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Single-Grain 40Ar-39Ar Ages of Glauconies: 
Implications for the Geologic Time Scale 

and Global Sea Level Variations 
Patrick E. Smith, Norman M. Evensen, Derek York, 

Gilles S. Odin 

The mineral series glaucony supplies 40% of the absolute-age database for the geologic 
time scale of the last 250 million years. However, glauconies have long been suspected 
of giving young potassium-argon ages on bulk samples. Laser-probe argon-argon dating 
shows that glaucony populations comprise grains with a wide range of ages, suggesting 
a period of genesis several times longer (-5 million years) than previously thought. An 
estimate of the age of their enclosing sediments (and therefore of time scale boundaries) 
is given by the oldest nonrelict grains in the glaucony populations, whereas the formation 
times of the younger grains appear to be modulated by global sea level. 

G ~ a u c o n ~  ( 1 ) is an authigenic, millime- 
ter-sized, greenish grain of marine clay 
consisting of aggregates of micrometer- 
sized crystallites. It is the only mineral 
facies that is sufficiently widespread to 
provide direct K-Ar and Rb-Sr ages for 
sediments. Glaucony is important for cal- 
ibrating the geologic time scale because it 
provides ages in strata lacking reliable 
high-temperature chronometers ( 2 ) ,  but 
glaucony ages have also been regarded as 
untrustworthy (3) because they are com- 
monly too young. Glauconies are variable 
in composition because of a complicated 
authigenic evolution on the sea floor (4).  
Isotopic study indicated that immature, 
K-poor glauconies make poor chronome- 
ters, whereas evolved K-rich glauconies 

P. E. Sm~th, N. M. Evensen, D. York, Department of 
Physics. Unversity of Toronto, 60 St George Street, To- 
ronto, Ontario M5S 1A7, Canada 
G. S. Odn,  Departement deGeoogeSedimentare, Un -  
versite P. et M. Cure, 4 Place Jussieu. Case 11 9A, 75252 
Paris Cedex 05, France 

(>7 weight % K,O) make the best dating 
material (5). 

Glauconies used in the construction of 
modern time scales have undergone care- 
ful selection criteria 16). Although direct 
comparison of evolved glauconiesvto high- 
temperature minerals in a single well-un- 
derstood stratigraphic section has not 
been possible, and although some high- 
temperatiire minerals may give anoma- 
lously old ages (7),  slightly younger ages 
are apparent for time scales calibrated us- 
ing glauconies (7) relative to scales con- 
structed exclusively with high-tempera- 
ture minerals (8). Consequently, some 
workers have chosen to ignore glauconies 
altogether in constructing their time 
scales. However, this strategy is unfortu- 
nate because glaucony is widespread in the 
geologic record and typically allows supe- 
rior stratigraphic control. 

The ability to date individual grains of 
glaucony by the 4%r-39Ar method (9) al- 
lowed us to reexamine the use of glauconies 

for dating sediments. We investigated the 
uniformity of ages in three evolved bulk 
samples used to construct the geologic time 
scale ( lo ) ,  with K-Ar ages of about 20, 40, 
and 95  nill lion years ago (Ma). For the 
single-grain dating, rve used the technique 
of microencapsulation (1 1 )  to overcome 
the problem of loss of "Ar by recoil during 
irradiation (9). In parallel with the glauco- 
nies, we tested the reproducibility of 49 
single grains of the sanidine age monitor 
Taylor Creek Rhyolite (TCR), which has 
crvstal sizes small enough to vield individual " ,  
agk variances similar to those of the glau- 
conies. The age distribution for TCR (Fig. 
1) is singly peaked with a mean of 27.92 I 
0.05 Ma 112). 

In contrast, the age distributions of the 
glauconies have multiple peaks (Fig. 1) with 
age ranges of 2 5  !via (13). The color vari- 
ations and wide ranges of 3yAr recoil losses " 

in the populations indicate that these sam- 
~ l e s  contain grains that have been variablv " 

glauconitized, but there is no conspicuous 
relation between these parameters and a 
grain's age (Table 1). The cliiestion of 
which (if any) of the grains from a given 
population provide the best estimate of sed- 
imentation ape can only be answered bv 

u 

comparing their ages with presumably re- 
liable and correlatable high-temperature 
mineral ages. 

Each glaucony sample is taken from im- 
mediately above a stage boundary in the 
time scale. In each case, therefore, \ve can 
compare the ages of these samples to a set of 
high-temperature mineral ages drawn from 
rocks immediately below the same strati- 
graphic boundary (Fig. 1). The high-tem- 
perature minerals comprise all the ages in 
Harland e t  al.'s database (14) for the appro- 
priate stages (Albian, Lutetian, and Aclui- 
tanian). The broad age distributions of 
these high-temperature minerals reflect not 
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only their experimental uncertainties, but 
also a stratigraphic uncertainty associated 
with their unknown positions within their 
staees (1.51. - . ,  

For each of the three age comparisons, 
the distributions for the elauconies are - 
younger than their respective high-temper- 
ature mineral distributions with minimal 
age overlap (Fig. 1). There is therefore neg- 
ligible evidence for inherited radiogenic Ar 
contributed by relict substrates (16). The 
close (12 Ma) proximity of the older edge 
of each glaucony curve to the younger edge 
of the respective high-temperature mineral 
curve indicates that the oldest elauconies of - 
a population provide reasonable estimates 
of their stage boundaries. Using an appro- 
priate statistical treatment (17) on each 

I gtauconiiizarion i 
interval i 

TCR 

10 I :  I? I r ,  i 20 22 24 26 28 30 

Age (Ma) 

Fig. 1. 40Ar-39Ar age distributions of single glau- 
conies (dark shading) compared with those for 
high-temperature minerals from the underlying 
stage [(14), light shading], all normalized to a sin- 
gle scale. (A) Glaucony GL-0 (high-temperature 
distribution continues to the right of plot); (B) glau- 
cony 132a; (C) glaucony 385a. Also shown is the 
distribution for TCR sanidine (reduced to 20% ver- 
tical scale); arrow indicates accepted age of TCR 
(72). Dashed vertical lines between glaucony and 
hiah-tem~erature distributions re~resent visual 
estimates of the stage boundaries. iength of glau- 
conitization interval is approximate (all uncertain- 
ties lu). 

glaucony-high-temperature mineral data 
set gives 20.5'::$ Ma for the Burdigalian- 
Aquitanian, 43.4:;:: Ma for the Bartonian- 
Lutetian, and 96.7'::; Ma for the Ceno- 
manian-Albian stage boundaries. These are 
in agreement, within uncertainties, with lit- 
erature ages (14) of 23.1 ? 0.8 Ma, 43.8'::; 
Ma, and 97.7';:: Ma, respectively, using 
only high-temperature minerals for both 
overlying and underlying stages. 

Table 1. Summary of 40Ar-39Ar data for single 
glauconies (40Ar', radiogenic Ar). All glauconies 
were smooth-textured except for suspected relict 
grains (7). Abbreviations for evolved grains: bl, 
black; dg, dark green; g, green. Abbreviations for 
less evolved to immature grains: mg, mid-green; 
lg, light green. Data are corrected for mass dis- 
crimination, Ca-derived neutron-generated Ar iso- 
topes, and a "OAr blank (1 x 1 Or12 to 2 x 1 0-l2 
cm3 at standard temperature and pressure. 40K 
decay constant 4,  = 5.543 x 1Orl0 yearr1. All 
glaucony ages were calculated by integrating the 
recoiled 39Ar in the ampoule with the data from the 
residual grain, except for GL-08-8 where am- 
poule gas was run with fused grain. Uncertainties 
are given at 1 U. 

39Ar 40Ar+ Integrated Sample Color recoil ,,,, (,) age (Ma) 

bl 14.5 95.0 92.4 2 0.6 
bl 15.1 96.1 94.7 2 0.3 
bl 13.6 97.1 95.4 ? 0.2 
bl 15.1 88.6 95.6 2 0.3 
bl 16.7 90.9 91.1 ? 0.2 
bl 17.4 95.8 91.3 2 0.8 
bl 22.0 94.1 93.1 2 0.7 
dg 14.3 96.6 92.9 ? 0.4 
dg 14.9 96.1 94.4 ? 0.3 
dg 18.5 93.2 92.6 2 0.3 
dg 58.9 95.8 2 0.3 
dgt 16.2 97.0 99.2 2 0.5 
g 19.5 94.8 90.3 2 0.9 
lg 24.9 86.9 88.3 ? 0.4 
lg 29.7 87.7 94.5 ? 2.2 

The spread of the data for glauconies in 
each population is toward younger ages 
(1 8). Although some young ages for imma- 
ture erains mav reflect ~ostburial Ar loss " 
(19), the more robust evolved glauconies 
are also frequently too young and by them- 
selves account for most of the age variation 
in each population (Table 1). It is possible 
that these young grains were subjected to 
prolonged or renewed glaucony genesis. 
The timing of geochemical closure of glau- 
cony, when the grain ceases to exchange K 
or Ar with the enclosing sediment, is not 
well known. Closure in immature grains 
mav occur uDon burial. whereas for evolved 
grains closure is reached before burial, when 
the grains attain 8.5 to 9.0% KzO, and is 
completed within an estimated lo5 to lo6 
vears (6). However. the more extended (>4 . . 
Ma) period implied for the younger grains 
suggests one or more additional periods of 
evolution. 

If the three populations studied here 
are representative, the use of single-grain 
40Ar-39Ar techniques on glauconies used to 
calibrate the time scale should increase 
their ages by 1 to 3 Ma relative to their 
K-Ar ages, as indicated from the age 
difference between the oldest (nondetrital) 
grains and their respective population 
means (20). Currently, the dominant 
source of error in Cenozoic time scales, 
which use interpolation of high-tempera- 
ture mineral ages to obtain boundary ages, is 
the uncertainty of the stratigraphic position 
of the dated unit relative to the bound- 
ary. Application of single-grain glaucony 
40Ar-39Ar dating should increase the num- 
ber of stratigraphic units that can be reli- 
ably dated, and because glaucony often oc- 
curs in sediments containine correlatable - 
fossil assemblages, this dating offers the po- 
tential for reducing the stratigraphic uncer- 
tainty in geologic time scales. 

The glauconitization process is modulat- 
ed by depth to the sea-sediment interface 
(6, 21), and therefore the continued evolu- 
tion of grains may reflect changes in sea 
level after the initial glauconitization peri- 
od. Because elauconitization is favored dur- 

L, 

ing transgressive periods, hiatuses in the 
glaucony age distributions could reflect 
times of interrupted glauconitization during 
regressions. The hiatuses at 41.5 Ma for the 
Bartonian samples (Fig. 1B) and 93.5 Ma 
for the Cenomanian samples (Fig. 1A) cor- 
respond to major episodes of low sea level 
on the short-term eustatic sea level curve of 
Haq et d. (22). This raises the possibility 
that the record of 5 Ma of global sea level 
variation is encoded in the detailed elau- - 
cony age distributions from a single sample 
site. 40Ar-39Ar dating of single glauconies 
to precisely calibrate global sea level would 
be important to oil exploration and strati- 
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graphic analysis, where hypothesized global- 
1y sy~1chrot1ous sea level cycles form the  
basis of the popular paradigm of sequence 
stratigraphy. 
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Distribution of Thiobacillus ferrooxidans and 
Leptospirillum ferrooxidans: l mpl ica tions for 

Generation of Acid Mine Drainage 
Matthew 0. Schrenk, Katrina J. Edwards," Robert M. Goodman, 

Robert J. Hamers, Jillian F. Banfield 

Although Thiobacillus ferrooxidans and Leptospirillum ferrooxidans are widely consid- 
ered to be the microorganisms that control the rate of generation of acid mine drainage, 
little is known about their natural distribution and abundance. Fluorescence in situ 
hybridization studies showed that at Iron Mountain, California, T. ferrooxidans occurs in 
peripheral slime-based communities (at pH over 1.3 and temperature under 30°C) but 
not in important subsurface acid-forming environments (pH 0.3 to 0.7, temperature 30" 
to 50°C). Leptospirillum ferrooxidans is abundant in slimes and as a planktonic organism 
in environments with lower pH. Thiobacillus ferrooxidans affects the precipitation of ferric 
iron solids but plays a limited role in acid generation, and neither species controls direct 
catalysis at low pH at this site. 

A fundamental compol~ent  of the sulfur least a minor component of inost rocks, this 
geochelnlcal cycle is the  release of sulfate process is allnost ubiquitous 111 chelnical 
into solution through oxidative dissolution weathering. LVeatherlng of sulfide-rich rocks 
of sulfide minerals. Because sulfides are a t  with low neutralization capacity forms sul- 

furic acid-rich solutions that can carry hie11 , " 
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