re-replication were completely blocked [Fig.
5, B and C; the wild-type strain was ana-
lyzed in (27)). Degradation of Pdslp, which
starts shortly before anaphase, is required
for sister chromarid separation (5, 27). De-
tection of Pdsl-Mycl8p revealed that ar-
rested apc2-1 cells contained large amounts
of Pdslp (Fig. 5C). Deletion of the PDSI
gene allowed apc2-1 cells to separate sister
chromatids (Fig. 5D). However, spindle
elongation was slower in apc2-1 Apds] cells
than in wild-type cells. Thus, the inability
of apc2-1 cells to enter anaphase may result
primarily from a defect in the degradation
of Pdslp. apc2-1 cells were also defective in
degrading the mitotic cyclin Clb2p (18).
Extracts prepared from G, -arrested apc2-1
and apc2-2 cells were defective in the ubig-
uitination of mitotic cyclins (Fig. 5E), indi-
cating that the defect in proteolysis results
from defective ubiquitination.

Yeast Apc5p shows similarity to human
ApcSp (21) and to the putative ORF
M163.4 from C. elegans. The yeast Apcdp
sequence shows weak similarity to the hu-
man Apcédp sequence (21) and to the ORF
797209 from Schizosaccharomyces pombe,
which is more closely related to the human
protein. Apc4p might represent an APC
component that has diverged more during
evolution than the other subunits. No ho-
mologs have been identified for Apc9p.
Thus, in addition to Apclp, Cdclép,
Cdc23p, Cdc27p, and ApclOp/Doclp, at
least Apc2p, Apc5p, and Apcllp might be
conserved subunits of the APC in all
eukaryotes.
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Identification of a Cullin Homology Region in a
Subunit of the Anaphase-Promoting Complex

Hongtao Yu, Jan-Michael Peters,” Randall W. King,
Andrew M. Page, Philip Hieter, Marc W. Kirschnert

The anaphase-promoting complex is composed of eight protein subunits, including BimE
(APC1), CDC27 (APC3), CDC16 (APCB8), and CDC23 (APC8). The remaining four human
APC subunits, APC2, APC4, APC5, and APC7, as well as human CDC23, were cloned.
APC7 contains multiple copies of the tetratrico peptide repeat, similarto CDC16, CDC23,
and CDC27. Whereas APC4 and APC5 share no similarity to proteins of known function,
APC2 contains a region that is similar to a sequence in cullins, a family of proteins
implicated in the ubiquitination of G, phase cyclins and cyclin-dependent kinase inhib-
itors. The APC2 gene is essential in Saccharomyces cerevisiae, and apc2 mutants arrest
at metaphase and are defective in the degradation of Pds1p. APC2 and cullins may be
distantly related members of a ubiquitin ligase family that targets cell cycle regulators for

degradation.

Two distinct ubiquitin-mediated proteo-
lytic pathways regulate the G, to S phase
and metaphase to anaphase transitions dur-
ing the cell division cycle (1). In late Gy, a
CDC34-dependent ubiquitination pathway

degrades Siclp, an inhibitor of G, cyclin-
dependent kinases in budding yeast, en-
abling the onset of S phase (2); a similar
pathway exists in metazoans (3). A distinct
ubiquitination machinery governs exit from
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mitosis through the degradation of mitotic
cyclins and other regulatory proteins, such
as Pdslp and Aselp in budding yeast and
. Cut2 in fission yeast (4-8). In this system, a
large protein complex, termed the an-
aphase-promoting complex (APC) or the
cyclosome, functions as a protein ubiquitin
ligase (9—12). In the presence of ubiquitin-
activating (E1) and ubiquitin-conjugating
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A

(E2) enzymes such as UBCx (also called
E2-C in clam and UBC-H10 in human) or
UBCH4, the APC catalyzes the formation of

cyclin-ubiquitin  conjugates (9, 13-15),
which are subsequently degraded by the 26S
proteasome (16). The APC is the cell cycle-
regulated component of the mitotic cyclin
degradation system (9, 17, 18). The APC is
also thought to participate in substrate rec-
ognition, which depends on a sequence el-
ement found in all APC substrates, called
the destruction box (4, 13, 19). Biochemi-
cal studies have shown that the vertebrate
APC contains eight subunits, named APC1
to APCS8. These subunits include BimE
(APC1), CDC27 (APC3), CDCI6
(APCS6), and CDC23 (APCS8) (9, 11, 17).

We report the cDNA cloning of the

B Hs APC2

remaining four human APC subunits on
the basis of peptide sequence information
obtained from immunopurified Xenopus
APC (17, 20). We first identified human
expressed sequence tags (ESTs) that en-
code amino acid sequences more than
80% identical to the Xenopus APC pep-
tides (20). On the basis of the sequences of
the ESTs, we cloned the full-length hu-
man cDNAs for APC2, APC4, APC5, and
APC7 (21) (Fig. 1A). The human ho-
molog of Saccharomyces cerevisiae CDC23
(APCB8) was also isolated (21). A CDC23
peptide was isolated from the APC7 band,
indicating that APC7 was CDC23 (17).
Subsequent sequencing of more peptides
from APC7 and APC8 bands and the
analysis of the APC7 and APC8 cDNA
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Fig. 1. Seqguence composition of the APC subunits. (A) Aminc acid sequences of
human APC2, APC4, APC5, APC7, and CDC23 (APCS8). The peptide sequences
derived from Xenopus APC subunits are aligned below the human sequences.

Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C,
Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; |, lle; K, Lys; L, Leu; M, Met; N, Asn; P,
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Pro; Q, GIn; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. (B) Alignment of the
CH domains from APC2 and human (Hs), C. elegans (Ce), and S. cerevisiae (Sc)
cullins. The alignment was made with the Clustal method with the program
MEGALIGN (DNASTAR, Madison, WI). Residues identical to the consensus are
boxed in black. (C) Phylogenetic tree of CH domains.
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clones by in vitro translation and immu-
noblotting showed that APCS8 is the
CDC23 homolog, whereas APC7 is a new
APC subunit. We suspect that the CDC23
peptide was isolated from the APC7 band
because of insufficient separation of these
subunits by SDS—polyacrylamide gel elec-
trophoresis (SDS-PAGE).

Database searches revealed that APC4
and APC5 do not share sequence similar-
ity with proteins of known function.
APC4 does not appear to have a homolog
in S. cerevisiae. However, the NH,-termi-
nal 450 residues of APC4 share limited
similarity with the Schizosaccharomyces
pombe open reading frame (ORF) 797209,
which in turn is distantly related to the S.
cerevisiae ORF YDR118w. The YDR118w
protein is a subunit of the yeast APC
(APC4) (22). APCS5 is similar to a puta-
tive S. cerevisiae protein, ORF YOR249c.
Deletion of this ORF from the S. cerevisiae
genome indicates that YOR249c is essen-
tial for viability, and the null mutants
exhibit a terminal G,-M arrest phenotype
as would be expected for APC genes (23).
The YOR249c protein is found in the
purified S. cerevisiae APC (22). Like

Antibody 1 2 3 4 5 6

HA

CdC53p ™ r— m———

Fig. 2. Coimmunoprecipitation of Cdc16p,
Cdc27p, and Cdc23p, but not Cdc34p or
Cdc53p, with Apc2-3XHA from budding yeast ex-
tracts. Extracts were prepared from logarithmic
phase cells of the yeast strain YAP89 expressing
Apc2p-3XHA from its own promoter (lanes 4 to 6)
or from a congenic strain expressing untagged
Apc2p, YAPS87 (lanes 1 to 3), and immunoprecipi-
tated with antibody to HA sepharose beads.
Crude cell extract (lanes 1 and 4), supernatants
(lanes-2 and 5), and the immunoprecipitates (lanes
3 and 6) were separated on a 10% SDS-PAGE
gel, transferred to nitrocellulose, and probed with
the indicated antibodies.
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CDC16, CDC23, and CDC27, APC7 is a
tetratrico peptide repeat—containing pro-
tein that is most similar to Cdc27p in the
yeast genome.

Database searching with the APC2 se-
quence revealed that it is similar to a
recently identified family of proteins,
called cullins (24). The similarity between
APC2 and cullins is restricted to a 200-
amino acid region, which we refer to as
the cullin homology (CH) region (Fig. 1,
B and C). A cullin protein, Cdc53p, is
part of a ubiquitin ligase complex that
targets phosphorylated Siclp and G, cye-
lins for degradation in budding yeast (25).
Mutations in the Caenorhabditis elegans
cul-1 gene cause hyperplasia of all tissues,
which would be consistent with a defect in
G, cyclin degradation (24). Several hu-
man cullins have also been identified in
the EST database (24). Therefore, cullins
represent a conserved family of proteins
that may be part of the ubiquitin ligases
for the degradation of Siclp, G; cyclins,
and other regulatory proteins (24, 25).

and KO6H7.5 on cosmid KO6H7 are simi-
lar to the NH,- and COOH-terminal re-
gions of human APC2, respectively, and
probably represent a single gene. Further-
more, we identified a hypothetical yeast
protein, ORF YLR127¢, which is 18%
identical (34% similar) to human APC2
(P =1.5 X 10729), To determine whether
YLR127c encodes an APC subunit in bud-
ding yeast, we cloned the gene encoding
YLR127c and inserted a triple hemagglu-
tinin (HA) epitope tag at the NH,-termi-
nus (26). The epitope-tagged protein effi-
ciently rescued an apc2 deletion mutation
(apc2::HIS3). HA-tagged yeast Apc2p co-
immunoprecipitated with three subunits
of the budding yeast APC: Cdc27p,
Cdcl16p, and Cdc23p (Fig. 2). Apc2p did
not coimmunoprecipitate with Cdc34p or
Cdc53p, however, suggesting that Apc2p
is not a shared component between the
APC and the Cdc4p-Cdc34p-Cdc53p
complex. Cdc53p is much more closely
related to ORFs YGR003w and YJL047c
than to Apc2p. A database search with

Two tandem C. elegans ORFs KO6H7.6 the sequence of Cdc53p identified
other, i.e.
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Fig. 3. Phenotype of APC2 mutants. (A) C Pha DAPI Tubulin

Fluorescence-activated cell sorting (FACS)
profile of apc2 alleles. Cells growing in early
logarithmic (log) phase at 25°C were shift-
ed to the nonpermissive temperature
(37°C). At each time point, about 10° cells
were processed for FACS analysis. (B)
DNA and spindle morphology of APC2
mutants. Cells were fixed and stained for
DNA and tubulin, Fixed cells were exam-
ined and counted for DNA morphology (n
= 200 per time point). (C) Representative
G,-M cells from (B). (D) Defective Pds1p
degradation of apc2 alleles at the nonper-
missive temperature. Yeast strains
YAP100 (APC2), YAP103 (apc2-1), and
YAP104 (apc2-6) were transformed with
pOCF30 (GAL-PDS1/URA3) and grown to D
mid logarithmic phase at 25°C in selective
media with 2% raffinose. The cells were
then arrested with a factor for 2.5 hours
and treated with galactose (2%) for 45 min.
Galactose induction was repressed by the
addition of glucose (2%), and cells were

apc2-1

apc2-4
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then shifted to 37°C. Equal volumes of cell extract from each time point were run on a 10% SDS-PAGE
gel, transferred, and probed with C210 antibody to Pds1 (29).
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YGRO03w (P = 2 X 107%%) and YJLO047¢
(P =4 X 1078), but the same search could
not find APC2p.

We tested whether APC2 is an essen-
tial gene by replacing the complete coding
region of YLR127¢c with the HIS3 gene
(27). Tetrad analysis revealed that APC2
is essential. Dead spores arrested as large
or multiply budded cells after one to three
cell divisions. We then constructed tem-
perature-sensitive alleles of APC2 by mu-
tagenesis in the polymerase chain reaction
(PCR) and integrated them into the ge-
nome at the LEU2 locus (28). Three hours
after a shift to the nonpermissive temper-
ature (37°C), two temperature-sensitive
alleles, apc2-1 and apc2-4, caused a sub-
stantial increase in cells with a 2n DNA
content as compared with wild-type cells
(Fig. 3, A and B). Both alleles caused cell
cycle arrest primarily as large budded cells
with the nucleus at or near the neck, a
phenotype characteristic of other known
APC mutants. Tubulin staining revealed
that the majority of cells arrested with
short to midlength spindles, indicating a
G,-M arrest (Fig. 3C). The shift to the
nonpermissive temperature was lethal; vi-
ability dropped to below 7% after 24 hours
at 37°C (23). Furthermore, a known APC
substrate, Pds1p, was stabilized at 37°C in
apc2-1 and apc2-6 mutants (Fig. 3D), con-
sistent with results reported for cdc23-1
and cdc16-123 mutants (10). The stabili-
zation of Pdslp, along with the coimmu-
noprecipitation data, confirms that Apc2p
(YLR127¢) is a subunit of the yeast APC.

The identification of the stoichiometric
vertebrate APC subunits has been complet-
ed. As revealed by our biochemical and
genetic studies, the composition of the
APC is highly conserved in organisms from
yeast to humans. Furthermore, APC2 con-
tains a region that shares sequence similar-
ity with cullins. The CH region may per-
form similar biochemical functions in both
systems, such as binding ubiquitin or the
ubiquitin-conjugating enzymes.
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