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Transcription of the AUXIIAA family of genes is rapidly induced by the plant hormone 
auxin, but evidence that AUXIIAA genes mediate further responses to auxin has been 
elusive. Changes in diverse auxin responses result from mutations in the Arabidopsis 
AXR3 gene. AXR3 was shown to be a member of the AUXIIAA family, providing direct 
evidence that AUXIIAA genes are central in auxin signaling. Molecular characterization 
of ax13 gain-of-function and loss-of-function mutations established the functional im- 
portance of domains conserved among AUWIAA proteins. 

Plant growth and development are regulat- 
ed by the hormone auxin. Mutational anal- 
ysis in Arabidopsis has identified genes im- 
portant in auxin action (1 ). One such gene, 
AXR3, is defined by three semidominant 
mutations that result in increased auxin 
responses (2). Here, we describe intragenic 
suppressors of the m3-1  phenotype and the 
sequence of the AXR3 gene. AXR3 encodes 
a member of the auxin-inducible AUXl 
IAA family of short-lived nuclear proteins 
(3-3, demonstrating that AUWIAA genes 
are central in auxin signaling. 

Seeds homozygous for the m3-1 muta- 
tion and a second marker, gll (6), were 
subjected to mutagenesis, and the resultant 
M2 population was screened for revertants 
on the basis of shoot morphology (7). Five 
inde~endent revertant lines were recovered. 
all of which contained the gll mutation, 
indicating that they were not wild-type 
contaminants. When the revertants were 
crossed with the wild type, no m3-1 plants 
segregated in the resulting F2 populations. 
When the revertants were crossed with 
axr3-1 mutants, the F1 plants were pheno- 
typically similar to axr3-l heterozygotes, 
and axr3-1 and revertant plants segregated 
in the F2 populations in a ratio not signifi- 
cantly different from 3 : 1 (8). Because the 
data suggested that the revertant pheno- 
types resulted from m 3 - l  intragenic muta- 
tions, the corresponding lines were named 
axr3-lR1 to axr3-lR5. 

None of the revertants is completely 
wild type (Fig. 1). With primary root length 
as a measure of allelic strength, the rank 
order of reversion from strongest to weakest 
was m3-lR4 > m3-1R3 > axr3-lR2 
= m3-1 R5 > m 3 - I  Rl (Fig. 1B). With the 
exception of m3-1 R4, all the revertants 
have agravitropic roots. The roots of axr3- 

lR4 plants grow downward but are abnor- 
mally straight, indicating that the root wave 
response is defective (9). Shoot phenotypes 
such as leaf curling persist only in m 3 - I  Rl 
and axr3- 1 R5. 

The AXR3 gene maps to chromosome 1, 
-1.5 centimorgans distal to AXRl (Fig. 2) 
(2). The flanking markers disl, ga4, and 
cerl (6) in the Landsberg genetic back- 
eround were used to identifv lines with " 
recombinational break points flanking 
AXR3. With the use of these lines, AXR3 
was mapped with respect to DNA polymor- 
phism~ in the region (10). AXR3 maps im- 
mediately distal to the genomic clone 
0846A, which was then used to probe bac- 
terial artificial chromosome (BAC) and 
yeast artificial chromosome (YAC) librar- 
ies. The ends of the 0846A-positive BACs 
and YACs were used to probe the existing 
0846A-positive BACs and YACs, as well as 
the BAC and YAC libraries (lo),  and con- 
tiguous clones extending distal to 0846A 
were collected (Fig. 2). YAC and BAC end 
clones were tested for ~olvmomhisms be- . ,  . 
tween the Landsberg and Columbia genetic 
backgrounds. The distal end of BAC 
IGF20G19 was shown to include a poly- 
morphic Tsp5091 site that maps distal to 
AXR3, delimiting a 30-kb region that in- 
cludes AXR3 (Fig. 2). 

The BAC IGF19P19 extends 16 kb into 
the proximal portion of the delimited re- 
gion and has been sequenced ( I I ) as part of 
the Arabidopsis genome initiative. This 16- 
kb sequence includes two members of the 
AUWIAA gene family, IAA3 (4) and 
IAA17 (1 2), both of which were then sub- 
cloned and sequenced from m3-1 DNA 
(1 3). The IAA3 gene of axr3.-I was identi- 
cal to that of the wild type, whereas IAA17 
contained a single nucleotide difference, 
predicted to convert the proline at position 
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(14). The axr3-4 and axr3-1 mutations are 
identical, and the axr3-3 mutation affects 
the adjacent valine (Fig. 3). The five re- 
vertant alleles retain the axr3-1. mutation 
and include an additional point mutation 
that in three alleles (axr3-1 R1, axr3-1 R2, 
and axr3-lR3) results in a single amino 
acid change, and in two alleles (axr3-lR4 
and axr3-lR5) affects a splice site. RNA 
was extracted from axr3-1 R4 and axr3-I R5  
plants and subjected to reverse transcrip- 
tion and PCR to amplify fragments corre- 
sponding to the affected exon boundaries 
(14). Sequence analysis of the PCR prod- 
ucts revealed that, in both instances, splic- 
ing occurs to a cryptic site within the 
affected intron. For axr3-1 R5, such splic- 
ing results in the insertion of 33 nucleo- 
tides and, hence, 11 amino acids (Fig. 3). 
For axr3-I R4, four nucleotides are insert- 
ed, resulting in a shift in the reading frame 
and deletion of half of domain IV of the 
protein (Fig. 3). Because AXR3 and 
IAA17 map to the same 30-kb region and 
eight independent axr3 alleles all have 
mutations in IAA17, we conclude that 

Genotype 

Fig. 1. The phenotype of axr3-1 intragenic rever- 
tants. (A) Ten-day-old plants (18) homozygous for 
axr3-1 intragenic revertant mutations. From left to 
right, the plants are AXR3, axr3- 1 R4, axr3- 1 R3, 
axr3-1R2, axr3-1R5, axr3-1R1, and axr3-1. (B) 
Mean root lengths for each genotype after growth 
for 7 days under the same conditions. Data are 
means % SEM (n = 15). 
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Fig. 2. Map-based clon- Centromere , , , Telomere 
Ing of the AXR3 gene Pi - 
Six clones encompass- Scale 
Ina the AXR3 realon. 
two YAC clones Ypre- 
f~xed y) and four BAC 
clones (pref~xed IGF), 
are shown (open box- AXRl ATEATI IGFPlMllsubcIone 

I 
es) The pos~t~on of the 

I I I I 

AXR3 locus IS shown 30 kb , 
I , ;LYp";::2D5 

relative to the visible 
markers axrl, ga4, disl, 
and cerl (2, 6) and to 
DNA markers (ATEATI, 
0846A, IGF20G19 distal 
end, and an IGF21M11 0846A I A A I ~  I A A ~  lGFPOG19 end 

subclone) (10). Of -1760 S s e  1 t -b I 
F, chromosomes, 17 3 kb IGF19P19 

showed recombination 
betweenAXR3 and ATEATI ; only one of these 17 showed recombination betweenAXR3 and 0846A. Of 
-750 F, chromosomes, two showed recombination between AXR3 and the IGF21 M I  1 subclone; only 
one of these two showed recombination between AXR3 and the IGF20G19 distal end. The delimited 
region includes two members of theAUX/IAA gene family (1 I), lAAl7 and IAA3, which are shown with 
arrows indicating the direction of their transcription, cM, centimorgan. 

IAA17 and AXR3 are the same gene. 
Members of the auxin-inducible AUXI 

IAA gene family have been isolated from 
several species (3 ,  4). They vary with re- 
spect to tissue specificity of expression, the 
kinetics of auxin induction, and the auxin 
dose-response relation (4). They encode 
short-lived nuclear proteins that contain 
four highly conserved domains (Fig. 3). Do- 
main 111 shows similarity to paa dimeriza- 
tion and DNA binding domains (4,  5 ) .  
AUXIIAA proteins form homodimers and 
heterodimers through domains 111 and IV 
(12). Furthermore, these proteins interact 
with the auxin response factors (ARFs) 
ARFl and IAA24 (12, 15), which bind to 
the auxin response element present in the 
promoters of many auxin-inducible genes 
(15). DNA binding by ARFs is mediated 
through the NH,-terminus, whereas inter- 
action with AUX/IAA proteins is mediated 
by the COOH-terminus, which shows se- 

quence similarity to domains 111 and IV of 
AUX/IAA proteins. 

Semidominant mutations in the 
IAA171AXR3 gene result in a wide range 
of auxin-related phenotypes, consistent 
with an increase in the amplitude of auxin 
responses and including ectopic expres- 
sion from the SAUR-ACI promoter (2) .  
This promoter contains the auxin re- 
sponse element to which ARFs bind (1 6). 
The  ectopic SAUR-ACI expression thus 
supports the hypothesis that AUXIIAA 
proteins interact with ARFs to regulate 
gene expression directly. 

The axr3 mutations affect the four con- 
served AUXIIAA ~ r o t e i n  domains. con- 
firming their functional significance. The 
tight clustering of the semidominant muta- 
tions contrasts with the scattered distribu- 
tion of the intragenic revertant mutations, 
indicating that the revertant mutations 
cause loss of or a reduction in gene func- 

tion, negating the gain of function con- 
ferred by the axr3-1 mutation. Proteins con- 
taining the semidominant mutations may 
act in a dominant negative manner-for u 

example, by forming nonfunctional com- 
plexes with AUX/IAA or ARF proteins. 
However, the increased auxin responses of 
axr3 plants suggest that the mutations are 
hypermorphic, resulting, for example, in in- 
creased IAA17/AXR3 stability. 

Arabidobsis contains at least 25 AUX/ 
IAA genes (1 2). Presumably, each encoded 
protein is capable of interacting with other 
family members and with ARFs. Further- 
more, each may bind DNA directly as het- 
erodimers or homodimers through the baa 
domain. This complex web of interactions 
links auxin to its downstream remonses. 
The molecular characterization of the di- 
verse axr3 mutations offers an opportunity 
to understand better the molecular basis of 
AUXIIAA-mediated auxin signaling. 
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