
graphic analysis, where hypothesized global- 
1y sy~1chrot1ous sea level cycles form the  
basis of the popular paradigm of sequence 
stratigraphy. 
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Distribution of Thiobacillus ferrooxidans and 
Leptospirillum ferrooxidans: l mpl ica tions for 

Generation of Acid Mine Drainage 
Matthew 0. Schrenk, Katrina J. Edwards," Robert M. Goodman, 

Robert J. Hamers, Jillian F. Banfield 

Although Thiobacillus ferrooxidans and Leptospirillum ferrooxidans are widely consid- 
ered to be the microorganisms that control the rate of generation of acid mine drainage, 
little is known about their natural distribution and abundance. Fluorescence in situ 
hybridization studies showed that at Iron Mountain, California, T. ferrooxidans occurs in 
peripheral slime-based communities (at pH over 1.3 and temperature under 30°C) but 
not in important subsurface acid-forming environments (pH 0.3 to 0.7, temperature 30" 
to 50°C). Leptospirillum ferrooxidans is abundant in slimes and as a planktonic organism 
in environments with lower pH. Thiobacillus ferrooxidans affects the precipitation of ferric 
iron solids but plays a limited role in acid generation, and neither species controls direct 
catalysis at low pH at this site. 

A fundamental compol~ent  of the sulfur least a minor component of most rocks, this 
geochelnical cycle is the  release of sulfate process is allnost ubiquitous in chelnical 
into solution through oxidative dissolution weathering. Weathering of sulfide-rich rocks 
of sulfide minerals. Because sulfides are a t  with low neutralization capacity forms sul- 

furic acid-rich solutions that can carry hie11 , " 
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motes pyrite dissolution by the following 
reaction: FeS, + 14 Fe3+ + 8 H 2 0  -+ 15 
Fe2+ + 2 SO,2- + 16 H+ (2). Microorgan- 
isms greatly accelerate the rate of oxidation 
of Fe2+ to Fe3+, so that the rate of pyrite 
dissolution is generally controlled by micro- 
bial activitv (2-4). , . - ,  

Numerous studies have measured and 
compared the abiotic, biotic, and Fe3+-in- 
duced rates of pyrite dissolution (2). Almost 
all ex~erimental work has used ThiobaciUw 
f e w o o h n s ,  which is generally assumed to 
be the most important species accelerating 
the dissolution of metal sulfide (2). T .  fer- 
rooxldans is considered typical of AMD sys- 
tems because it can be readily cultured from 
these environments. The importance of the 
iron-oxidizing species LeptospiriUum fewooxi- 
dam is now also widely accepted (5), and 
this species can outcompete T .  fewooxldans 
under certain conditions (6, 7). However, 
few studies have evaluated the ~otential  
geochemical impact of L. fewooxidans in 
natural low-DH environments. and the dis- 
tribution and abundance of these species 
have not been quantified. 

We used molecular methods based on 
small-subunit ribosomal RNA (SSU rRNA) 
sequences (8) without prior cultivation (9) 
to study the role of microorganisms in an 
AMD environment at Iron Mountain, Cal- 
ifornia, and to analyze the abundance and 
distribution of T .  fewooxldans and L. fer- 
rooxldans as a function of geochemical and 
~hvsical conditions. To determine the ab- . , 
solute contribution of these two bacterial 
species to the total microbial population, 
we evaluated the proportion of all cells 
in the domains Bacteria, Eukarya, and 
Archaea. 

Iron Mountain is an in inoperative mine 
containing tens of kilometers of under- 
ground tunnels running through a sulfide 
ore body, as well as several runoff streams 
peripheral to the ore body. Pyrite-dominat- 
ed sediments and solutions draining from 
the sulfide deposit were collected from the 

Richmond mine in January 1997. A few 
samples of seepage from tailings piles and 
storage tanks for AMD runoff from outside 
the mine (pH 2 to 4, temperature 10" to 
25°C) were also collected and fixed for 
subsequent microbiological analysis (1 0). 

The geochemical analyses from all sites 
fall into two clusters. Solutions with pH 1.5 
to 2.5. temnerature 17" to 30°C. and con- . . 
ductivity <30 mS/cm were confined to re- 
gions of the main tunnel and occasional 
pools. Solutions with pH 0.3 to 1.0, tem- 
Derature 33" to 50°C. and conductivitv 
>68 mS/cm were typical of most sites in 
contact with the ore body. Dissolved oxy- 
gen contents were higher in the higher 
temperature, lower pH regions, at - 1.2 mg/ 
liter at -20°C to -5.2 mglliter. This is 
probably due to higher mixing that occurs 
at spillways. 

Total cell counts were determined by 
DNA staining with 4', 6-diamidino-2-phe- 
nylindole (DAPI) (7) (Fig. 1). Cell num- 
bers for rRNA  robe-labeled sam~les rela- 
tive to total cells were determined by dual 
counting of samples with differently labeled 
probes. Totals for the three domains should 
sum to the total detected with DAPI. In 
general, the total number of cells detected 
with rRNA probes was lower than that 
detected with DAPI, probably because some 
cells were dead or inactive. 

The A and C drifts are two of four 
horizontal tunnels that diverge from the 
horizontal Richmond entrance tunnel 
about 450 m into the mine. Solutions drain- 
ing from, or collecting in, the A drift had 
temperatures between 42" and 45°C and 
pH values of 0.5 to 0.7. In the C drift, the 
temperature was 47" to 48°C and the pH 
was 0.4 to 0.6. Sam~les from all environ- 
ments were found to contain abundant mi- 
crobial life. In the A and C drifts, typical 
direct cell counts were 2.5 x 105/ml in 
solutions, 1.6 x 109/ml in slime streamers, 
and 4.2 x 106/ml in pyrite sediment. 

Cells in sediment, water, or slime that 

Fig. 1. Results from fluorescence 
in situ hybridization analysis (total 
cell counts determined by DNA 
staining with DAPI). The term 
'flow" refers to moving water, 
"pool" to standing water, "spill" to 
water actively flowing over a bar- 
rier in the Richmond ore body, 
'slime" to slime streamers on and 
in pools of standing water, and 
'sed." to sediment consisting of 
pyrite accumulations on the floor 
of the drift. The term "matte" re- 
fers to a named body of standing 
water in a vertical shaft close to 

0 100 0 100 0 100 
% hybrtdized % hybridized % hybridized 

A Drift C Drift Tunnel 

the mine entrance. Error bars were calculated from six to eight repetitions per sample (23) and ranged 
from ?2 to 15%, but were most commonly 2 5  to 7%. Sediment numbers referto cells attached to pyrite 
surfaces and in associated pore fluids. All Eukarya in these samples were in the solution fraction. 
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hybridized with the T .  fewooxldans probe 
were completely absent. The probe effec- 
tively hybridized with cultured T.  fewooxi- 
dam cells [American Type Culture Collec- 
tion (ATCC) number 198591, both in so- 
lution and on pyrite surfaces. The conclu- 
sion that T .  fewooxldans is not important in 
environments typified by the A and C drifts 
is supported by the absence of this species in 
enrichment cultures that used samples from 
the A drift as inoculum in standard T.  
fewooxidans media (4) .  We found that in all 
cases, bacteria were the predominant form 
of microbial life (at least 75% of cells). 
Eukarya were minor constituents of many 
assemblages but ranged up to 25% of cells in 
some slimes. Archaea were a minor compo- 
nent in solutions. 

The abundance of L. fewooxldans in the 
A and C drifts varied with microenviron- 
ment (Fig. 1). This species accounted for 
almost the entire bacterial component of 
some slimes and was present in flowing and 
stagnant water (Fig. 2). Leptospirillum fer- 
rooxldans has been cultured as a planktonic 
organism from these sites (I I ) .  Although 
only a few of the bacteria in sediments are 
L. fewooxldans. this s~ecies occurs in rela- 
tively high numbers associated with, but 
unattached to. the sediments (-lo5 cells1 
ml). Enrichment cultures also contained 
bacillus-shaped cells that colonized pyrite 
surfaces and hybridized with the bacterial 
probe (Fig. 3) but not with the L. fewooxi- 
d a m  or T .  fewooxidans probe. We have 
shown that the acidophilic mesothermo- 
~ h i l i c  bacteria in these cultures are 
chemolithotrophic, metabolize ferrous 
iron, and accelerate pyrite dissolution 
rates (-low5 kmol of Fe per cell per day at 

Fig. 2. Probe results for slime from the A drift. (A) 
Slime stained with DAPI. (B) Slime stained with 
LC206 (probe for L. fermxidans). The filaments 
on the right-hand side are Eukarya. Scale bar, 5 
w'"'-' 



pH 0.7 and temperature 42OC) (I 1 ). 
Bacteria were also the predominant form 

of microbial life (<<5% Archaea or Eu- 
karya) in less extreme environments along 
the horizontal tunnel into the mine 
(-20°C, pH 1.3 to 2.4; Fig. 1). However, in 
contrast to the situation in the pH < 1.0 
environments, T. ferrooxiduns was an im- 
portant constituent and accounted for 
about one-third of the total populationpf 
pH > 1.0 slime communities. In addition, 
we successfullv cultured T. fewooxidans from 
these sites with the same 'standard culture 
medium used to test for this species in the A 
drift. 

Because T. ferrooxidans is (i) not direct- 
ly associated with the main ore body 
where primary oxidative dissolution is tak- 
ing place and (ii) is a common inhabitant 
only of the more accessible, cooler, higher 
pH regions, we infer that the impact of 
this species on pyrite oxidation reactions 
in the mine is restricted. Thiobacillus 
ferrooxidans may be essentially an oppor- 
tunist, deriving metabolic energy from 
dissolved Fe2+ but contributing little to 
acid generation at this site. This conclu- " 
sion is consistent with the observation 
that conditions associated with the ore 
body are below the normal pH and above 
the normal temperature range for T. fer- 
rooxidans (12). Thiobacillus ferrooxidans 
still has an important geochemical impact 
at this site because the oxidation of Fe2+ 
leads to precipitation of ferric iron solids, 
reducing the metal load in solutions. This 
potentially beneficial role differs consider- 
ably from the negative role often assigned 
to this species. 

LeptospiriUum ferrooxiduns is extant over 
most of the range of conditions sampled. 
Although its distribution suggests that it 
plays an important ecological role in the 
microbial community by catalyzing sulfide 
mineral dissolution, its relative importance 
in the generation of AMD is not yet known. 
Our evidence suggests that this species is a 

Fig. 3. Bac338 (bacterial probe) to pyrite sedi- 
ment. The image shows the colonized surface of a 
pyrite grain from sediment. 

dominant planktonic microorganism associ- 
ated with the ore body, where conditions 
are generally >40°C and pH is 0.7 to 1.0. 
LeptospiriUum ferrooxiduns may be the spe- 
cies primarily responsible for catalysis of 
sulfide oxidation by aqueous ferric iron. 

We have sampled the Iron Mountain 
site throughout the year. Our results show 
that substantial fluctuations in geochemical 
conditions are accompanied by variability 
in microbial population statistics. However, 
the kev conclusions relating to the distribu- 
tion of T. fmooxidans an2 L. ferrooxidans 
are valid (13). 

Although solutions draining most AMD 
sites have pHs of 2 to 4 (2), conditions may 
typically be more extreme close to reaction 
sites, as we have observed at Iron Moun- 
tain. Sulfuric acid-forming reactions are 
quite exothermic (14), and pHs in proxim- 
ity to pyrite surfaces are likely much lower 
than those measured in bulk solution (2). 
Consequently, the organisms that are most 
important to sulfide dissolution may fre- 
auentlv encounter conditions similar to 
;hose iound in the tunnels associated with 
the Iron Mountain ore bodv. Current mod- 
els based on T. f e r r o o b  should be re- 
evaluated to reflect the involvement of dif- 
ferent species promoting sulfide weathering 
by different mechanisms and at different 
rates. 
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1.4 x 10%ells, L f  ?12%. Arch 12Oh. Euk, 25%.  
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I 12%, Euk -t7%: Slime2: 1.3 X 1 O%es. Lf =6%. 
Bac. 1996, Euk 27%:  Sed.: 2.2 x l o 7  cells, L f  
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Materials with Negative Compressibili ties 
in One or More Dimensions 

Ray H. Baughman," Sven Stafstrom, Changxing Cui, 
Socrates 0. Dantas 

Rare crystal phases that expand in one or more dimensions when hydrostatically com- 
pressed are identified and shown to have negative Poisson's ratios. Some of these 
crystals (i) decrease volume and expand in two dimensions when stretched in a particular 
direction and (ii) increase surface area when hydrostatically compressed. Possible mech- 
anisms for ac,hieving such negative linear and area compressibilities are described for 
single crystals and composites, and sensor applications are proposed. Materials with 
these properties may be used to fabricate porous solids that either expand in all direc- 
tions when hydrostatically compressed with a penetrating fluid or behave as if they are 
incompressible. 

M o s t  materials contract in all directions 
when hydrostatic pressure (P )  is applied- 
that  is, the  volume co~npressibility (-dV/ 
VdP), area co~npressibilities (-dA/AdP), 
and linear co~npressibilities (-dL/LdP) are 
all ~ o s i t i v e .  Materials are thermodvnami- 
cally forbidden to have negative volume 
com~ressihilities. A negative area conmress- " 

ibility was initially reported for a trigonal 
phase of arsenic ( 1  ), hut this result disagrees 
with later lneasurernents (2) .  However, 
there are rare reoorts of crvstals having 
negative linear 'ompressibil;ties: lantha- 
llum niohate ( 3 ) ,  cesium dihydrogen phos- 
phate (4), a n  orthorhombic high-pressure 
paratellurite (TeO?)  phase (5)) and the  iso- 
morphous trigonal Se and T e  phases (6, 7) .  

A solid increases density ~ v h e n  stretched 
along an  axis of negative linear compressibil- 
ity, so it is equivalent either to say that a 
solid has the property of being stretch den- 
sified or that it has a negative linear com- 
pressibility. If we denote the elastic compli- 

R. H. Baughmari and C. C u ,  A led  S~gnal. Research and 
Technology. Morr;stown. NJ 07962-1021. USA. 
S Stafstrom, Department of Physcs and Measurelnent 
Technology. Linkopng Unversity, S-581 83, L~nkopng. 
Sweden. 
S. 0. Danras, Departamento de F ~ s ~ c a  UFJF. CEP 
36036-330, Juiz de Fora, Mnas Gerais, Brazil. 

'To whom correspondence should be addressed. E -ma :  
ray.baughrnan@all~edsignal.com 

ance coefficients for arbitrary orthogonal 
axes as S,, ' , then S,, '  + S,?' + SI3 '  is the 
linear co~npressihility in  the st-axis direction 
and S1 ' + S?,' + S i l t  is the corresponding 
coefficient for the  fractional volume change 
produced by a uniaxial stress in  the  st-axis 
direction. T h e  elastic constant matrix is 
symmetric (a) ,  so that S,,' = S,,', and there- 
fore these coefficients for pressure-induced 
linear di~nension change and stretch-in- 
duced volunle change are equal. 

By using well-known equations (8) for 
linear co~npressibility as a function of elastic 
co~llpliances (S,,), it is easily seen that both 
the ~ l l i n i m u ~ n  and rnaxi~num of linear corn- 
pressibility occur in crystal-axis directions for 
orthorhomhic or higher synxnetry phases. 
Whereas the existence of only positive linear 
compressibilities constrains the magnitude of 
any individual linear co~npressibility to be 
less than the hulk compressibility, this con- 
straint disappears if any linear compressibil- 
ity is negative. \Ve will use experimental 
data to identify phases where a positive lin- 
ear co~npressibility exceeds the bulk com- 
pressibility, so the area co~npressibility 
(which is the  difference between the  bulk 
and the linear compressibility) is negative for 
a plane pespendicular to the direction of this 
positive compressibility. This implies that 
there are negative linear co~npressibilities for 

two wemendicular directions within this 
L L 

plane. By choosing a plane with a negative 
area co~npressihility as the predonlinant crys- 
tal face, a crystal can be obtained whose total 
surface area increases with increasing hydro- 
static pressure. 

' W e  searched for evidence of stretch-den- 
s ~ f ~ e d  phases, L I S I I I ~  the  e las t~c constant ten- 
sors that have been exner~mentallv deter- 
mined for about 500 noniuhic crystal phases 
(7). Only about 13 of the 500 investigated 
co~npositions are stretch densified (Tahle 1) .  
Other  than the  tetraeonal lnercurous halide " 

phases and the tr~gonal chalcogen phases, 
there are n o  convlnclne examnles of stretch 

u 

densification in the  elastic-constant tabula- 
tions for about 270 different hexagonal, tet- 
ragonal, and trigollal phases (7).  Ou t  of 145 
tabulated orthorhombic phases (7) ,  only 
cadmium formate, c a l c i ~ u ~ l  formate, cesi~un~ 
biphthalate, m-dihydroxyhenzene, 3-methyl 
4-nitropyridine 1-oxide, and tris-sarcosine 
calcium chloride provide data that are clear- 
lu consistent with stretch densification. N o  
stretch-densified triclinic phases were iden- 
tified, and 70 investigated rnonocli~lic phas- 
es provide three likely exarnples of stretch- 
densified phases: ethylene dialnine tartrate, 
cesiu~ll dihydrogen phosphate, and lantha- 
num niobate. 

Each of the  stretch-densified crystal 
phases in Tahle 1 provides both positive 
and negative values for the  Poisson's ratio, 
which is the  ratio of a lateral contraction to 
a longitudinal elongation produced by a 
tensile stress. In  fact, Se, the  two tetragonal 
phases, and all three monoclinic phases 
both increase density and expand in one 
lateral direction ~ v h e n  stretched along a 
oarticular direction. However, few crvstals 
with a negative Poisson's ratio have a neg- 
ative linear compressibility. Equally inter- 
esting, a negative area co~npressibility re- 
sults for the  reoorted elastic constant tensor 
(3, 7)  for rno~loclinic cesium dihydrogen 
phosphate and la l l thanu~n niobate, and pos- 
sibly for orthorhombic cadmiurn formate. 

T o  enable the design of materials wit11 
negative linear compressibilites, we identi- 
fied several basic struct~lral types that lead to 
this property. Mechanical and ~nolecular 
~llodels for hinged structures can be con- 
structed (Fig. 1)  in which stretch densifica- 
tion results from a \vine-rack-like deforma- 
tion mode, like those for proposed polydi- 
acetylene carbon phases (9). Molecular me- 
chanics calculations suggest (Fig. 1 C )  (10) 
that ferroelasticity (and associated shape 
rnelllorv behavior) should occur in comhina- 
tion with negative linear compressibilities 
for particular hinged structures. Both prop- 
erties are observed for Hg2Brz, HgzI,, lantha- 
num niobate, and tris-sarcosine calcium 
chloride (7).  Munn has sllo\vn that a nega- 
tive linear compressibility, conlhi~led with a 
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