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modified spheroplast transformat~on method [M. B. 
Kurtz, M. W. Cortelyou, D. R. K~rsch, Moi. Celi. Bioi. 6, 
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washed three times w~th 10 ml of phosphate-buffered 
saline (PBS) and resuspended n 400 p of 50 mM 
NaHCO,/Na,CO, (pH 8.5) conta~ning sulfo-NHS-LC- 
biotn (1 mglml). Cells were resuspended by vortexing 
for 1 s and were incubated on Ice for 120 min, with 
perodic mixng. Cells were then incubated on Ice for 1 
hour with 1 ml of I00  mM tris-HCI (pH 8) to inactivate 
unreacted biotn. Cells were washed three times with 
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Melatonin Production: Proteasomal Proteolysis 
in Serotonin N-Acetyltransferase Regulation 

Jonathan A. Gastel, Patrick H. Roseboom, Peter A. Rinaldi, 
Joan L. Weller, David C. Klein* 

The nocturnal increase in circulating melatonin in vertebrates is regulated by 10- to 
100-fold increases in pineal serotonin N-acetyltransferase (AA-NAT) activity. Changes 
in the amount of AA-NAT protein were shown to parallel changes in AA-NAT activity. 
When neural stimulation was switched off by either light exposure or L-propranolol- 
induced p-adrenergic blockade, both AA-NAT activity and protein decreased rapidly. 
Effects of L-propranolol were blocked in vitro by dibutyryl adenosine 3',5'-monophos- 
phate (CAMP) or inhibitors of proteasomal proteolysis. This result indicates that adren- 
ergic-CAMP regulation of AA-NAT is mediated by rapid reversible control of selective 
proteasomal proteolysis. Similar proteasome-based mechanisms may function widely as 
selective molecular switches in vertebrate neural systems. 

A n  important component of vertebrate (1 ), which results from an increase in pineal 
circadian and seasonal ohvsioloev is a laree serotonin N-acetvltransferase iarvlalkvl- 

1 ,  -, 
nocturnal increase in circulating melatonk amine N-acetyltra&ferase) (AA-NAT) ac- 

tivity. High nocturnal values decrease rap- 
Section on Neuroendocrinology, Laboratory of Develop- idly (half-life -3.5 min) after light expo- 
mental Neurobiology, National lnst~tute of Child Health 
and Human Development (NCHD), National lnsttutes of in the of the night ( 2 ) '  These 
Health, Bethesda, MD 20892-4480, USA. changes are regulated by an adrenergic- 

*To whom correspondence should be addressed. E-mail: cAMP mechanism ( 3 ) ,  but are 
klein@helix.nih.gov poorly understood. 
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Analysis of pineal immunoreactive A A -  crease (Fig. I ) ,  and light exposure or p-ad- 
NAT protein ( i rAA-NAT) (4) indicated a renergic blockade in the middle of the night 
parallel change wi th AA-NAT activity (5) rapidly reduced AA-NAT activity and 
over a 24-hour period (Fig. 1). Exposure to i r A A - N A T  (Figs. 1 and 2). This decrease 
constant light blocked the nocturnal in- was not due to inhibition o f  translation, 

Fig. 1. Rat pineal AA-NAT protein A B C D E  F G H I J K L M N O P  
~1- I ~ Z W  A ~ > W I  - 30 

and activity change in parallel. (Bot- IU-NI\T+ -1 + 

tom) Rats were entrained to a liaht: -- 
I 

dark (LD) 14: 10 lighting cycle (light 4- , , 
or dark bars) and p~neal glands 
were obtained as indicated. One f 301 ,, , m i  100 - 
group of animals was not exposed 3 'E 1 - .- - 
to darkness on the day tissue was 2 2 10C k F 1 I 5:  - 
collected (dashed line),-and another 
group was exposed to light for a \ \ lo 5 15-min period in the middle of the 2 u 2 u 'E 
night (dotted line). Samples of pine- a g  1 1 2  
al glands from two or three animals -"S ,a 

-------- i -4 
I ?NO 

were analyzed for AA-NAT activity 78 22 2 
(5) (open circles, solid and dashed 
lines) or irAA-NAT (4) with As2559 (closed circles, solid and dashed lines); similar results were obtained 
with As2500 (not shown). (Top) Protein immunoblot analysis of irAA-NAT. Hour of harvest (Zeitgeber 
time, ZT): (A) 6, (B) 13, (C) 14.5, (D) 16, (E) 17.5, (F) 19, (G) 20.5, (H) 22, (I) 23.5, and (J) 1. Tissue 
obtained at ZT 21 with (+) or without (-) a 15-min light exposure: (K) -, (L) +; (M) -, (N) +; (0) -, (P) 
+; the antiserum used for each analysis is indicated. In three independent experiments, AA-NAT activity 
and irAA-NAT were either uridetectable or less than twice background in samples obtained during the 
day or after several hours of light [P < 0.005, n = 10, Mann-Whitney U test (21)l. Exposure to light (15 
min) at night significantly suppressed AA-NAT activity and protein values (P < 0.005, n = 5, Mann- 
Whitney U test). The SEM of the data presented is less than 30%. 

which had only a minor effect (6) (Fig. 2). 
P-Adrenergic stimulation wi th isoproterenol 
blocked the rapid light-induced reduction in 
A A - N A T  activity and i rAA-NAT (Fig. 2); 
this treatment also rapidly reversed the ef- 
fects of acute light exposure on irAA-NAT 
(Fig. 2), through a mechanism that required 
protein synthesis (7) (Fig. 2). These changes 
were not due to changes in mRNA levels (8) 
nor were they due to a reversible posttrans- 
lational process, because large changes in 
enzyme activity were always associated with 
parallel changes in enzyme protein (Figs. 1 to 
3). Therefore, changes in AA-NAT activity 
appeared to result from changes in AA-NAT 
protein levels. 

In vitro studies confirmed that occupancy 
of the pinealocyte P-adrenergic receptor 
maintained elevated levels of irAA-NAT be- 
cause P-adrenergic agonists increased irAA- 
NAT, and subsequent adrenergic blockade 
with L-propranolol reversed these effects 
(Fig. 3). Cyclic AMP appears to be involved 
because dibutyryl cAMP increased i rAA-  
NAT (9) and prevented L-propranolol-in- 
duced reduction in i rAA-NAT (Fig. 3) (10). 

The L-propranolol-induced reductions 
in AA-NAT activity and irAA-NAT were 
prevented by each of six proteasomal pro- 

Fig. 2. In vivo p-adrenergic control 
of irAA-NAT. (Top) Animals were 
treated as indicated between 5 and 30 

7 hours after lights were turned off 
and then killed under dim red light. ' 5  
AA-NAT activity (5) was measured $ lo- 

and irAA-NAT (4) was determined , -, 
with As2559 and As2500. Data 2 2 
shown are the pooled results of ex- 3 = 
periments performed on three sets 
of animals. (Bottom) Treatment - 

1 
groups for immunoblot (lane num- 
ber): (I) dark, no treatment: (2) dark, 
then light for 15 min; (3) dark, L- loo 
propranolol[5 mg/kg, intraperitone- 
al (ip)] for 15 min; (4) dark, cyclohex- z 
imide (CHX, 20 mg/kg ip) for 20 30 

min; (5) dark, isoproterenol (ISO, 5 f 
mg/kg, ip), then exposure to light ; i o -  
for 15 min: (6) as in (5) except that '$ 
cycloheximide was injected 5 min 
before isoproterenol; (7) dark, then 2 

15 min of light, then isoproterenol(5 3 
N D  mg/kg) in the presence of light for 

an additional 15 mini (8) same as (7) 
except that during the initial 15-min 
period of light exposure, rats were 

tease inhibitors, including lactacystin, cal- 
pain inhibitor I, and analogs of these com- 
pounds (Fig. 3) (1 1, 12). This demonstrates 
that AA-NAT protein is destroyed by the 
proteasome and suggests that an adrenergic- 
cAMP mechanism stabilizes AA-NAT ac- 

I I I 

- - 

Light (0 to 30 min) 
+IS0 (15 to 30 min)- 

- - 
Light (0 to 15 min) 
+dark (1 5 to 30 min) 

- Light (0 to 30 min) + . 

I I 
(1 5 to 30 min) 

- - 

- Light (0 to 30 min) - 
+ IS0 (15 to 30 min) 

- 

- - 
Light (0 to 15 min) 

- -t dark (1 5 to 30 min)- 

Light (O to 30 rnin) + 
I 

CHX + IS0 (15 to 30 min) 
I 

o 15 30 

140 
I Protein 1 1201 OAC6Vty 

injected with cycloheximide (20 mg/ Tlrne (mln) 

kg). When animals were first ex- 
posed to 15-min light at night and then placed in the dark 
for an additional 15 min, irAA-NAT was not detectable AA-NAT+ . 
and AA-NAT was barely detectable-consistent with 

1.1 i; 
previous reports on AA-NAT activity (7). AA-NAT activity 
and irAA-NAT values in groups 2 and 3 are statistically 1 2 3 4 5 6 7 6  

lower than values at night [P < 0.025, n = 4, Mann- 
Whitney U test ( Z l ) ] ,  group 8 is not statistically different from group 2 (P = 0.09, n = 3, Student's t test), 
and groups 5.6, and 7 are different from group 2 (AA-NAT activity: P < 0.001 ; and irAA-NAT: P < 0.025; 
n = 3, Student's t test). IrAA-NAT is either undetectable or barely detectable In three experiments in 
groups 2, 3, and 8, as determined with either As2500 or As2559. Bars indicate SEM. 

- 
5 100- 

a 5 
E 40- 
a, 

- O -  
Control ISO+ PROP ISO+ PROP [SO+ PROP 

+ DBcAMP +LAC 

Fig. 3. L-Propranolol-induced decrease in irAA-NAT 
and AA-NAT activity is prevented by dibutytyl CAMP 
and lactacystin. Pinealocytes (20) were incubated for 
24 hours and then treated with isoproterenol (ISO, 
100 nM, 5 hours; not shown) or water (control). All 
treatment groups shown received L-propranolol 
(PROP, 10 pM, 4 to 5 hours); in addition, one group 
was also treated with dibutyryl CAMP (DBcAMP, 1 
mM, 3.5 to 5.0 hours) and another with lactacystin 
(LAC, 50 pM, 2.0 to 5.0 hours). IrAA-NAT protein 
was detected as labeled immunoprecipitated protein 
(1 1). AA-NAT activity and irAA-NAT values after 4 
and 5 hours of IS0 treatment were similar (data not 
shown). Each determination of activity and protein 
was based on a pool of cells obtained from two wells; 
results were normalized to the 4-hour IS0 treatment 
group value (1 00%) (n = 4). *P 5 0.001 compared 
with IS0 + PROP alone for AA-NAT activity; P < 
0.025 for irAA-NAT (21). 
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tivity by preventing proteasomal proteolysis 
of AA-NAT vrotein. A reasonable hvvo- 

, A  

thetical mechanism underlying the action 
of cAMP is inhibition of proteasomal tar- 
geting by ubiquitination (13). 

Cyclic AMP appears to regulate mam- 
malian AA-NAT activity through comple- 
mentarv stimulation of transcription and 
inhibition of proteasomal proteolysis of 
AA-NAT protein. Although transcription- 
al control is not important in all vertebrates 
j14), inhibition of AA-NAT proteasomal 
p;dteolysis may be conserved (13, 15). 
P-Adrenergic agents may act in a similar 
manner to control degradation of proteins 
in other tissues ( 13, 16). 

These findings indicate that proteasomal 
proteolysis has a role in neural regulation in 
vertebrates, as in invertebrates (17). Our 
results indicate that receptor-regulated pro- 
teasomal proteolysis can function as a pre- 
cise, selective, and very rapid neural switch. 
In the pineal gland, this mechanism regu- 
lates the conversion of minute-to-minute 
changes in environmental input into pro- 
found global changes in physiology (1 8). 
Such neurally regulated and selective pro- 
teasomal proteolysis may play a similarly 
imoortant role in other asoects of vertebrate 
physiology and behavior. 
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Regulation of Flowering Time by 
Arabidopsis Photoreceptors 

Hongwei Guo,* Hongyun Yang,* Todd C. Mockler, Chentao Lin? 

The shift in plants from vegetative growth to floral development is regulated by red- 
far-red light receptors (phytochromes) and blue-ultraviolet A light receptors (crypto- 
chromes). A mutation in the Arabidopsis thaliana CRY2 gene encoding a blue-light 
receptor apoprotein (CRY2) is allelic to the late-flowering mutant, fha. Flowering in 
cry2/fha mutant plants is only incompletely responsive to photoperiod. Cryptochrome 2 
(cry2) is a positive regulator of the flowering-time gene CO, the expression of which is 
regulated by photoperiod. Analysis of flowering in cry2 and phyB mutants in response 
to different wavelengths of light indicated that flowering is regulated by the antagonistic 
actions of phyB and cry2. 

T h e  blu e-ultraviolet A (UV-A) light re- tiation. Phytochrome A (phyA), phyto- 
ceptors, cryptochromes, and red-far-red chrome B (phyB), and cr~ptochrome 1 
light receptors, phytochromes, mediate (cryl) function in both early photomorpho- 
light-regulated plant growth and develop- genesis (1-5) and floral induction (6-9). 
ment from seed germinatloll to flower ini- We report that in Arabidops~s thaliana, the 
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