor
promotion treatment with TPA was terminated. One
of two independent experiments is shown (76). (B and
C) PML expression in the skin and lymphocytes. (B)
Immunohistochemical analysis of the skin was per-
formed on paraffin tissue sections from newbom mice
with a PML rabbit antiserum (7). PML is readily de-
tectable in its nuclear speckled configuration in kera-
tinocytes. Scale bar, 50 um. (C) Splenic lymphocytes

were studied by immunofiuorescence (7) (top). Nuclei

were visualized by DAPI (bottom). PML NBs are de-
tectable in all ymphocytes. PML is also expressed in
thymic and BM lymphocytes (75). (D and E) His-
topathological analysis of the tumors that developed
in PML~/~ mice. Twenty-five mice of each group
were injected with DMBA (76). Tumors in PML~/~
[four T cell ymphomas, three B cell ymphomas, three
malignant fibrohistocytomas (MFH), one angiosarco-
ma, and three fibrosarcomas) and PML*/* [one B cell
lymphoma, one MFH, two fibrosarcomas, two soft
tissue sarcomas, and one benign papilloma)] mice
were identified by extemal examination after 4.86 +
0.53 and 5.67 * 0.69 months (P < 0.02), respective-
ly, upon DMBA injection, after which animals were

killed for pathological examination. (D) Marked splenomegaly in a PML=/~
mouse that developed a T cell lymphoma (right), as compared with the
spleen of a wild-type age-matched control mouse (left). Scale bar, 0.5 cm.
These lymphomas were metastasizing tumors that involved the spleen,
thymus, lymph nodes, liver, and vertebrae. (E) Hematoxylin and eosin
staining of a subcutaneous tumor with large dysplatic histiocytes (arrows)
displaying multinucleation and numerous prominent nucleoli. This tumor
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tivated by nuclear receptors,
RXRa/RARa (20). We transfected PML~/~
and PML*/* MEFs with a p21WAFICIPT pro

moter-reporter construct and assessed the re-
sponse to RA treatment. Consistent with
previous results (20), RA stimulated in

including

of lymphomas from PML =/~ mice. (F) The tumor is positive for the T cell
surface antigen CD3 and negative for the B cell surface antigen B220
(inset). (G) The tumor is positive for the B cell surface marker B220 and
negative for the T cell surface antigen CD3 (inset). These tumors were
diagnosed as T and B cell ymphomas, respectively. The homogeneous
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surface markers supports the clonal origin of these tumors. Scale bars, 25
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indicate the mean values + SD. Triplicate measurements from two PML-/~ (hatched bars), two PML*/* (open bars), and two PML ™/~ PML/RARe (solid bar)

mice are shown. (E) PML

and PML*/* MEFs were transiently transfected by calcium phosphate precipitation with the p27YWAF"/CIPT promoter-luciferase

reporter plasmid pGL2 (10 pg per transfection) (20), together with TK-B-galactosidase (2 wg), in the presence or absence of 1 uM RA. Transactivation is
expressed as a percentage of luciferase activity, as deduced from arbitrary light units normalized to B-galactosidase activity. The values shown are averages =
SD calculated from triplicate platings, from one representative experiment out of three. Bars are as in (B). (F) Protein immunoblot analysis of p21WAF/CIP1
expression in PML~/~ and PML*/* BM cells upon treatment with RA at concentrations of 10~ M, 10 ¢ M, or 10~ 7 M for 72 hours.
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PML™™ MEFs the basal activity of the
p2IWAFLCIPL hromoter by two to three times
(Fig. 4E). In the absence of PML, the RA-
dependent transactivation of the promoter
was fully abrogated (Fig. 4E). Accordingly,
concentrations of RA at 1077 or 107 M did
not activate the endogenous p21WAFI/CIPI
gene in PML™/~ BM cells (Fig. 4F). Thus,
PML is essential for the RA-dependent
induction of p21WAFVCIPL  Because
p21WAFI/CIPT 5 regulation can result in
terminal differentiation of hemopoietic
cells (20), the lack of p21WAFVCIPL jndye-
tion in PML™/~ cells might partially ex-
plain the role of PML in controlling he-
mopoietic cell differentiation.

Qur findings demonstrate that PML con-
trols cell proliferation, tumorigenesis, and the
differentiation of hemopoietic precursors.
These functions are, at least in part, based on
the ability of PML to interact with the RA

pathway and in particular its ability to medi- -

ate RA growth-suppressive and differentiat-
ing activities. Preliminary. results indicate
that PML can be part of the RXR/RAR
transcription complex (21), providing a di-
rect explanation for its effect on RA func-
tion. This function is consistent with the role
of PML in the RA-dependent transactivation
of specific genes such as p2I WAFI/CIPT and
with the development of T and B cell
lymphomas in mice deficient in RARa
(22). These results provide a framework for
understanding the molecular pathogenesis
of APL. Whereas APL might result from
the functional interference of PML-RARa
with two independent pathways, PML and
RXR/RAR, we show here that these pro-
teins act, at least in part, in the same
pathway. Thus, by simultaneously interact-
ing with RXR and PML, PML-RAR«a may
inactivate this pathway at multiple levels,
leading to the proliferative advantage and
the block of hemopoietic differentiation
that characterize APL.
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