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Geomagnetic Modulation of the 36Cl Flux
in the GRIP Ice Core, Greenland

S. Baumgartner, J. Beer,* J. Masarik, G. Wagner,
L. Meynadier, H.-A. Synal

Geomagnetic field strength is expected to affect the production rate of cosmogenic
isotopes such as beryllium-10, carbon-14, or chlorine-36. Chiorine-36 data from the
Greenland Ice Core Project (GRIP) ice core agree well with a production rate calculation
based on a paleomagnetic reconstruction for the past 100,000 years over both long- and
short-term variations. A chlorine-36 peak at 38,000 years ago previously found in the
beryllium-10 record from the Vostok ice core can be explained by a period of low

geomagnetic field intensity.

The geomagnetic dipole field shields the
Earth from low-energy cosmic ray particles
(1); this shielding effect is strongest at the
magnetic equator and virtually absent at
the magnetic poles. Hence, variation of the
field strength affects the production rate of
cosmogenic isotopes such as *C, '°Be, or
36CI. The *C calibration curve is short, and
so a definite interpretation of its long-term
variability as a geomagnetic field effect is
difficult (2). Longer time series, such as a
comparison of the Vostok '°Be data with
geomagnetic profiles (3) and a comparison
of geomagnetic paleointensity and '°Be in
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the same core (4), support the correlation
for the past 100,000 years, but it has been
difficult to demonstrate a correlation on
short time scales. Here, we present a high-
resolution investigation into the correlation
between a radioisotope flux curve and a
geomagnetic field reconstruction using data
from the GRIP ice core.

The abundance of **Cl and '°Be for the
past 100,000 years has been measured in the
Summit GRIP ice core (5, 6). Similar data
are available in the Summit Greenland Ice
Sheet Project 2 (GISP2) ice core (7), but at
a somewhat lower resolution. We assume
that the flux of **Cl and °Be over southern
and central Greenland is directly related to
the global average production of these iso-
topes. Greenland receives a considerable
part of its precipitation from lower latitudes,
and this pattern persisted during the last ice
age (8). Therefore, it is unlikely that the
flux of *Cl and °Be is dominated by local
radioisotope production, which is not very
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Fig. 1. (A) 3¢Cl flux as calculated
from the measured *¢Cl concentra-
tions in the GRIP ice core from
Summit, Greenland: raw data (thin
curve) and low-pass filtered data
(cutoff frequency = 1/2000 years;
thick curve). (B) Geomagnetically
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sensitive to geomagnetic modulation. Any
variability of the geomagnetic dipole field
strength therefore should be reflected in the
radioisotope flux over Greenland.

At present, 406 3°Cl samples have been
measured in the depth interval between
2000 and 2700 m of the Summit GRIP ice
core, which corresponds to the period of 25
to 96 thousand years ago (ka) (9); the data
have been calibrated with University of
California, San Diego, standard material
(NBS SRM4422L) (10). Measurement un-
certainties are calculated with the 1o error
introduced from the counting statistics and
uncertainties from normalization and back-
ground correction. The mean error of all
measured samples is 7%. The sample densi-
ty corresponds to a mean time resolution of
200 years, which is higher at the end of the
last ice age (~100 years) than at its begin-
ning (~300 years).

The measured *°Cl concentrations of the
ice have been corrected for radioactive decay
(half-life = 301 ka) (I1). The maximum
correction is 26% at 100 ka. The excellent
3180 correspondence between the GRIP and
GISP2 ice cores to a depth of 2750 m (12),
corresponding to an age of about 90 ka for
the GRIP core (9), indicates that both
records are essentially undisturbed down to
this depth. The *Cl records correlate well
also (5, 7). The time scales for the two cores
from Summit differ by several thousand
years, however (13). Because the Younger
Dryas at 11.5 ka and the Eem transition at
110 ka are well dated elsewhere, we assume
that the error of the GRIP time scale used
does not exceed 10%. This assumption leads
to a maximum error of 3% in the 3°Cl con-
centrations because of the age correction,
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which is considerably smaller than the *¢Cl
measurement uncertainties.

The 3°Cl signal in ice is basically com-
posed of two components: production and
transport. To remove the transport compo-
nent, we calculated the 3°Cl flux by multi-
plying the measured **Cl concentrations by
the accumulation rate and the density of ice
(Fig. 1A). The accumulation rate was esti-
mated on the basis of the relation between
380 and the annual layer thickness (9).
The resulting *°Cl flux is independent of
the basic climate proxy 880 (5).

Several recent reconstructions of the
geomagnetic field strength (14-17) of the
past 100 ka derived from measurements of
the magnetic remanence in sediment cores
have yielded fairly consistent results (18).
For specific comparison, we used a recon-
struction of the geomagnetic field intensity
based on three sediment cores drilled in the
Somali Basin, located east of Africa (15).
This record was chosen instead of others
(14-18) because of its high temporal reso-
lution. Other comparable paleomagnetic
studies show a good correlation even in the
fine structure (14, 16). The Somali Basin
record agrees well with the synthetic Sint-
200 stack, which was constructed from 18
independent paleomagnetic records (18).

On the basis of the Somali Basin
record, we calculated global 3*Cl produc-
tion rates using a model that predicts a
nonlinear polynomial increase in **Cl pro-
duction for decreasing geomagnetic dipole
field intensity (19). To simulate the effect
of a change in geomagnetic field intensity,
we varied the latter from O to 2 times the
present value before calculating the parti-
cle fluxes and nuclide production in the
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Fig. 2. 36CI flux from Summit (raw data from Fig.
1A) as a function of *6Cl production rate (data from
Fig. 1B). Both data sets are averaged to unity.
Expected (solid line) and real (dashed line) corre-
lation between both data sets.

Earth’s atmosphere. The obtained depen-
dence for the global average *Cl produc-
tion rate can be described by a fifth-degree
polynomial (19). Compared with present
field strength and mean present solar ac-
tivity, °Cl production is enhanced by a
factor of 2.1 for a zero magnetic dipole
field.

Overall, the measured 3°Cl flux (Fig.
1A) agrees well with the calculated pro-
duction rate (Fig. 1C). The most promi-:
nent features are peaks (p; and p,) at
about 38 and 60 ka and lows (v, and v,) at
about 70 and 85 ka. There is some simi-
larity in the fine structure, for example, in
the number of peaks around 60 ka (sub-
peaks of p,) or around 80 ka. The peak
(p;) at 38 ka was discovered in the '°Be
record of the Vostok ice core (20) and
subsequently identified in other ice (21)
and sediment (22) cores. It has been at-
tributed to a period of low geomagnetic
field (3), a period of low solar activity, or
a supernova explosion (23). In contrast,
the enhancement in the field strength at
about 50 ka is not seen in the 3°Cl flux.

The qualitative agreement of these two
totally independent curves encouraged us to
construct a common time scale of both
records by a wiggle-matching procedure.
Because the maximum difference of 5500
years at about 60 ka is still within the
uncertainties of the two original time scales
(13, 15), we shifted—rather arbitrarily—
the magnetic record to match the GRIP
time scale (Fig. 1B). Using the new time
scale, we interpolated the 3°Cl production
rate data to the raw 3°Cl flux data by use of
a cubic spline. Both data sets were averaged
to unity for the period 25 to 95 ka. Al-
though the scatter is large, a correlation
between both data sets is visible (Fig. 2).

If all underlying assumptions are correct
and if measured and calculated amplitudes
agree, one would expect a linear correlation
with a slope of 1.00 and an intercept of 0.00
(solid line in Fig. 2); the actual slope is
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1.21 = 0.09 (1 o) and the intercept is
—0.21 = 0.09 (1 o) (dashed line in Fig. 2).
Thus, our model explains about 100% of
the **Cl flux variability, which is in covari-
ance with the magnetic variability. It is
rather difficult, however, to interpret the
calculated parameter errors in terms of con-
fidence intervals because of the fitted time
scale.

The correlation of r = 0.56 (n = 406)
between the unfiltered **Cl flux and the
calculated production rate data indicates
that about 30% of the total variance of the
unfiltered *Cl flux can be explained by
geomagnetically induced production varia-
tions. For low-pass filtered data (frequen-
cy = 1/3000 years), the correlation rises to
r = 0.67. The remaining variance is larger
than the experimental errors and therefore
still contains information about other pa-
leoenvironmental factors. Changing cli-
matical and meteorological conditions may
alter transport, deposition, and concentra-
tion of *®Cl in ice. The sedimentation pro-
cess may affect the record of magnetic in-
tensity; short-time geomagnetic variability
cannot be monitored yet by corresponding
archives. Cosmic ray intensity as well as
solar activity fluctuations have to be taken
into account, too.

Thus, our study agrees well with an in-
vestigation that attributes the 38-ka °Be
peak in Antarctica to a low value of the
geomagnetic field (3). This agreement in-
dicates long-range transport of °Be from
lower latitudes to Antarctica during the last
glacial. Beryllium-10 studies in Holocene
ice reveal a strong local production compo-
nent in Antarctica (24), however. Al-
though not yet conclusive, these results
point to a change in the transport pattern of
the Southern Hemisphere between the last
glacial period and the Holocene.

Our observations support the reliability
of marine sediments as recorders of geomag-
netic intensity variations; they also provide
an independent approach to reconstruct the
history of the geomagnetic dipole field.
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Carbonic Acid in the Gas Phase and Its
Astrophysical Relevance

‘Wolfgang Hage, Klaus R. Liedl,* Andreas Hallbrucker,
Erwin Mayer*

In outer space, high-energy irradiation of cryogenic ice mixtures of abundant water and
carbon dioxide is expected to form solid carbonic acid. Experiments and thermodynamic
analyses show that crystalline carbonic acid sublimates without decomposition. Free-
energy considerations based on highly accurate molecular quantum mechanics, in
combination with vapor pressures resulting from experimental sublimation rates, suggest
that in the gas phase, a monomer and dimer of carbonic acid are in equilibrium, com-
parable to that of formic acid. Gaseous carbonic acid could be present in comets, on
Mars and outer solar system bodies, in interstellar icy grains, and in Earth’s upper

atmosphere.

Carbonic acid (H,CO,), the short-lived
intermediate in CO,-HCO;"/CO;%" proton
transfer reactions, is a key compound in
biological and geochemical carbonate-con-
taining systems (1-5). At ambient temper-

ature, H,CO, dissolved in water dissociates -

rapidly into CO, and H,O, with a rate
constant of ~20 s7! and an activation en-
thalpy of ~70 kJ mol™; the reaction is
highly exergonic (1-5). Carbonic acid has
recently been synthesized at low tempera-
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tures by two basically different routes: (i)
high-energy irradiation of cryogenic CO,/
H,O ice mixtures (6-9) and proton-irradi-
ation of pure solid CO, (9), and (ii) proto-
nation of bicarbonate or carbonate in a new
cryogenic technique (10-14). Fourier-trans-
form infrared spectroscopic studies led to
characterization of two polymorphs. One
(B-H,CO,) is formed by high-energy irra-
diation (6-9) or by protonation in freeze-
concentrated aqueous solution (11, 13, 14).
The other (a-H,CO,) is formed by proto-
nation in methanolic solution (10-12, 14),
with B-H,CO; transforming into a-H,CO,
(I1). For the gas phase of H,CO;, high-

level molecular quantum mechanical calcu-
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