also conceivable that either some gaseous

H,CO, or solid H,CO; on fine particles

escapes into the stratosphere. Carbon diox-
ide is chemically inert in the troposphere
and stratosphere (40). This might be differ-
ent for (gaseous or solid) H,CO; because its
formation from CO, and H,O is highly
endergonic (I1-5, 15).

Further studies of gaseous H,CO; should
concentrate on its mass-spectral and spec-
troscopic characterization, and on the ef-
fects of temperature, vapor pressure, and
water vapor on its kinetic stability. These
data are essential to the search for gaseous
and solid H,CO; in future space missions.
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" Abrupt Climate Events 500,000 to 340,000
- Years Ago: Evidence from Subpolar North
Atlantic Sediments

D. W. Oppo, J. F. McManus, J. L. Cullen

Subpolar North Atlantic proxy records document millennial-scale climate variations
500,000 to 340,000 years ago. The cycles have an approximately constant pacing that
is similar to that documented for the last glacial cycle. These findings suggest that such
climate variations are inherent to the late Pleistocene, regardless of glacial state. Sea
surface temperature during the warm peak of Marine Isotope Stage 11 (MIS 11) varied
by 0.5° to 1°C, less than the 4° to 4.5°C estimated during times of ice growth and the
3°C estimated for glacial maxima. Coherent deep ocean circulation changes were as-
sociated with glacial oscillations in sea surface temperature.

During the last glaciation (MIS 2 to 4)
and deglaciation, sea surface temperatures
(SSTs) oscillated in the subpolar North
Atlantic at several time scales. Discrete ice-
rafting events marked times of cool SSTs. A
series of gradual cooling intervals 6000 to
10,000 years (6 to 10 ky) long were termi-
nated by massive iceberg discharge into the
North Atlantic (Heinrich events) (I1-3).
Shorter SST cycles of 2 to 3 ky [Dansgaard-

D. W. Oppo and J. F. McManus, Department of Geology
and Geophysics, Woods Hole Oceanographic Institution,
Woods Hole, MA 02543, USA.

J. L. Cullen, Department of Geological Sciences, Salem
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Oeschger cycles (4)], each terminated by a
cold ice-rafting event, occurred between
Heinrich events (5). New evidence indi-
cates that there may have been more fre-
quent sea surface changes, spaced ~1.5 ky
apart (6). A similar hierarchy is emerging
from Greenland ice core records: glacio-
chemical time series indicate that the
strength of the polar atmospheric circula-
tion varied over cycles of between 6 and
1.45 ky (7), comparable to the approximate
spacing of events deduced from the marine
record. Such millennial climate oscillations
also occurred during the Holocene (6-8).
Deep-water circulation variability may
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play a critical role in driving and amplifying
millennial climate oscillations (6, 9), as
well as communicating the response outside
of the North Atlantic (10). Cold glacial
events were often associated with weakened
production of North Atlantic Deep Water
(NADW) (11-14).

The finding of similar cycles during gla-
cial times and the Holocene (MIS 1) sug-
gest that they characterize Earth’s climate
system independent of ice volume. If this is
true, then older sediments should reveal
millennial-scale climate oscillations at a
similar pacing. Indeed, ice-rafting events
every 2 to 3 ky have been identified in
glacial intervals of the early Pleistocene
(13), a time when climate varied at the
40-ky obliquity cycle (15) and ice sheets
were about one-quarter to two-thirds the
size of those of the last glacial maximum
(13).

To explore the persistence of a link be-
tween SST and deep-water millennial-scale
variability throughout the Pleistocene, we
studied sediments from Ocean Dirilling
Project site 980 on the Feni Drift (55.5°N,
14.7°W, 2179 m below sea level) (16), dat-
ed ~340 to 500 thousand years ago (ka)
(17). By this time, late Pleistocene 100-ky
climate cycles, characterized by rapid degla-
ciations, or terminations (18), were firmly
established (I15). This time interval in-
cludes MIS 12 and 11, which are among the
most extreme glacial and interglacial inter-
vals, respectively, of the past 500 ky (19).
The associated deglaciation, Termination
V, had a large amplitude even though inso-
lation forcing was weaker than at the time
of most other terminations (20). The inter-
val includes two ice-growth transitions (13/
12 and 11/10) that are comparable to MIS 3
through early MIS 2, the part of the last
glacial cycle containing the highest ampli-
tude millennial-scale variations (7, 21). We
collected 380 and 8'3C records (22) of the
benthic foraminifera Cibicidoides wueller-
storfi and 3!80 records of the planktonic
foraminifera right-coiling Neogloboquadrina
pachyderma (N. pachy-R 8'30) to provide
detailed estimates of ice volume and deep-
water circulation and to study surface water
hydrography. The samples were spaced
about 300 years apart.

At the Bjorn Drift, to the northwest of
site 980, SST estimates across the MIS 6/5
boundary (Termination II) based on N.
pachy-R 880 and the modern analog tech-
nique are similar (23), suggesting that N.
pachy-R 8'80 more accurately record SST
than the 8'80 of other high-latitude plank-
tonic foraminifera (24). To further examine
the extent to which N. pachy-R 8'%0
records SST variations, we measured the
percentage of the polar planktonic forami-
nifera left-coiling N. pachyderma (%N.
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pachy-L), a more widely used but qualitative
proxy for SST, on the same samples in an
87-ky time slice (350 to 437 ka) that in-
cluded peak MIS 12 through the early part
of MIS 10. Lithic fragments, or ice-rafted
debris, were also counted in the same time
slice.

The proxy records (Fig. 1) exhibit mil-
lennial-scale variability superimposed on
variability forced by slowly changing inso-
lation. During the ice-growth transition be-
tween MIS 11 and 10, N. pachy-R §'80
oscillated by 1 per mil, and %N. pachy-L
varied over a 50% range (Fig. 2A). The
amplitude of both of these signals corre-
sponds to SST oscillations of about 4° to
4.5°C (25), suggesting that N. pachy-R
380 records the full range of SST oscilla-
tions during this transition. The agreement
between the two proxies improves when the
ice volume component of the N. pachy-R
3!80 signal is removed by subtracting the

benthic 3'80 record (Fig. 2B). The %N.
pachy-L record does not extend to the end
of MIS 10, but N. pachy-R 8'80 oscillations
through 340 ka imply that SST oscillations
also occurred during MIS 10. Five of the six
coldest events during the MIS 11/10 tran-
sition (events ¢ through g) and one event
within MIS 10 (event b) are associated with
lithic evidence of iceberg discharge (Fig.
2C). In all, eight to nine strong coolings
occurred within a 50-ky interval, for an
average spacing of 6 ky, comparable to the
spacing of Heinrich events during the last
glacial cycle (1-3, 7, 26). Weaker cold
events occurred more frequently. The spac-
ing between severe cold events appears to
have decreased with increasing ice volume.
A series of gradual cooling intervals culmi-
nated in cold iceberg discharge events g, f,
d, and b. Thus, the character of the climate
signal is reminiscent of that of MIS 3 (2).
Furthermore, as during the last glacial cycle
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Fig. 1. Summary of site 980 data. (A) C. wuellerstorfi 3'3C values (%o, per mil), (B) C. wuellerstorfi $'80
values, (C) N. pachyderma (right-coiling) 880 values, (D) lithic counts (ice-rafted debris) expressed as a
percentage relative to total entities (%IRD, blue) and as a ratio relative to weight of dry bulk sediment
(IRD/g, black), and (E) an enlarged version of the data in (D) for 415 to 420 ka. Deglacial warm events
(DWE) are labeled. (A) and (C) also include the 1- to 7-ky bandpass filter (37) of the data (black). Shaded
interval in (B) indicates the peak of MIS 11. Dashed and dotted lines denote times of cooler tempera-
tures. Inset between (C) and (D) shows N. pachy-R §'®0 (red) and %N. pachy-L (black) scaled to

equivalent temperature (25) for MIS 11.

SCIENCE e« VOL. 279 « 27 FEBRUARY 1998 ¢ www.sciencemag.org



(11, 12), the coldest events were generally
associated with low benthic 8*C values
(Fig. 2C), implying that the contribution of
high- 8'3C NADW to the site was reduced.
Other 3'3C minima are associated with
weaker cool events, which may have been
more pronounced to the north of site 980.

During the MIS 13/12 ice-growth tran-
sition, N. pachy-R 880 oscillated by >1
per mil (Fig. 1C), indicating that SST
oscillated by 4° to 4.5°C on this transition
as well. Severe cold events occurred more
frequently as ice volume increased. During
the peak of MIS 12, 8'80 varied by ~0.75
per mil (~3°C), much less than during the
two ice-growth transitions. Like cold
events during the MIS 11/10 transition
and during the last glacial cycle, cold
events during the MIS 13/12 transition
and within MIS 12 were associated with
low benthic 8'3C values (Figs. 1 and 3),

indicative of reduced NADW production
(27). The lower amplitude of benthic 8*C
(deep water) variations within MIS 12
compared with those during the 11/10 and
13/12 transitions is consistent with recent
modeling experiments that suggest that
convective overturn in the North Atlan-
tic is more oscillatory when freshwater
discharge is moderate, as might occur dur-
ing intervals of ice growth, than when
discharge is high (maximum glacial) or
low (interglacial) (28).

The end of MIS 12 is marked by a drop
in benthic 8'%0 (Fig. 1B) associated with
sea-level rise at ~420 ka (16). A decrease
in %N. pachy-L indicates that the begin-
ning of sea-level rise was immediately fol-
lowed by a brief deglacial warm event
(DWE-1) (Fig. 1E). After DWE-1, a cold
and severe ice-rafting event occurred. The
presence of detrital carbonate suggests

Fig. 2. (A) N. pachy-R 880

(red) and %N. pachy-L 0%+
(black) scaled to equivalent o
temperature  (25). Lithic ~ 50%7/

count (%IRD as in Fig. 1)

0/
(blue, left axis) is also shown. 100%

(B) N. pachy-R 8'80 minus -
benthic 8'80 (red) versus ol
%N. pachy-L (black) scaled [
to equivalent temperature.
(C) Benthic 3'3C values. Se-
vere cold and ice-rafting

events are labeled.
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Fig. 3. Summary of spectral analysis. (A) Spectra of the %N. pachy-L (red) and N. pachy-R 880 (black)
records. The green line shows the coherency between the two shorter records. Solid and dashed lines
are results using the entire (to 437 ka, the length of the %N. pachy-L record) records and only 350 to 410
ka, respectively. The dashed horizontal lines are the 80% and 95% test statistics for non-zero coher-
ency. (B) As in (A), except the black lines are spectra of benthic 8'3C, and the green lines are the
coherency between %N. pachy-L and benthic '3C. Bandwidth (BW) is shown.
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that it involved massive discharge from
the Laurentide ice sheet, as did Heinrich
events of Mis 2 and 3 (2, 3). Despite
extreme cold, a decrease of ~0.4 per mil
in benthic 880 (Fig. 1B) suggests that
sea-level rise accelerated during the cold
event. A decrease in %N. pachy-L and
ice-rafted debris indicates that a second
deglacial warm event (DWE-2) abruptly
ended the Heinrich-like cold event (Fig.
1E). After DWE-2, which was itself punc-
tuated by a brief cool event, %N. pachy-L
rose to about 30%, indicating that a less
severe cooling (2° to 3°C) occurred before
the final warming into peak MIS 11.
After this last deglacial cold event, a
decrease in N. pachy-R 880 and %N.
pachy-L and an increase in benthic 83C
(Fig. 1) indicate developing interglacial
conditions, warming, and enhanced NADW
production. Small oscillations in %N.
pachy-L, N. pachy-R 80, and benthic
31°C punctuated the gradual climatic ame-
lioration into MIS 11. Variations of N.
pachy-L abundance by ~5% suggest that
SST oscillated by ~0.5°C. Although the
N. pachy-R 880 data show more scatter,
3'80 variations of ~0.2 per mil suggest that
SST varied by ~1°C. At the low N.
pachy-L percentages measured (1 to 7%),
the relation between SST and %N. pachy-L
is weak (29); thus, the amplitude of SST
variability within MIS 11 was likely closer
to the 1°C estimated by the N. pachy-R
8'80 data. During the 10- to 12-ky interval
of minimum ice volume (benthic %0 =
2.7 per mil) and maximum SSTs of peak
MIS 11, three SST cycles are evident, giv-
ing a repeat time of 3 to 4 ky, comparable to
cycles documented in marine and ice core
records for the last 100 ky (5, 7). Although
the benthic 8'*C data do not provide clear
evidence that NADW was reduced during
cool MIS 11 events, we cannot rule out this
possibility because the site is close to the
deep-water source region and may not be
sensitive to subtle variations in NADW
during peak interglacial intervals, when
NADW production is generally strong.
Spectral analysis of %N. pachy-L, N.
pachy-R 8'80, and benthic 8'>C records
using Blackman-Tukey (30) methods con-
firm the presence of cycles (Fig. 3) with
frequencies close to those noted in the gla-
ciochemical record from the Greenland ice
core and in the marine records for the last
glacial cycle and the Holocene. For their
interval of overlap (350 to 437 ka), the N.
pachy-R 880 and %N. pachy-L records are
coherent and in phase in broad bands cen-
tered near 6, 2.6, 1.8, and 1.4 ky (Fig. 3A).
These relations further suggest the utility of
N. pachy-R 8'%0 as a SST proxy, in partic-
ular when changes in ice volume are minor.
For their interval of overlap (350 to 437
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ka), the %N. pachy-L and benthic 8C
records are coherent at periods near 6.3 and
3.8 ky. Power occurs in both records in
broad bands centered near 2.3 and 1.8 ky;
however, their coherence is weak (Fig. 3B).
For the 350- to 410-ka interval (omitting
the termination), variations near 1.5 ky are
also coherent (Fig. 3B). Benthic 8"°C and
%N. pachy-L changes are approximately in
phase near the 6.3- and 1.5-ky periods, in-
dicating that surface- and deep-water
changes occurred together at these cycles.
The in-phase behavior at the 6.3-ky period
reflects the association of the larger millen-
nial-scale SST minima, which occurred ~6
ky apart, with low benthic 3°C values
(Figs. 1 and 2). By contrast, SST changes
began ~800 years after changes in NADW
production near the 3.8-ky period. This
phase difference accounts for some of the
differences in timing of changes evident in
the benthic §"*C and %N. pachy-L records
(Fig. 1).

We used a bandpass filter (31) to exam-
ine the amplitude of higher frequency (1 to
7 ky) variations in the N. pachy-R 8'%0
values. The filtered signal underscores the
small-amplitude millennial-scale variations
during interglaciations MIS 11 and 13 rel-
ative to variations that characterized times
of large ice volume or ice growth. Climate
oscillations during deglaciation were part of
the regular sequence of millennial-scale
oscillations.

QOur study indicates that variability in
the climare from 350 to 500 ka was similar
to that of the last glacial cycle, suggesting
that millennial-scale variability persisted
during the past half a million years. The
amplitude of the variability was much
smaller during interglacial intervals and
greatest during ice growth. Severe events
became more frequent near glacial maxima.
The pacing of climatic events during our
150-ky-long core interval is indistinguish-
able from that during the last glacial cycle.
Sea surface temperature and deep water var-
ied together at a cycle near 6 ky. At shorter
(3.8 and 1.5 ky) cycles, surface and deep-
water changes occurred, on average, several
hundred years apart. Qur data suggest that
variability in benthic 8"’C (deep water)
values was also greater during ice-growth
transitions, consistent with a role of deep
water in amplifying millennial climate cy-

cles (6, 9, 28).
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