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Geomagnetic Modulation of the 36CI Flux 
in the GRIP Ice Core, Greenland 

S. Baumgartner, J. Beer," J. Masarik, G. Wagner, 
L. Meynadier, H.-A. Synal 

Geomagnetic field strength is expected to affect the production rate of cosmogenic 
isotopes such as beryllium-10, carbon-14, or chlorine-36. Chlorine-36 data from the 
Greenland Ice Core Project (GRIP) ice core agree well with a production rate calculation 
based on a paleomagnetic reconstruction for the past 100,000 years over both long- and 
short-term variations. A chlorine-36 peak at 38,000 years ago previously found in the 
beryllium-10 record from the Vostok ice core can be explained by a period of low 
geomagnetic field intensity. 

T h e  geomagnetic dipole field shields the 
Earth from low-energy cosmic ray particles 
( I ) ;  this shielding effect is strongest at the 
magnetic equator and virtually absent at 
the magnetic poles. Hence, variation of the 
field strength affects the production rate of 
cosmogenic isotopes such as "C, "Be, or 
36Cl. The I4C calibration curve is short, and 
so a definite interpretation of its long-term 
variability as a geomagnetic field effect is 
difficult (2).  Longer time series, such as a 
comparison of the Vostok ''Be data with 
geomagnetic profiles (3) and a colnparisoll 
of geomagnetic paleointel~sit~ and ''Be in 
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the same core (4), support the correlation 
for the past 100,000 years, but it has been 
difficult to demonstrate a correlation on 
short time scales. Here, we present a high- 
resolution investigation into the correlation 
between a radioisotope flux curve and a 
geomagnetic field recollstruction using data 
from the GRIP ice core. 

The abundance of '"1 and '@Be for the 
past 100,000 years has been measured in the 
Summit GRIP ice core (5, 6) .  Similar data 
are available in the Summit Greenland Ice 
Sheet Project 2 (GISP2) ice core (7), but at 
a somewhat lower resolution. We assume 
that the flux of 36Cl and ''Be over southern 
and central Greenland is directly related to 
the global average production of these iso- 
topes. Greenland receives a considerable 
part of its precipitation from lower latitudes, 
and this pattern persisted during the last ice 
age (8). Therefore, it is unlikely that the 
flux of 36Cl and "Be is dominated by local 
radioisotope production, which is not very 
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Fig. 1. (A) 36CI flux as calculated 
from the measured 36CI concentra- 
tions in the GRIP ice core from 
Summit, Greenland: raw data (thin 
curve) and low-pass filtered data 
(cutoff frequency = 1/2000 years; 
thick curve). (B) Geomagnetically 
controlled 36CI production rate 
shifted in time to match the major 
wiggles in (A). (C) Geomagnetical!~ 
controlled 36CI production rate on 
its own time scale, calculated from 
the data shown in (D). (D) Geomag- 
netic field intensity (virtual axial 
dipole moment) as reconstructed 
from three sediment cores from the 
Somali Basin (15). 

20 30 40 50 60 70 80 90 100 

Age (ka B.P.) 

sensitive to geomagnetic modulation. Any 
variability of the geomagnetic dipole field 
strength therefore should be reflected in the 
radioisotope flux over Greenland. 

At present, 406 36Cl samples have been 
measured in the depth interval between 
2000 and 2700 m of the Summit GRIP ice 
core, which corresvonds to the veriod of 25 

which is considerably smaller than the 36Cl 
measurement uncertainties. 

The 36Cl signal in ice is basically com- 
posed of two components: production and 
transport. To remove the transport compo- 
nent, we calculated the 36Cl flux by multi- 
plying the measured 36Cl concentrations by 
the accumulation rate and the densitv of ice 

to 96 thousand years ago (ka) (b); the data (Fig. 1A). The accumulation rate was esti- 
have been calibrated with University of mated on the basis of the relation between 
California, San Diego, standard material S180 and the annual layer thickness (9). 
(NBS SRM4422L) (10). Measurement un- The resulting 36Cl flux is independent of 
certainties are calculated with the l a  error the basic climate proxy S180 (5). 
introduced from the counting statistics and Several recent reconstructions of the 

u 

uncertainties from normalization and back- geomagnetic field strength (14-1 7) of the 
ground correction. The mean error of all oast 100 ka derived from measurements of - 
measured samples is 7%. The sample densi- the magnetic remanence in sediment cores 
tv corresoonds to a mean time resolution of have vielded fairlv consistent results (1 8) .  
2b0 year;, which is higher at the end of the For sp'ecific compkrison, we used a recon- 
last ice age (-100 years) than at its begin- struction of the geomagnetic field intensity 
ning (-300 years). based on three sediment cores drilled in the 

The measured 36Cl concentrations of the Somali Basin, located east of Africa (1 5).  
ice have been corrected for radioactive decay 
(half-life = 301 ka) (1 1 ). The maximum 
correction is 26% at 100 ka. The excellent 
S180 correspondence between the GRIP and 
GISP2 ice cores to a depth of 2750 m (12), 
corresponding to an age of about 90 ka for 
the GRIP core (9), indicates that both 
records are essentially undisturbed down to 
this depth. The 36Cl records correlate well 
also (5, 7). The time scales for the two cores 
from Summit differ bv several thousand 

This record was chosen instead of otheis 
(14-18) because of its high temporal reso- 
lution. Other comparable paleomagnetic 
studies show a good correlation even in the 
fine structure (14, 16). The Somali Basin 
record agrees well with the synthetic Sint- 
200 stack, which was constructed from 18 
independent paleomagnetic records (1 8) .  

O n  the basis of the Somali Basin 
record, we calculated global 36Cl produc- 
tion rates usine a model that oredicts a 

years, however (13). ~kcause the Younger nonlinear polynYomia1 increase it; 36C1 pro- 
Dryas at 11.5 ka and the Eem transition at duction for decreasing geomagnetic dipole 
110 ka are well dated elsewhere, we assume field intensity ( 1  9) .  To sirnulate the effect 
that the error of the GRIP time scale used of a change in geomagnetic field intensity, 
does not exceed 10%. This assumption leads we varied the latter from 0 to 2 times the 
to a inaxilnum error of 3% in the 36Cl con- present value before calculating the parti- 
centrations because of the age correction, cle fluxes and nuclide production in the 

36CI production rate (relative units) 

Fig. 2. 36CI flux from Summit (raw data from Fig. 
1 A) as a function of 36CI production rate (data from 
Fig. 1 B). Both data sets are averaged to unity. 
Expected (solid line) and real (dashed line) corre- 
lation between both data sets. 

Earth's atmosphere. The obtained depen- 
dence for the global average 36Cl produc- 
tion rate can be described by a fifth-degree 
polynomial (1 9). Compared with present 
field strength and mean present solar ac- 
tivity, 36Cl production is enhanced by a 
factor of 2.1 for a zero magnetic dipole 
field. 

Overall, the measured 36Cl flux (Fig. 
I A )  agrees well with the calculated pro- 
duction rate (Fig. 1C).  The most promi- 
nent features are peaks (p, and p,) at 
about 38 and 60 ka and lows (v, and v,) at 
about 70 and 85 ka. There is some sirni- 
larity in the fine structure, for example, in 
the number of peaks around 60 ka (sub- 
peaks of p,) or around 80 ka. The peak 
(p,) at 38 ka was discovered in the ''Be 
record of the Vostok ice core (20) and 
subsequently identified in other ice (21 ) 
and sedirnent (22) cores. It has been at- 
tributed to a period of low geornagnetic 
field (3),  a period of low solar activity, or 
a supernova explosion (23). In contrast, 
the enhancement in the field strength at 
about 50 ka is not seen in the 36Cl flux. 

The qualitative agreement of these two 
totally independent curves encouraged us to 
construct a common time scale of both 
records by a wiggle-matching procedure. 
Because the rnaxirnum difference of 5500 
years at about 60 ka is still within the 
uncertainties of the two original time scales 
(1 3, 15), we shifted-rather arbitrarily- 
the magnetic record to match the GRIP 
time scale (Fig. 1B). Using the new time 
scale, we interpolated the 36Cl production 
rate data to the raw 36Cl flux data by use of 
a cubic spline. Both data sets were averaged 
to unity for the period 25 to 95 ka. Al- 
though the scatter is large, a correlation 
between both data sets is visible (Fig. 2). 

If all underlying assumptions are correct 
and if measured and calculated amplitudes 
agree, one would expect a linear correlation 
with a slope of 1.00 and an intercept of 0.00 
(solid line in Fig. 2); the actual slope is 
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1.21 i 0.09 (1 a) and the intercept is 
-0.21 i 0.09 (1 a) (dashed line in Fig. 2) .  
Thus, our model explains about 100% of 
the 36Cl flux variability, which is in covari- 
ance with the magnetic variabilitv. It is 
rather difficult, however, to interpiet the 
calculated nararneter errors in terms of con- 
fidence intervals because of the fitted time 
scale. 

The correlation of r = 0.56 (n = 406) 
between the unfiltered 36Cl flux and the 
calculated production rate data indicates 
that about 30% of the total variance of the 
unfiltered 36Cl flux can be explained by 
geornagnetically induced production varia- 
tions. For low-pass filtered data (frequen- 
cv = 113000 vears), the correlation rises to . . 
r '= 0.67.  he remaining variance is larger 
than the experimental errors and therefore 
still contains informatioil about other pa- 
leoenvironmental factors. Changing cli- 
matical and meteorological conditions may 
alter transport, deposition, and concentra- 
tion of 36Cl in ice. The sedimentation nro- 
cess may affect the record of magnetic in- 
tensity; short-time geomagnetic variability 
cannot be monitored yet by corresponding 
archives. Cosmic rav intensitv as well as 
solar activity fluctuaiions have' to be taken 
into account, too. 

Thus, our study agrees well with an in- 
vestigation that attributes the 38-ka ''Be - 
peak in Antarctica to a low value of the 
geomagnetic field (3). This agreement in- 
dicates long-range transport of ''Be from 
lower latitudes to Antarctica during the last 
glacial. Beryllium-10 studies in Holocene 
ice reveal a strong local production compo- 
nent in Antarctica (24), however. Al- 
though not yet conclusive, these results 
point to a change in the transport pattern of 
the Southern Hemisphere between the last 
glacial period and the Holocene. 

Our observations support the reliability 
of marine sediments as recorders of geomag- 
netic intensity variations; they also provide 
an independent approach to reconstruct the 
history of the geomagnetic dipole field. 
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Carbonic Acid in the Gas Phase and Its 
Astrophysical Relevance 

Wolfgang Hage, Klaus R. Liedl,* Andreas Hallbrucker, 
Erwin Mayer* 

In outer space, high-energy irradiation of cryogenic ice mixtures of abundant water and 
carbon dioxide is expected to form solid carbonic acid. Experiments and thermodynamic 
analyses show that crystalline carbonic acid sublimates without decomposition. Free- 
energy considerations based on highly accurate molecular quantum mechanics, in 
combination with vapor pressures resulting from experimental sublimation rates, suggest 
that in the gas phase, a monomer and dimer of carbonic acid are in equilibrium, com- 
parable to that of formic acid. Gaseous carbonic acid could be present in comets, on 
Mars and outer solar system bodies, in interstellar icy grains, and in Earth's upper 
atmosphere. 

Carbonic acid (H2C03) ,  the short-lived 
intermediate in C02-HC0,-/C032- proton 
transfer reactions, is a key compound in 
biological and geochemical carbonate-con- 
taining systems (1-5). At ambient temper- 
ature, H2C03  dissolved in water dissociates 
rapidly into CO, and H,O, with a rate 
constant of -20 s-' and an activation en- 
thalpy of -70 k] mol-'; the reaction is 
highlv exergonic (1-5). Carbonic acid has - ,  - . . 
recently been synthesized at low tempera- 
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tures by two basically different routes: (i) 
high-energy irradiation of cryogenic C02/ 
H 2 0  ice mixtures (6-9) and proton-irradi- 
ation of pure solid CO, (9),  and (ii) proto- 
nation of bicarbonate or carbonate in a new 
cryogenic technique (1 0-1 4). Fourier-trans- 
form infrared spectroscopic studies led to 
characterization of two polymorphs. One 
(P-H2C03) is formed by high-energy irra- 
diation (6-9) or by protonation in freeze- 
concentrated aqueous solution (1 1 , 13, 14). 
The other (a-H2C03)  is formed by proto- 
nation in methanolic solution (1 0-1 2 ,  14), 
with 6-H2C03 transforming into a-H2C03 
(1 1 ) .  For the gas phase of H2C03, high- 
level molecular quantum mechanical calcu- 
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