

- J. S. Takahashi, Annu. Rev. Neurosci. 18, 531 (1995).
- M. A. Rea, Brain Res. Bull. 23, 577 (1989); B. Rusak, H. A. Robertson, W. Wisden, S. P. Hunt, Science 248, 1237 (1990); J. M. Kornhauser, D. E. Nelson, K. E. Mayo, J. S. Takashashi, Neuron 5, 127 (1990); B. Rusak, L. McNaughton, H. A. Robertson, S. P. Hunt, Mol. Brain Res. 14, 124 (1992); J. M. Kornhauser, D. E. Nelson, K. E. Mayo, J. S. Takashashi, Science 255, 1581 (1992); M. E. Guido, B. Rusak, H. A. Robertson, Brain Res. 739, 132 (1996).
- N. Aronin, S. M. Sagar, F. R. Sharp, W. J. Schwartz, Proc. Natl. Acad. Sci. U.S.A. 87, 5959 (1990); D. D. Ginty et al., Science 260, 238 (1993); F. Wollnik et al., Eur. J. Neurosci. 7, 388 (1995).
- 9. T. Pavlidis, *Biological Oscillators: Their Mathematical Analysis* (Academic Press, New York, 1973).
- N. Lisitsyn, N. Lisitsyn, M. Wigler, Science 259, 946 (1993).
- 11. Eighty-four adult male Syrian hamsters (Charles River Laboratories) were entrained to a light-dark cycle (14 hours light, 10 hours dark) for 3 weeks. The hamsters were then transferred to constant dim light (<1 lux) for 7 days, and circadian phases were estimated from spontaneous running-wheel activity (2). At CT 19 on the seventh day, half of the hamsters received a light treatment (250 lux, 25 to 35 min), and the other half received a sham treatment (similar handling, but light <1 lux). At the end of the treatment, brains were removed (40 from each group) and placed in phosphate-buffered saline (PBS, 4°C) for 30 s, and a 1.5-mm-thick coronal slice containing the SCN was cut (Stoelting tissue slicer) and transferred to cold PBS. A 1-mm tissue punch (Fine Science Tools USA) containing the SCN was taken, frozen on dry ice, and stored (-70°C). The time between decapitation and freezing of dissected SCNs was 6 to 7 min. Care of hamsters and all procedures were in full compliance with institutional guidelines for animal experimentation.
- 12. Polyadenylated RNA was prepared from SCN micropunches by guanidinium thiocyanate-CsCl purification followed by oligo-dT chromatography (Oligotex-dT, Qiagen). Oligo-dT-primed, doublestranded cDNA was prepared (Superscript, Gibco-BRL), and the cDNA samples were divided into two and digested with either Rsa I or Alu I, each digest being used for a separate RDA experiment. Fragments were blunt-ligated on each end to a linker containing a Bgl II site [top (A-Bgl-24), 5'-TC-CAGCCTCTCACCGCAGATCTGG; bottom, 5'-CCAGATCTGCGGTGAG], and products between 150 and 1500 base pairs were gel-purified; 100 ng of the linked cDNA was used as PCR template in 4 ml of reaction mix, divided into 10 tubes (400 µl each) of PCR buffer (10) containing 1.25 µM A-Bgl-24 (top) primer. Samples were warmed to 72°C for 1 min, Amplitaq (Perkin-Elmer, 37.5 U/ml) was added, and 15 cycles (94°C for 1 min, 72°C for 3 min) were performed. Linkers were removed with BgI II, and fragments from 150 to 1500 base pairs were gel-purified, generating a cDNA representation of the original mRNA to be used as tester or driver in RDA (10).
- 13. RDA was performed essentially as described (10), but with the following modifications. Hybridizations were for 40 hours (round 1: driver, 20 μg, tester, 200 ng; round 2: driver, 20 μg, difference product 1, 20 ng; round 3: driver, 20 μg, difference product 2, 500 fg). After round 3, linkers were removed with BgI II, and PCR products were ligated into PCRscript (Stratagene). For forward subtractions, the cDNA representation from the sham-treated hamsters was used as the driver and that from light-treated hamsters as the tester (10); for reverse subtractions, the driver and tester designations were reversed.
- 14. Duplicate Southern blots of inserts from RDA clones were prepared. Each blot from a duplicate pair was hybridized, respectively, to ³²P-labeled cDNA synthesized from +light and –light cDNA representations (12) and then washed (twice for 20 min at 65°C, 0.1× SSC, 0.1% SDS). Filters were stripped by boiling and hybridized to subtracted probes; ³²P-labeled cDNA was synthesized from final RDA prod-

ucts from the forward and reverse subtractions (13), respectively, and washed as above.

- 15. Forty-one plasmids that were isolated in control reverse subtractions (13) or that corresponded to highly abundant transcripts were set aside as likely artifacts; nearly half were accounted for by three clones.
- 16 Syrian hamsters were entrained to a light-dark cycle (14 hours light, 10 hours dark) for ≥3 weeks, transferred to constant dim light (<1 lux) for 3 to 7 days, subjected to a light or sham treatment (12) at CT 19, 14, or 6, anesthetized (sodium pentobarbital, 100 mg/kg intraperitoneally), and intracardially perfused (PBS, then 4% paraformaldehyde-PBS). Brains were removed, postfixed (4% paraformaldehyde-PBS, 10% sucrose, 24 hours), frozen (methylbutane, -20°C, 2 min), and stored (-70°C). Coronal sections (16 µm, cryostat) were cut and prepared as described [D. M. Simmons, J. L. Arriza, L. W. Swanson, J. Histotechnol. 12, 169 (1989)]. Sections were dried and stored (~70°C). In situ hybridization with 35Slabeled riboprobes was as described [D. G. Wilkinson, J. A. Bailes, J. E. Champion, A. P. McMahon, Development 99, 493 (1987)].
- 17. M. E. Morris, S. Kuhlman, F. C. Davis, C. J. Weitz, unpublished data.
- 18. The highest scoring matches in BLAST searches [S. F. Attschul, W. Gish, W. Miller, E. W. Myers, D. L. Lipman, J. Mol. Biol. **215**, 403 (1990)] for rda-7 ($P = 10^{-22}$) and rda-65 ($P = 10^{-9}$) were to different segments of the 3' untranslated region of human egr-3,

starting, respectively, 0.8 kb and 1.5 kb 3' from the end of the egr-3 coding sequence.

- 19. S. Patwardhan et al., Oncogene 6, 917 (1991).
- J. Honkaniemi, J. Kononen, T. Kainu, I. Pyykonen, M. Pelto-Huikko, *Mol. Brain Res.* **25**, 234 (1994); J. Honkaniemi, S. M. Sagar, I. Pyykonen, K. J. Hicks, F. R. Sharp, *ibid.* **28**, 157 (1995).
- 21. R. Silver et al., Neuroreport 7, 1224 (1996).
- J. D. Miller, L. P. Morin, W. J. Schwartz, R. Y. Moore, Sleep 19, 641 (1996).
- J. A. Treep, H. Abe, B. Rusak, D. M. Goguen, *J. Biol. Rhythms* **10**, 299 (1995).
- H. Abe, B. Rusak, H. A. Robertson, *Neurosci. Lett.* **127**, 9 (1991); *Brain Res. Bull.* **28**, 831 (1992).
 Y. Shigeyoshi *et al.*, *Cell* **91**, 1043 (1997).
- We thank N. Gekakis and D. Stakinis for helpful contributions; D. Nathans, M. Greenberg, P. Worley, and A. Lanahan for plasmids; J. Takahashi for a Syrian hamster genomic library; L. Buck for use of her microscope; S. Sullivan for guidance on in situ hybridization; N. Nakanishi and W. Schwartz for helpful suggestions; D. Paul, J. Cohen, and I. Chiu for comments on the manuscript; and L. Ruthig and J. Lee for technical assistance. Supported by a McKnight Scholars Award (C.J.W.), the Council for Tobacco Research–USA, Inc. (C.J.W.), a Stuart H. Q. and Victoria Quan Fellowship in Neurobiology (M.E.M.), and NIH (F.C.D.).

2 October 1997; accepted 8 January 1998

Role of PML in Cell Growth and the Retinoic Acid Pathway

Zhu Gang Wang,* Laurent Delva,* Mirella Gaboli, Roberta Rivi, Marco Giorgio, Carlos Cordon-Cardo, Frank Grosveld, Pier Paolo Pandolfi†

The *PML* gene is fused to the retinoic acid receptor α (*RAR* α) gene in chromosomal translocations associated with acute promyelocytic leukemia (APL). Ablation of murine PML protein by homologous recombination revealed that PML regulates hemopoietic differentiation and controls cell growth and tumorigenesis. PML function was essential for the tumor-growth–suppressive activity of retinoic acid (RA) and for its ability to induce terminal myeloid differentiation of precursor cells. PML was needed for the RA-dependent transactivation of the *p21^{WAF1/CIP1}* gene, which regulates cell cycle progression and cellular differentiation. These results indicate that PML is a critical component of the RA pathway and that disruption of its activity by the PML-RAR α fusion protein may be important in APL pathogenesis.

Acute promyelocytic leukemia is a distinct subtype of myeloid leukemia that is invariably associated with chromosomal translocations involving the RAR α locus (1). In 99% of APL cases, RAR α is fused to the

F. Grosveld, Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University, Post Office Box 1738, 3000 DR, Rotterdam, Netherlands.

*These authors contributed equally to this work.

†To whom correspondence should be addressed. E-mail: p-pandolfi@ski.mskcc.org *PML* gene, leading to the production of a PML-RAR α chimeric protein (2).

Retinoic acid receptors are nuclear hormone receptors that act as RA-inducible transcriptional activators, in their heterodimeric form, with retinoid-X receptors (RXRs), a second class of nuclear retinoid receptors (3). Retinoic acid controls fundamental developmental processes, induces terminal differentiation of myeloid hemopoietic progenitors, and has tumor- and cell-growthsuppressive activities (4). PML is an interferon (IFN)-inducible gene (5) that encodes a RING-finger protein typically concentrated within discrete speckled nuclear structures called PML nuclear bodies (PML NBs) or PML oncogenic domains (2, 5). Through its ability to heterodimerize with PML and

Z. G. Wang, L. Delva, M. Gaboli, R. Rivi, M. Giorgio, P. P. Pandolfi, Department of Human Genetics and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Division, Graduate School of Medical Sciences, Cornell University, 1275 York Avenue, New York, NY 10021, USA.

C. Cordon-Cardo, Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.

RXR, PML-RAR α is thought to interfere with both PML and RAR/RXR-RA pathways, thus acting as a double dominant negative oncogenic product (5, 6). However, the normal function of PML and its contribution to APL pathogenesis are unknown.

To investigate these aspects, we disrupted the PML gene in the mouse germ line (7,

Fig. 1. Targeted disruption of the PML gene. (A) Map of the murine 5' PML genomic region determined by restriction mapping, Southern blot hybridization, and DNA sequencing (15). The targeting vector is derived from a 6.8-kb Eco RI fragment of the PML gene. The TK and Neo selectable markers are shown as hatched boxes (7). Also shown is the endogenous PML genomic region after correct integration of the targeting construct by homologous recombination and the three probes used for Southern blot analysis (solid lines) (7). E, Eco RI; K, Kpn I; N, Nar I; No, Not I; A, Apa I; B, Bam HI; and Ec, Eco RV. (B) Southern blot analysis with A, B, and Neo probes of Barn HI-digested DNA from recombined ES cell clones and AB1 untransfected ES cells confirms proper recombination. (C) Southern blot analysis with the probe A of Eco RI-digested tail DNA from littermates obtained from intercrossing two PML+/- mice. DNAs from two mice show the disappearance of the wild-type (WT) band. R, recombinant bands. (D) Northern blot showing that the homozygous PML mutation abolishes PML mRNA expression. For up-regulation of PML expression, PML^{-/-} and PML^{+/+} MEFs were treated with murine IFN α + β . The integrity and amount of RNA as well as stimulation by IFNs were shown by rehybridizing the same blot with β -actin and IFI 204 probes; h, hours; 28 S and 18 S, ribosomal RNA. (E) PML^{-/-} and PML^{+/+} MEFs were studied by immunofluorescence in basal conditions or upon IFN treatment for 24 hours (7). PML^{-/-} MEFs do not show any PML nuclear staining. The nuclei of the PML^{-/-} cells were visualized by costaining with 4'6'-diamidino-2-phenylindole (DAPI) (right). PML-Ab, PML rabbit antiserum.

8). By homologous recombination in murine embryonic stem (ES) cells, we substituted part of exon 2 of the PML gene, which encodes the RING-finger domain, with a neomycin resistance gene cassette (Fig. 1, A to C). Mice homozygous for the PML mutation (PML $^{-/-}$) were born with the expected Mendelian frequency, were indistinguishable at the gross phenotypic level from PML^{+/+} and PML^{+/-} littermates, and were fertile; however, the PML^{-/-} mice were extremely susceptible to spontaneous Botryomycotic infections (9). Successful disruption of the PML gene was inferred from the lack of PML mRNA and PML NBs in mouse primary embryonic fibroblasts (MEFs) from PML^{-/-} embryos (Fig. 1, D and E) (7).

Analysis of peripheral blood (PB) from $PML^{-/-}$ mice (10) revealed a marked reduction of circulating granulocytes (neutrophils: $PML^{+/+}$, 1518 ± 220 cells/µl; $PML^{-/-}$, 795 ± 243 cells/µl; P < 0.02; basophils: $PML^{+/+}$, 247 ± 169 cells/µl; $PML^{-/-}$, 69 ± 19 cells/µl; P < 0.01; eosinophils: PML^{+/+}, 478 \pm 142 cells/µl; $PML^{-/-}$, 136 ± 74 cells/µl; P < 0.03) and an overall reduction of circulating myeloid cells (monocytes: $PML^{+/+}$, 365 ± 196 cells/ μ l; PML^{-/-}, 203 ± 77 cells/ μ l; P < 0.05), which caused leukopenia. Flow-cytometric analysis of cells from the spleen, lymph nodes, thymus, and bone marrow (BM) and differential counts of BM cells demonstrated a reduction of both granulocytes and monocytes in the BM of $PML^{-/-}$ mice (11). Thus, $PML^{-/-}$ mice have an impaired capacity for terminal maturation of their myeloid cells.

PML overexpression in cultured cells is accompanied by growth inhibition (12). To assess the effects of PML inactivation on cell proliferation, we studied the growth of early passages of MEFs (13), which normally express PML (Fig. 1E) and whose proliferative properties are well characterized (14). At low density, PML^{+/+}, PML^{+/-}, and $PML^{-/-}$ cultures were morphologically indistinguishable. However, PML^{-/-}MEFs grew faster than PML+/+ MEFs (Fig. 2A), as confirmed by ³H-labeled thymidine incorporation (Fig. 2B). PML^{+/-} MEFs showed an intermediate growth rate (Fig. 2, A and B). In situ terminal deoxynucleotidyl tranferase labeling experiments revealed comparable numbers of apoptotic cells (15). Furthermore, PML inactivation markedly enhanced the ability of MEFs to form colonies (Fig. 2C). The S phase population of PML^{-/-} MEFs was increased with a concomitant decrease in the G_0/G_1 population (Fig. 2D), a change analogous to that observed in retinoblastoma^{-/-} MEFs (14). PML^{-/-} MEF monolayers achieved higher cellular densities and formed foci (Fig. 2, E

REPORTS

and F) but, unlike fully transformed cells, were unable to grow in a semisolid medium.

These findings suggest that PML is a negative growth regulator and therefore may function as a tumor suppressor. Although the incidence of spontaneous tumors in the PML-/- cohort was not increased during the first year of life, mutant mice succumbed to infections, severely compromising the long-term assessment of tumor incidence (9). We therefore studied tumorigenesis in two experimental models designed to accelerate tumor formation (16, 17). In the first, we exposed the skin of mice [because PML is highly expressed in keratinocytes (Fig. 3B)] to a single application of the tumor initiator dimethybenzanthracene (DMBA) followed by treatment for several weeks with the tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA), a protocol that gives rise to papillomas that occasionally progress to carcinomas after several months (16). $PML^{-/-}$ mice developed more papillomas (Fig. 3A), although the frequency of tumors undergoing malignant transformation was similar in the two groups (PML^{+/+}, 1.8%; PML^{-/-}, 2.3%). In the second model, DMBA was injected into the salivary gland of PML^{-/-} and PML^{+/+} mice, a procedure that normally produces sarcomas and fibrosarcomas (16, 17). $PML^{-/-}$ mice developed more tumors than control mice (greater than twofold; P <0.04) (Fig. 3, D to I) (16). Unexpectedly, 50% of the tumors observed in the PML⁻ group were T and B cell lymphomas (only one B cell lymphoma arose in the wild-type cohort; P < 0.02), and 21% were fibrohistiocytoma-like lesions (rare tumors with a histiocytic-macrophagic cellular component) (Fig. 3E). Lymphomas in PML⁻ mice were aggressive metastatic malignancies (Fig. 3D). They appeared to be of clonal origin because the infiltrating lymphoid population homogeneously expressed either CD4 or CD8 markers (T lymphomas) and either κ or λ chains (B lymphomas) (Fig. 3, H and I). Macrophage tumoricidal activity, natural killer cell, and cytotoxic T lymphocyte activities, which are required for efficient surveillance against tumors, were normal in $PML^{-/-}$ mutants (9); however, upon concanavalin A activation, splenic lymphocytes in $PML^{-/-}$ mutants showed a proliferative advantage despite normal production of interleukin-10 (IL-10), IL-4, IL-6, and IFN- γ (15). PML can, therefore, antagonize the initiation, promotion, and progression of tumors of different histological origins.

We next investigated whether PML was required for the growth-suppressive activity of RA. Retinoic acid markedly inhibited the growth of PML^{+/+} MEFs but had little effect on the growth of PML^{-/-} MEFs (Fig. 4, A and B). Treatment with RA did not increase cell death in these experiments (15).

Because RA induces terminal myeloid and granulocytic differentiation (3, 4, 18), we tested whether the reduction in myeloid cells in the $PML^{-/-}$ mice resulted from an impaired response of PML^{-/-} progenitors to RA (19). In in vitro methylcellulose colony assays of hemopoietic progenitors, BM cells from $PML^{-/-}$ and $PML^{+/+}$ mice were comparable in their ability to form erythroid and myeloid colonies (Fig. 4C). In the presence of RA, the number of myeloid colonies obtained from the PML+/+ progenitors was increased as expected (18, 19), but this effect was completely abrogated in $PML^{-/-}$ cells (Fig. 4D). Thus, the presence of PML is crucial for the growthinhibitory activity of RA, as well as for RA induction of myeloid differentiation.

To determine if PML-RAR α could restore RA activity, we evaluated the RA responsiveness of BM cells from PML^{-/-} PML-RAR α transgenic mice (19). We obtained these mutants by crossing PML^{-/-} mice with PML-RAR α transgenic mice that express the fusion gene only in the myeloid promyelocytic compartment (19). Retinoic acid significantly reduced the number of myeloid colonies derived from PML^{-/-} PML-RAR α BM cells, suggesting that PML-RAR α can directly mediate RA growth-inhibitory activity in a PML-independent manner (Fig. 4D).

To explore the mechanism by which PML mediates RA function, we tested whether

Fig. 2. Growth properties of MEFs of different PML genotypes. (**A**) Growth curves. Each time point is the average of triplicate measurements. Doubling time of MEFs: $PML^{-/-}$, 26.4 ± 3.1 hours; $PML^{+/-}$, 29.8 ± 3.3 hours; $PML^{+/+}$, 32.9 ± 3.9 hours (*13*). (**B**) [³H]thymidine incorporation. Cells (5 x 10³ per well) were distributed in 96-well plates and cultured in the presence of [³H]thymidine. Each time point is the average of triplicate measurements (*13*). $PML^{+/+}$, open bars; $PML^{+/-}$, solid bars; $PML^{-/-}$, hatched bars. (**C**) Clonogenic efficiency (*13*). The colonies (>10 cells) were scored under the microscope 8 days after plating. The scoring of colonies at day 16, when the colonies were bigger in size and detectable by the eye, gave superimposable results. (**D**) Analysis of cell cycle stages in $PML^{+/+}$ (left) and $PML^{-/-}$ (right) MEFs. Cultures were pulsed with BrdU, labeled with an antibody to BrdU to detect DNA synthesis (vertical axis) and propidium iodide to detect total DNA (horizontal axis), and analyzed by two-dimensional flow cytometry (*13*). (**E**) Loss of contact inhibition in $PML^{-/-}$ MEFs grew to a higher density than $PML^{+/+}$ MEFs of the same passage. Scale bar, 60 μ m. (**F**) [³H]thymidine incorporation of $PML^{-/-}$ and $PML^{+/+}$ MEFs cultured at confluence. The conditions were as in (B), except that 4 \times 10⁴ cells per well were seeded.

www.sciencemag.org • SCIENCE • VOL. 279 • 6 MARCH 1998

PML is required for the RA-dependent transactivation of the cyclin-dependent kinase inhibitor $p21^{WAF1/CIP1}$ gene, which can be ac-

Fig. 3. Role of PML in tumorigenesis. (A) Rate of appearance of papillomas in PML^{-/-} (n = 14) and $PML^{+/+}$ (n = 14) mice treated with DMBA and TPA. Graph shows the average number of papillomas ± SE, and the arrow indicates the time when the tumor promotion treatment with TPA was terminated. One of two independent experiments is shown (16). (B and C) PML expression in the skin and lymphocytes. (B) Immunohistochemical analysis of the skin was performed on paraffin tissue sections from newborn mice with a PML rabbit antiserum (7). PML is readily detectable in its nuclear speckled configuration in keratinocytes. Scale bar, 50 µm. (C) Splenic lymphocytes were studied by immunofluorescence (7) (top). Nuclei were visualized by DAPI (bottom). PML NBs are detectable in all lymphocytes. PML is also expressed in thymic and BM lymphocytes (15). (D and E) Histopathological analysis of the tumors that developed in PML-/- mice. Twenty-five mice of each group were injected with DMBA (16). Tumors in PML-/-[four T cell lymphomas, three B cell lymphomas, three malignant fibrohistocytomas (MFH), one angiosarcoma, and three fibrosarcomas] and PML+/+ [one B cell lymphoma, one MFH, two fibrosarcomas, two soft tissue sarcomas, and one benign papilloma] mice were identified by external examination after 4.86 \pm 0.53 and 5.67 ± 0.69 months (P < 0.02), respectivelv. upon DMBA injection, after which animals were

killed for pathological examination. (D) Marked splenomegaly in a PML^{-/-} mouse that developed a T cell lymphoma (right), as compared with the spleen of a wild-type age-matched control mouse (left). Scale bar, 0.5 cm. These lymphomas were metastasizing tumors that involved the spleen, thymus, lymph nodes, liver, and vertebrae. (E) Hematoxylin and eosin staining of a subcutaneous tumor with large dysplatic histiocytes (arrows) displaying multinucleation and numerous prominent nucleoli. This tumor was diagnosed as an MFH. Scale bar, 50 μ m. (F to I) Immunophenotyping

tivated by nuclear receptors, including RXR α /RAR α (20). We transfected PML^{-/-} and PML^{+/+} MEFs with a p21^{WAF1/CIP1} pro-

moter-reporter construct and assessed the response to RA treatment. Consistent with previous results (20), RA stimulated in

of lymphomas from PML^{-/-} mice. (F) The tumor is positive for the T cell surface antigen CD3 and negative for the B cell surface antigen B220 (inset). (G) The tumor is positive for the B cell surface marker B220 and negative for the T cell surface antigen CD3 (inset). These tumors were diagnosed as T and B cell lymphomas, respectively. The homogeneous expression of CD4 or CD8 (T lymphomas) (H) and κ or λ (B lymphomas) (I) surface markers supports the clonal origin of these tumors. Scale bars, 25 μ m.

13.5 d.p.c. preparations of PML^{+/+} (open bars) and PML^{-/-} (hatched bars) MEFs and five (n = 5) independent experiments performed with two different 15.5 d.p.c. preparations of PML^{+/+} and PML^{-/-} MEFs. (**C**) Hemopoietic colonies from in vitro BM cultures (19) from two PML^{-/-} and two PML^{+/+} mice, scored in triplicate, are shown. Bars are as in (B). (**D**) Aberrant and impaired RA differentiating activity in PML^{-/-} and PML^{-/-} PML/RAR α hemopoietic progenitors (19). The data are expressed as a percentage of colony formation of RA-treated (1 μ M) versus untreated cells (untreated = 100%). The bars

indicate the mean values \pm SD. Triplicate measurements from two PML^{-/-} (hatched bars), two PML^{+/+} (open bars), and two PML^{-/-} PML/RAR (solid bar) mice are shown. (**E**) PML^{-/-} and PML^{+/+} MEFs were transiently transfected by calcium phosphate precipitation with the *p21WAF1/CIP1* promoter-luciferase reporter plasmid pGL2 (10 µg per transfection) (*20*), together with TK–β-galactosidase (2 µg), in the presence or absence of 1 µM RA. Transactivation is expressed as a percentage of luciferase activity, as deduced from arbitrary light units normalized to β-galactosidase activity. The values shown are averages \pm SD calculated from triplicate platings, from one representative experiment out of three. Bars are as in (B). (**F**) Protein immunoblot analysis of p21^{WAF1/CIP1} expression in PML^{-/-} and PML^{+/+} BM cells upon treatment with RA at concentrations of 10⁻⁵ M, 10⁻⁶ M, or 10⁻⁷ M for 72 hours.

100

RA

 $PML^{+/+}$ MEFs the basal activity of the p21^{WAF1/CIP1} promoter by two to three times (Fig. 4E). In the absence of PML, the RAdependent transactivation of the promoter was fully abrogated (Fig. 4E). Accordingly, concentrations of RA at 10^{-7} or 10^{-6} M did not activate the endogenous $p21^{WAF1/CIP1}$ gene in PML^{-/-} BM cells (Fig. 4F). Thus, PML is essential for the RA-dependent induction of p21^{WAF1/CIP1}. Because $p21^{WAF1/CIP1}$ up-regulation can result in terminal differentiation of hemopoietic cells (20), the lack of p21^{WAF1/CIP1} induction in PML^{-/-} cells might partially explain the role of PML in controlling hemopoietic cell differentiation.

Our findings demonstrate that PML controls cell proliferation, tumorigenesis, and the differentiation of hemopoietic precursors. These functions are, at least in part, based on the ability of PML to interact with the RA pathway and in particular its ability to mediate RA growth-suppressive and differentiating activities. Preliminary results indicate that PML can be part of the RXR/RAR transcription complex (21), providing a direct explanation for its effect on RA function. This function is consistent with the role of PML in the RA-dependent transactivation of specific genes such as p21WAFI/CIP1 and with the development of T and B cell lymphomas in mice deficient in RARa (22). These results provide a framework for understanding the molecular pathogenesis of APL. Whereas APL might result from the functional interference of PML-RARα with two independent pathways, PML and RXR/RAR, we show here that these proteins act, at least in part, in the same pathway. Thus, by simultaneously interacting with RXR and PML, PML-RARα may inactivate this pathway at multiple levels, leading to the proliferative advantage and the block of hemopoietic differentiation that characterize APL.

REFERENCES AND NOTES

- 1. F. Grignani et al., Blood 83, 10 (1994); P. P. Pandolfi, Haematologica 81, 472 (1996)
- 2. L. Longo et al., J. Exp. Med. 172, 1571 (1990); J. Borrow, A. D. Goddard, D. Sheer, E. Solomon, Science 249, 1577 (1990); H. de Thé, C. Chomienne, M. Lanotte, L. Degos, A. Dejean, Nature 347, 558 (1990); P. P. Pandolfi et al., Oncogene 6, 1285 (1991); H. de Thé et al., Cell 66, 675 (1991); A. Kakizuka et al., ibid., p. 663; A. D. Goddard, J. Borrow, P. S. Freemont, E. Solomon, Science 254, 1371 (1991); P. P. Pandolfi et al., EMBO J. 11, 1397 (1992)
- 3. P. Chambon, FASEB J. 10, 940 (1996).
- M. A. Smith, D. R. Parkinson, B. D. Cheson, M. A. Friedman, J. Clin. Oncol. 10, 839 (1992); L. J. Gudas, M. B. Sporn, A. B. Roberts, The Retinoids: Cellular Biology and Biochemistry of the Retinoids (Raven, New York, 1994).
- 5. J. Dyck et al., Cell 76, 333 (1994); K. Weis et al., ibid., p. 345; M. H. M. Koken et al., EMBO J. 13, 1073 (1994); M. Stadler et al., Oncogene **11**, 2565 (1995); C. Lavau et al., ibid., p. 871; K. Nason-Burchenal et al., Blood 88, 3926 (1996).

- 6. P. Kastner et al., EMBO J. 11, 629 (1992); A. Perez et al., ibid. 12, 3171 (1993); F. Grignani et al., Cell 74, 423 (1993)
- 7. PML phage clones were obtained from a 129Sv mouse strain genomic library. The targeting vector contains herpes simplex virus-thymidine kinase (TK) and TK-Neo selectable markers (8), the latter of which replaces 94 base pairs of PML exon 2 encoding the PML RINGfinger domain [M. Fagioli et al., Oncogene 7, 1083 (1992)], and is flanked by a 2.0-kb Apa I-Nar I fragment containing PML intron 1 and a small portion of exon 2 and a 4.0-kb Nar I-Eco RI fragment corresponding to a part of PML exon 2 and intron 2. The Not I linearized vector was electroporated into AB1 ES cells, and double selection was carried out as described (8). Resistant clones were screened by Southern (DNA) blotting with the 5' and 3' external and internal probes, as shown in Fig. 1A. Germline-transmitting chimeric males obtained from two independent PML^{+/-} euploid ES cell clones were bred with 129Sv females to generate PML+ mice for intercrossing. A PML rabbit antiserum was used for detection of the endogenous murine PML protein [K. L. B. Borden et al., EMBO J. 14, 1532 (1995)].
- 8. P. P. Pandolfi et al., Nature Gen. 11, 40 (1995). 9. M. Gaboli et al., in preparation.
- 10. Peripheral blood counts were performed for PML+/+ (n = 28) and PML^{-/-} (n = 20) sex- and age- (2 to 3 months old) matched syngeneic (129Sv) littermates. Differential counts of myeloid and lymphoid subpopulations from PML^{+/+} (n = 24) and PML^{-/-} (n = 22) mice were carried out on Wright-Giemsa-stained PB smears. Differential counts of three or four smears per animal were scored for a total of at least 300 cells.
- 11. The following antibodies (PharMingen, San Diego, CA) in single or double staining were used for flow-cytometric analysis: hemopoletic stem cells or progenitors (c-Kit and CD34), T lymphocytes [Thy1, CD4, CD8, CD3, CD2, CD24, T cell receptor (TCR) $\alpha\beta$, and TCR $\gamma\delta$], B lymphocytes (CD2, CD24, B220, and aly), and myeloid cells (Mac-1, Gr-1, and Ly-6C). If required, cells were preincubated with an antibody to mouse Fcyll/III receptors (Fc Block); 10⁵ cells from PML^{+/+} (n = 9) and PML^{-/-} (n = 9) sex- and age-matched syngeneic (129Sv) littermates were analyzed in three independent experiments. The reduction of granulocytes and mono-cytes in the BM of PML^{-/-} mice was demonstrated by a 10 to 20% reduction of Mac-1-positive (P < 0.03) or Gr-1-positive (P < 0.02) (monocytic and granulocytic), Mac-I-positive and Gr-1-positive (P < 0.01) (granulocytic), and Mac-1-positive and Gr-1-negative (P < 0.02) or Ly-6C-positive (P < 0.03) (monocytic) cells. No other difference was observed with any other antibody. Differential counts on cytospin smears also showed a marked reduction of granulocytes (PML^{-/-}, 12 ± 3%; PML+/+, 29 ± 5%; P < 0.01) and monocytes (PML-/ 0.1 ± 0.1%; PML^{+/+}, 0.5 ± 0.2%; P < 0.02) in the BM of PML-/- mice, with no notable decrease or accumulation of early hemopoietic precursors (blasts + promyelocytes + metamyelocytes + myelocytes) (PML-/ 5.2 \pm 2%; PML^{+/+}, 5.6 \pm 1.7%) and a relative increase of ervthroblasts.
- Z. M. Mu, K. V. Chin, J. H. Liu, G. Lozano, K. S. Chang, *Mol. Cell. Biol.* 14, 6858 (1994); M. H. M. Koken et al., Oncogene 10, 1315 (1995); J. H. Liu, Z. M. Mu, K. S. Chang, J. Exp. Med. 181, 1965 (1995); X. F. Le, P. Yang, K. S. Chang, J. Biol. Chem. 271, 130 (1996).
- 13. Mouse primary embryonic fibroblasts were isolated from embryos at 13.5 or 15.5 days of gestation. For growth curve experiments, 105 cells per well were seeded in six-well plates in Dulbecco's minimum essential medium with 20% fetal bovine serum (FBS) and counted. Nine independent experiments were carried out from three different MEF preparations. Doubling time was calculated from the slope of the best fit line of the logarithm of cell number as a function of time. DNA synthesis was measured by incorporation of [3H]thymidine (2 µCi/ml) in five independent experiments. For clonogenic efficiency, 3×10^3 MEFs, in three independent experiments, were distributed on 60-mm dishes. and the number of colonies (>10 cells) was scored after 8 and 16 days (14). For cell cycle analysis, subconfluent cultures of MEFs were labeled for 4 hours with 10 µM bromodeoxyuridine (BrdU) (Sigma) and analyzed by two-dimensional flow cytometry (14).

- 14. S. D. Conzen and C. N. Cole, Oncogene 11, 2295 (1995); M. Serrano et al., Cell 85, 27 (1996).
- Z. G. Wang and P. P. Pandolfi, unpublished data.
 The backs of PML^{+/+} and PML^{-/-} sex- and age- (6 to 10 weeks old) matched syngeneic (129Sv) littermates (n = 24 for each group in two different experiments) were treated with a single application of DMBA (25 µg in 200 µl of acetone) followed by biweekly application of TPA (200 µl of 0.1 µM solution in acetone) [C. J. Kemp, L. A. Donehower, A. Bradley, A. Balmain, Cell 74, 813 (1993)]. Treatment with TPA was terminated after 15 weeks. The number of papillomas (over 2 mm in diameter) on each mouse was scored weekly. All papillomas were taken for histological examination 36 weeks after the initiation with DMBA. The difference in the number of papillomas observed in PML^{-/-} and PML^{+/+} mice was statistically significant from the 12th week of promotion (P values: 12th week, P < 0.01; 13th week, P < 0.02; 14th week, P < 0.01; 15th week, P < 0.05; 16th week, P < 0.01; 17th week, P < 0.02). The effects of a systemic dose of DMBA were studied as follows: DMBA (2.5 mg in 50 μl of líquid petrolatum) was injected into the left lobe of the surgically exposed salivary gland of $PML^{-/-}$ (n = 25) and $PML^{+/+}$ (n = 25) sex- and age- (6 to 10 weeks old) matched syngeneic (129Sv) anesthetized littermates in two different experiments. Mice were followed for 1 year and then killed. Postmortem analysis revealed that tumors in PML-/- mutants developed in mice that had not yet developed infections.
- T. Barka, H. van der Noen, A. M. Michelakis, I. Schenkein, Lab. Invest. 42, 656 (1980).
- 18. D. Douer and H. P. Koeffler, Exp. Cell. Res. 138, 193 (1982); C. Gratas, M. L. Menot, C. Dresch, C. Chomienne, Leukemia 7, 1156 (1993).
- 19. To score for colony-forming units-erythrocyte (CFU-E), we plated BM cells at a concentration of 2×10^5 cells per dish in MethoCult M3330 (Stemcell Technology, Vancouver, Canada) and counted colonies after 2 days. For burst-forming units-ervthrocyte (BFU-E), CFUgranulocyte and monocyte (CFU-GM), and CFU-granulocyte, monocyte, erythrocyte, and megakaryocyte (CEU-MIX). BM cells were plated at a concentration of 3×10^4 cells per dish in MethoCult M3430 (Stemcell Technology). Colonies were scored at days 7 and 14. Five independent experiments were carried out from $PML^{-/-}$ (n = 7) and $PML^{+/+}$ (n = 7) sex- and agematched syngeneic littermates. BM cultures with or without RA: To score CFU-E and BFU-E, we plated BM cells as above and counted them at days 2 and 6, respectively; for CFU-GM, 5×10^4 cells were plated in medium with 30% FBS, granulocyte and monocyte colony-stimulating factor (GM-CSF) (20 ng/ml), and granulocyte CSF (G-CSF) (50 ng/ml) and scored after 6 days. Retinoic acid in dimethyl sulfoxide (DMSO) was added at a final concentration of 1 μ M. Untreated cells were cultured in the presence of the same concentration of DMSO. PML-7- PML-RARa BM cells were harvested from mice obtained by intercrossing PML-/ mice and PML-RARα transgenic mice [L. Z. He et al., Proc. Natl. Acad. Sci. U.S.A. 94, 5302 (1997)]. These experiments were performed on healthy mice before the occurrence of leukemia. Nine independent experiments were carried out from PML^{-/-} (n = 11), PML^{+/+} (n =11), and PML^{-/-} PML-RAR α (n = 2) sex- and agematched syngeneic littermates.
- M. Liu, M. H. Lee, M. Cohen, M. Bommakanti, L. P. Freedman, *Genes Dev.* 10, 142 (1996); M. Liu, A. lavarone, L. P. Freedman, J. Biol. Chem. 271, 31723 (1996)
- 21. L. Delva et al., in preparation.
- 22. T. Manshouri et al., Blood 89, 2507 (1997).
- 23. We thank M. Barna, A. Bradley, A. Bygrave, G. Cattoretti, R. Dalla Favera, T. Delohery, E. Dzierzak, M. Fagioli, P. S. Freemont, D. Gandini, N. Hawe, M. Lindenbaum, L. Longo, R. Lovell-Badge, L. Luzzatto, S. Nicolis, P. G. Pelicci, and E. Solomon for materials, assistance, and advice. Partially supported by the Associazione Italiana per la Ricerca sul Cancro (P.P.P., R.R., and M.G.) and the Ligue Nationale contre le Cancer of France (L.D.). P.P.P. is a Scholar of the Leukemia Society of America. Supported by the Sloan-Kettering Institute (CA-08748) and National Institutes of Health (CA 71692 awarded to P.P.P.

5 September 1997: accepted 16 January 1998