
re.repllcation were colnpletely blocked [Fig, K acetate concentration in mill~molar) conta~n~ng aligned wlth CLUSTAL W [J. D. Thompson, D G 

5, B and C; the wild-type a.as aria- 
BSAadwl th 1 ml of buffers B10O1B120, and B150, Higgns, T. J. Gbson, ~Vucleic Acids Res, 22, 4673 
contanng insulin (0 1 mg/ml). Prestained protens (1 994)] 

lyzed in (27)l. Degradation of Pdslp, which (Ranbow, Amersham) were used as molecular slze 20. K. L B. Borden and P. S. Freemont. Curr. Ooin 
starts shortly before anaphase, is required markers. Stiuct. Biol 6, 395 (I 996). 

for sister chrolnatid separation (5, 27).  D ~ -  12. TO de"tlfy p90 and p70, CDC16-myc6 or CDC23- 21. H. Yu e ta l ,  Science 279, 1219 (1998). 
myc9 cells (1 0'") (Apep4) were broken n buffer 870 22 E. T. Kipreos etal., Cell85,829 (1 996); N. Mathias et 

tection of P d s 1 - M ~ c 1 8 ~  that 14 m (1 I ) ]  Extracts were centr~fuged tw~ce (20 mn,  a/., Mol. Cell Biol 16, 6634 (1 996). 
rested apc2-1 cells contained large amounts 18,OOOg) and Incubated w~th protein A-Sepharose 23. D Skowyra et a/., Cell 91, 209 (1997), R. Fedman, 

of pdslp  ( F , ~ .  j c ) ,  ~ ~ l ~ ~ i ~ ~  of the p ~ S l  (2 "1) for 1 hour and wlth 9El 0-beads (0.2 ml) for 2.5 C. C. Correll, K. B. Kapan, R J. Deshaies, ibid , p 
hours. Beads were washed three times wlth 4 m of 221 

gene 'pc2-l to separate sister buffer 8100, B150, and 8200 contain~ng Insulin (0.1 24. E Schwob, T. BBhm, M. D. Mendenhall, K. 
chromatids (Fig. j D ) .  However, spindle mg/ml) and with 2 ml of buffer B contanng 50 r n ~  Nasmyth, ibid. 79, 233 (I 994). 

was slower in apc2-l Qdsl cells Na acetate. Protelns eluted w~th SDS were separat- 25. A. R. W~llems etal., ibid. 86, 453 (1996); M Tyers, 
ed on SDS-polyacrylamide gels, p40 and p23 were personal commun~cat~on. 

than in wild-type the Identified n mmunoprec~pitates from 5.5 x 1010 26. ape2 mutants were generated as descr~bed [S. H. 
of apc2-1 cells to  enter anaphase may result cells MacKeve, P. D. Andrews, M J. R.  Stark, Mol Cell. 

prilnarilr from a defect in the degradation 13. Protelns were vsuaized by silver sta~nlng and digest- Biol. 15, 3777 (1995)l The Xho I to Nde I fragment 

of pdslp. apc2-l a.ere also defective in ed "he gel with trypsln [A. Shevchenko, M. W m ,  was removed from theAPC2 gene (Ca I to Bgl I )  In a 
0. Vorm, M. Mann, Anal. Chem. 68,850 (1996)l The CEN-LEU2 plasmd. This DNA was transformed, to- 

degrading the lnitotic cyclin C l b 2 ~  ( l a ) .  d~gest was analyzed by nanoelectrospray tandem gether wlth a mutagenized ape2 fragment (-29 to 
Extracts prepared from GI-arrested apc2-1 mass spectrometry [M. W m  etal., Nature 379, 466 +2554, ATG = + I ) ,  into a Aapc2,:TRPI stra~n con- 

and apc2-2 were defective in the ubiq- (1996)l. Parent o n  scans for the mmonum ons of talnlng a CEN-URA3-APC2 plasmd. After selection 
eucne and ~soleuc~ne were used to detect pept~de of transformants showing cell cycle arrest at 37"C, 

uitination of mitotic cyclins (Fig. i E ) ,  indi- [M, Wllm, G, N ~ ~ ~ ~ ~ ~ ~ ,  M, Mann, Anal, chern, mutant ape2 alleles and the wild-type gene were 
eating that the defect in  proteolysis results 68, 527 (1996)], Relat~ve to a BSA standard, the Integrated at the his3 locus of the Aapc2:.TRPl 

from defective ubiquitination. amount of proten available for mass spectrometric stran. 
dent~ficat~on was -1 0 to 20 ng per band 27. C. M~chael~s, R. Ciosk, K. Nasmyth, Cell 91, 35 

Yeast Apcip shows silnilarity 14. ORF desgnatlons are from the Saccharomyces ge- (1 997). 
Apcip  (21) and to the  putative ORF nomedatabase 28. Small G, cells were eutrated from stralns grown at 
M163.4 froln C. elegans. The yeast Apc4p 15. A. Shevchenko and M. Mann, unpublshed results. 21'C [E. Schwob and K. Nasmyth, Genes Dev. 7, 

shou,s a.eak s,ln,lar,ty to the hu- 16. All strains are W303 derlvatves. ORFs were tagged 
160 (1993)l. cflOmetrlc DNA quanttatlon, in- 

at the COOH-termnus w~th three hemaggutlnln A direct immunofluorescence (to detect Pdsl - ~ y c l 8 p  
lnan A ~ c 4 ~  sequence (21 ) and to the ORF (HA) or nne Myc eptopes (8). At 37% DOC1-HAS, and spindles), and obsetvat~on of tetR-GFP were 

Z972L19 froin Schizosaccharomyces pombe, DOC1-myc9, and APCI I-myc9 strains arrested in as described (27). 

which is Inore closely related to the human mltosls. A other strains (~ncluding APC1 I-HA3) 29 Amno acids' A, Alas C, Cyss D, E, F s  Phe; 
grew normally, indcating that these tagged proteins G, GY:  H, HIS; 1 ,  e ;  K, LyS; L, Leu, M, Met; N, Asn; P, 

protein. Apc4p might represent a n  A P C  were fully functional, O R F ~  were replaced with a S, Pro; Q, Gn; R, Arg; S, Ser, T, Thr, V, Val; W, Trp, and 

component that has diverged more during pombe his5+ cassette ampiifled from pFA6a- Y s  Tyr, 

evolution than the  other subunits. N o  ho- ~ 1 ~ 3 ~ x 6  [A. Wach, A. Brachat, C. ~ l b e f l l - ~ e g u ~ ,  C. 30 M Mann and M. WIm,Anal. Chem. 66% 4390 (1994). 

Reblschung, P. Philppsen. Yeast 13, 1065 (1 997)]. 31. We thank A. Hyman for bringing together the labs of 
have been identified for Apc9p' 17. L. H Hwang and A. W. Murray, Mol. Biol. Cell 8, M.M and K.N., A Schleiffer and B. Habermann for 

Thus, in addition to Apc lp ,  Cdc lbp ,  1877 (1 997) sequence al~gnments; A. Wach for pFA6a-HS3MX6; 
C d c l ? ~ ~ ,  Cdc27p, and ApclL1p/Doclp, a t  18. W. Zachar~ae and K Nasmyth, unpubl~shed results. H. -M, Peters' King' M. Kirschner' and M, 

least Apcjp, and Apcl lp  ln,ghr be 19 Databases were searched w~th Gapped BLAST Tyers 'Or communicating results; and M' 'Iotzer' L' 
,S F, Altschul et Nucleic Acids Res, 25, 3389 

Huber, U. Muhner, and J.-M Peters for reading the 
conserved subunits of the  A P C  in all (1997)1, ESTs were assembled with AssemblyilGN 

manuscript. 

eukaryotes. (Oxford Molecular, Oxford, UK). Sequences were 25 September 1997; accepted 5 January 1998 
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mitosis through the degradation of mitotic 
cyclins and other regulatory proteins, such 
as Pdslp and Aselp in budding yeast and 
Cut2 in fission yeast {4-8). In this system, a 
large protein complex, termed the an-
aphase-promoting complex (APC) or the 
cyclosome, functions as a protein ubiquitin 
ligase (9-12). In the presence of ubiquitin-
activating (El) and ubiquitin-conjugating 
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(E2) enzymes such as UBCx (also called 
E2-C in clam and UBC-H10 in human) or 
UBC4, the APC catalyzes the formation of 
cyclin-ubiquitin conjugates (9, 13-15), 
which are subsequently degraded by the 26S 
proteasome (16). The APC is the cell cycle-
regulated component of the mitotic cyclin 
degradation system (9, 17, 18). The APC is 
also thought to participate in substrate rec­
ognition, which depends on a sequence el­
ement found in all APC substrates, called 
the destruction box (4, 13, 19). Biochemi­
cal studies have shown that the vertebrate 
APC contains eight subunits, named APC1 
to APC8. These subunits include BimE 
(APC1), CDC27 (APC3), CDC16 
(APC6), and CDC23 (APC8) (9, 11, 17). 

We report the cDNA cloning of the 

remaining four human APC subunits on 
the basis of peptide sequence information 
obtained from immunopurified Xenopus 
APC {17, 20). We first identified human 
expressed sequence tags (ESTs) that en­
code amino acid sequences more than 
80% identical to the Xenopus APC pep­
tides {20). On the basis of the sequences of 
the ESTs, we cloned the full-length hu­
man cDNAs for APC2, APC4, APC5, and 
APC7 {21) (Fig. 1A). The human ho-
molog of Saccharomyces cerevisiae CDC23 
(APC8) was also isolated {21). A CDC23 
peptide was isolated from the APC7 band, 
indicating that APC7 was CDC23 {17). 
Subsequent sequencing of more peptides 
from APC7 and APC8 bands and the 
analysis of the APC7 and APC8 cDNA 

10 20 30 40 50 70 

Human APC2 
MAAAVWAEGDSDSRPGQELLVAWNTVSTGLVPPAALGLVSSRTSGAVPPKEEELRAAVEVLRGHGLHSVLEEWFVEVLQNDLQA 85 

NISPEFWNAISQCENSADEPQCLLLLLDAFGLLESRLDPYLRSLELLEKWTRLGLLMGTGAQGLREEVHIMLRGVLFFSTPRTFQ 170 

EMIQRLYGCFLRVYMQSKRKGEGGTDPELEGELDSRYARRRYYRLLQSPLCAGCSSDKQQCWCRQALEQFHQLSQVLHRLSLLER 2 55 

VSAEAVTTTLHQVTRERMEDRCRGEYERSFLREFHKWIERVVGWLGKVFLQDGPARPASPEAGNTLRRWRCHVQRFFYRIYASLR 340 

IEELFSIVRDFPDSRPAIEDLKYCLERTDQRQQLLVSLKAALETRLLHPGVNTCDIITLYISAIKALRVLDPSMVILEVACEPIR 425 

RYLRTREDTVRQIVAGLTGDSDGTGDLAVELSKTDPASLETGQDSEDDSGEPEDWVPDPVDADPGKSSSKRRSSDIISLLVSIYG 510 

SKDLFINEYRSLLADRLLHQFSFSPEREIRNVELLKLRFGEAPMHFCEVMLKDMADSRRINANIREEDEKRPAEEQPPFGVYAVI 595 

LSSEFWPPFKDEKLEVPEDIRAALEAYCKKYEQLKAMRTLSWKHTLGLVTMDVELADRTLSVAVTPVQAVILLYFQDQASWTLEE 6 80 
LELPDEIK (PK52) 

LSKAVKMPVALLRRRMSVWLQQGVLREEPPGTFSVIEEERPQDRDNMVLIDSDDESDSGMASQADQKEEELLLFVmriQAMLTOL 765 
WLQHGVLREDPPGTFSVIE (PK66) 

ESLSLDRIYNMLRMFWTGPALAEIDLQELQGYLQKKVRDQQLVYSAGVYRLPKNCS. 823 
SDHQLVYSGGVYRLPK (PK51) 

Human APC4 
MLRFPTCFPSFRWGEKQLPQEIIFLWSPKRDLIAIANTAGEVLLHRI^SFHRWSFPPNENTGKEVTCLAWRPDGKLLAFALA 85 

LPHEIIFLAWSPK (PK98) 
DTKKIVLCDVEKPESLHSFSVEAPVSCMHWMEVTVESSVLTSFYNAEDESNLLLPKLPTLPKNYSNTSKIFSEENSDEIIKLLGD 170 

VRLNILVLGGSSGFIELYAYGMFKIARVTGIAGTCIJ^CLSSDLKSLSVVTEVSTNGASEVSYFQLETNLLYSFLPEVTRMARKF 2 55 

THISALLQYI^SLTCMCEATOEIIJIQMDSCLTKFVQGKDTTTSVQDEFMHLLLWGKASAELQTLLMNQLTVKGLKKLGQSIESS 3 40 

YSSIQKLVISHLQSGSESLLYHLSELKGMASWKQKYEPLGLDAAGIEEAITAVGSFILKANELLQVIDSSMKNFKAFFRWLYVAM 425 
LVISHLQSGAEALLYHLSELK (PK103+114) 

LRMTEDHVLPELNKMTQKDITFVAEFLTEHFNEAPDLYNRKGKYFNVERVGQYLKDEDDDLVSPPNTEGNQWYDFLQNSSHLKES 510 
DITFVADFLTEHFNEAPQGY (PK108) DEDDILMSPPNIEGNQWFSFLQA (PK107) 

PLLFPYYPRKSLHFVKRRMENIIDQCLQKPADVIGKSMNQAICIPLYRDTRSEDSTRRLFKFPFLWNNKTSNLHYLLFTILEDSL 595 
CLPLYQVSASEEAC (PK66) 

YKMCILRRHTDISQSVSNGLIAIKFGSFTYATTEKVRRSIYSCLDAQFYDDETVTVVLKDTVGREGRDRLLVQLPLSLVYNSEDS 680 

AEYQFTGTYSTRLDEQCSAIPTRTMHFEKHWRLLESMKAQYVAGNGFRKVSCVLSSNLRHVRVFEMDIDDEWELDESSDEEEEAS 7 65 

NKPVKIKEEVLSESEAENQQAGAAALAPEIVIKVEKLDPELDS. 809 

Human APC5 
MASVHESLYFNPMMTNGVVHANVWIKDWVTPYKIAVLVLLNEMSRTGEGAVSLMERRRLNQLLLPLLQGPDITLSKLYKLIEES 85 

CPQLANSVQIRIKLMAEGELKDMEQFFDDLSDSFSGTEPEVHKTSWGLFLRHMILAYSKLSFSQVFKLYTALQQYFQNGEKKTV 170 
DMEQFFDDLADSFTGTEPEVHK (PK123) 

EDADMELTSRDEGERKMEKEELDVSVREEEVSCSGPLSQKQAEFFLSQQASLLKNDETKALTPASLQKELNNLLKFNPDFAEAHY 2 55 
EDLDFPIGEDDLACSGPLSQK (PK88) 

LSYLNKLRVQDVFSSTHSLLHYFDRLILTGAESKSNGEEGYGRSLRYAALNLAALHCRFGHYQQAELALQEAIRIAQESNDHVCL 3 40 

QHCLSWLYVLGQKRSDSYVLLEHSVKKAVHFGLPYLASLGIQSLVQQRAFAGKTANKLMDALKDSDLLHWKHSLSELIDISIAQK 425 

TAIWRLYGRSTMALQQAQMLLSMNSLEAVNAGVQQNNTESFAVALCHLAELHAEQGCFAAASEVLKHLKERFPPNSQHAQLWMLC 510 

I^KIQFDRAMNIXSKYHLADSLVTGITAI^SIEGVYRKAVVLQAQNQMSEAHKLLQKLLVHCQKLKNTEMVISVLLSVAELYWRSS 595 

SPTIALPMLLQALALSKEYRLQYIASETVIJ^LAFAQLILGIPEQALSLLHMAIEPILADGAILDKGRAMFLVAKCQVASAASYDQ 6 80 

Human APC7 
MNVIDHVRDMAAAGLHSNVRLLSSLLLTMSNNNPELFSPPQKYQLLVYHADSLFHDKEYRNAVSKYTMALQQKKALSKTSKVRPS 8 5 

TGNSASTPQSCCLPSEIEVKYKMAECYTMLKQDKDAIAILIXSIPSRQRTPKirraMIANLYKKAGRERPSVTSYKEVLRQCPLALD 170 

AILGLLSLSVKGAEVASMIMTWIQTVPNLDWLSVWIKAYAE-VHTGDNSRAISTICSLEKKSLLRDNVDLLGSLADLYFRAGDNKN 2 55 
LLXDNVDLLGTLATLYFRVGD (PK13 3) 

SVLKFEQAQMLDLYLIKGMDVYGYLLAREGRLEDVENLGCRLFNISDQHAEPWWSGCHSFYSKRYSRALYLGAKAIQLNSNSVQ 3 40 

ALLLKGAALRNMGRVQEAIIHFREAIRLAPCRLTCYEGLIECYIASNSIREAMVMANNVYKTLGANAQTLTLLATVCLEDPVTQE 425 

KAKTLLDKALTQRPDYIKAVVKKAELLSREQKYEIX3IALLRNAIJ^QSIX:VLHRIDFLVAVNEYQEAMDQYSIALSLDPNDQKSL 510 

EGMQKMEKEESPTDATQEEDVDDMEGSGEEGDLEGSDSEAAQWADQEQWFGMQ. 565 

Human APC8 (CDC23) 
MVPVAVTAAVAPVLSINSDFSDLREIKKQLLLIAGLTRERGLLHSSKWSAELAFSLPALPLAELQPPPPITEEDAQDMDAYTLAK 85 

WASELAFSLEXXPLNE (PK128) 

AYFDVKEYDRAAHFLHGCNSKKAYFLYMYSRYLSGEKKKDDETVDSLGPLEKGQVKNEALRELRVELSKKHQARELDGFGLYLYG 170 

KDDETVDSLGPLEK (PK50) 

VVLRKLDLVKEAIDVFVEATHVLPLHWGAWLELCNLITDKEMLKFLSLPDTOMKEFFLAHIYTELQLIEEALQKYQNLIDVGFSK 2 55 

YQSLIDAGFSK 

SSYIVSQIAVAYHNIRDIDKALSIFlIELRKQDPYRIEaraDTFSNLLYVRSMKSELSYLAHNLCEIDKYRVETCCVIGNYYSLRSQ 3 40 

STYIISQIAVXYHNIRDTD (PT62+PK110') 

HEKAALYFQRALKLNPRYLGAWTIWGHEYMEMKNTSAAIQAYRHAIEVNKRDYRAWYGLGQTYEILKMPFYCLYYYRRAHQLRPN 425 

ALYFQ (PT48) 

DSRMLVALGECYEKLNQLVEAKKCYWRAYAVGDVEKMALVKLAKLHEQLTESEQAAQCYIKYIQDIYSCGEIVEHLEESTAFRYL 510 

LNQLVEA (PT33) LHEQLNESEQAAQCYIKYIQDIYXXGEI (PK51+PT73) 

AQYYFKCKLWDEASTCAQKCCAFbTOTREEGKALLRQILQLRNQGETPTTEV-PAPFFLPASLSANNTPTRRVFPLNLSSVTP. 591 

QILQLRNQSEAPSAERDTAPFFLP (PK110) 

Hs APC2 
Ce K06H7.5 
ScApc2 
Hs CUL1 
HsCUL2 
Hs CUL3 
Hs CUL4A 
Ce CUL1 
CeCUL2 
Ce CUL3 
Ce CUL4 
Sc Cdo53 
Sc YGR003w 
Sc YJL047C 

HsAPC2 
Ce K06H7.5 
ScApc2 
Hs CUL1 
HsCUL2 
Hs CUL3 
Hs CUL4A 
Ce CUL1 
CeCUL2 
CeCUL3 
Ce CUL4 
Sc Cdc53 
Sc YGR003W 
Sc YJL047C 

HsAPC2 
Ce K06H7.5 
ScApc2 
Hs CUL1 
HsCUL2 
HsCUL3 
Hs CUL4A 
Ce CUL1 
CeCUL2 
Ce CUL3 
Ce CUL4 
Sc Cdc53 
Sc YGR003w 
Sc YJL047C 
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Fig. 1 . Sequence composition of the APC subunits. (A) Amino acid sequences of 
human APC2, APC4, APC5, APC7, and CDC23 (APC8). The peptide sequences 
derived from Xenopus APC subunits are aligned below the human sequences. 
Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C, 
Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, He; K, Lys; L, Leu; M, Met; N, Asn; P, 
Pro; Q, Gin; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. (B) Alignment of the 
CH domains from APC2 and human (Hs), C. elegans (Ce), and S. cerevisiae (Sc) 
cullins. The alignment was made with the Clustal method with the program 
MEGALIGN (DNASTAR, Madison, Wl). Residues identical to the consensus are 
boxed in black. (C) Phylogenetic tree of CH domains. 
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clones by in vitro translation and immu- 
noblotting showed that APC8 is the 
CDC23 homolog, whereas APC7 is a new 
APC subunit. We suspect that the CDC23 
peptide was isolated from the APC7 band 
because of insufficient separation of these 
subunits by SDS-polyacrylamide gel elec- 
trophoresis (SDS-PAGE). 

Database searches revealed that APC4 
and APC5 do not share sequence similar- 
ity with proteins of known function. 
APC4 does not appear to have a homolog 
in S. cerevisiae. However, the NH2-termi- 
nal 450 residues of APC4 share limited 
similarity with the Schi~osaccharomyces 
pombe open reading frame (ORF) 297209, 
which in turn is distantly related to the S. 
cerevisiae ORF YDR118w. The YDR118w 
protein is a subunit of the yeast APC 
(APC4) (22). APC5 is similar to a puta- 
tive S. cerevisiae protein, ORF YOR249c. 
Deletion of this ORF from the S. cerevisiae 
genome indicates that YOR249c is essen- 
tial for viability, and the null mutants 
exhibit a terminal G2-M arrest phenotype 
as would be expected for APC genes (23). 
The YOR249c protein is found in the 
purified S. cerevisiae APC (22). Like 

Antibody 1 2 3 4 5 6 
"rP 

Fig. 2. Coimmunoprecipitation of CdclGp, 
Cdc27p, and Cdc23p, but not Cdc34p or 
Cdc53p, with Apc2-3XHAfrom budding yeast ex- 
tracts. Extracts were prepared from logarithmic 
phase cells of the yeast strain YAP89 expressing 
Apc2p-3XHA from its own promoter (lanes 4 to 6) 
or from a congenic strain expressing untagged 
Apc2p, YAP87 (lanes 1 to 3), and immunoprecipi- 
tated with antibody to HA sepharose beads. 
Crude cell extract (lanes 1 and 4), supematants 
(lanes9 and 5), and the immunoprecipitates (lanes 
3 and 6) were separated on a 10% SDS-PAGE 
gel, transferred to nitrocellulose, and probed with 
the indicated antibodies. 

CDC16, CDC23, and CDC27, APC7 is a 
tetratrico peptide repeat-containing pro- 
tein that is most similar to Cdc27p in the 
yeast genome. 

Database searching with the APCZ se- 
quence revealed that it is similar to a 
recently identified family of proteins, 
called cullins (24). The similarity between 
APCZ and cullins is restricted to a 200- 
amino acid region, which we refer to as 
the cullin homology (CH) region (Fig. 1, 
B and C). A cullin protein, Cdc53p, is 
part of a ubiquitin ligase complex that 
targets phosphorylated Siclp and G I  cyc- 
lins for degradation in budding yeast (25). 
Mutations in the Caenorhabditis elegans 
cul-1 gene cause hyperplasia of all tissues, 
which would be consistent with a defect in 
G I  cyclin degradation (24). Several hu- 
man cullins have also been identified in 
the EST database (24). Therefore, cullins 
represent a conserved family of proteins 
that may be part of the ubiquitin ligases 
for the degradation of Siclp, G,  cyclins, 
and other regulatory proteins (24, 25). 
Two tandem C. elegans ORFs K06H7.6 

A 25°C 37°C B 
Log phase 3 hours 

and K06H7.5 on cosmid K06H7 are simi- 
lar to the NH2- and COOH-terminal re- 
gions of human APC2, respectively, and 
probably represent a single gene. Further- 
more, we identified a hypothetical yeast 
protein, ORF YLR127c, which is 18% 
identical (34% similar) to human APCZ 
(P = 1.5 x To determine whether 
YLR127c encodes an APC subunit in bud- 
ding yeast, we cloned the gene encoding 
YLR127c and inserted a triple hemagglu- 
tinin (HA) epitope tag at the NH2-termi- 
nus (26). The epitope-tagged protein effi- 
ciently rescued an apc2 deletion mutation 
(apc2: :HIS3). HA-tagged yeast Apc2p co- 
immunoprecipitated with three subunits 
of the budding yeast APC: Cdc27p, 
Cdcl6p, and Cdc23p (Fig. 2). Apc2p did 
not coimmunoprecipitate with Cdc34p or 
Cdc53p, however, suggesting that Apc2p 
is not a shared component between the 
APC and the Cdc4p-Cdc34p-Cdc53p 
complex. Cdc53p is much more closely 
related to ORFs YGR003w and YJL047c 
than to Apc2p. A database search with 
the sequence of Cdc53p identified 

other. i.e. 

A PC2 25 "C - Log phase 52.5 21 12.5 14 0 
- 3 7 % - 3  hours 54 22 8.5 14.5 I 

25°C- Log phase 34 11 36.5 15 3.5 
a@-, am2-1 37.C - 3  hours 19.5 9.5 59 9 2 

25°C-Logphase 27 14 46 13 o 
apC24 -A 37 OC - 3 hours 10 6 79.5 6 3 

Fig. 3. Phenotype of APC2 mutants. (A) 
Fluorescence-activated cell sorting (FACS) 
profile of ape2 alleles. Cells growing in early 
logarithmic (log) phase at 25°C were shift- 
ed to the nonpermissive temperature 
(37°C). At each time point, about 1 OG cells 
were processed for FACS analysis. (B) 
DNA and spindle morphology of APC2 
mutants. Cells were fixed and stained for 
DNA and tubulin. Fixed cells were exam- 
ined and counted for DNA morphology (n 
= 200 per time point). (C) Representative 
G,-M cells from (B). (D) Defective Pdslp 
degradation of ape2 alleles at the nonper- 
missive temperature. Yeast strains 
YAPl 00 (APC2), YAPl 03 (apc2- I ) ,  and 
YAP104 faoc2-6) were transformed with 

P Phase DAPl Tubulin 

pOCF3O (GAL-PDSl/URAS) and grown to D A PC2 apc2- 1 apc2-6 
m~d logar~thm~c phase at 25°C In selectwe T,me (mln, 20 40 60- 
med~a w~th 2O/0 rafflnose The cells were a- 
then arrested w~th a factor for 2 5 hours pdslp+- 
and treated wlth galactose (2Ob) for 45 mln - 
Galactose ~nduct~on was repressed bv the 
addition of glucose (2%), and cells were 
then shifted to 37°C. Equal volumes of cell extract from each t~me point were run on a 1O0/o SDS-PAGE 
gel, transferred, and probed with C210 antibody to Pdsl (29). 
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YGR003w ( P  = 2 x l opz3)  and YJL047c 
( P  = 4 x lop8),  but the  same search could 
not  find APC2p.  

W e  tested whether APC2 is a n  essen- 
tial gene by replacing the  complete coding 
region of YLR127c with the  HIS3 gene 
(27). Tetrad analysis revealed that  APC2 
is essential. Dead spores arrested as large 
or rnultiply budded cells after one  to  three 
cell divisions. W e  t h e n  constructed tern- 
perature-sensitive alleles of APCZ by mu- 
tagenesis in the  poly~nerase chain  reaction 
(PCR) and integrated them into the  ge- 
nome at  the  LEU2 locus (28).  Three  hours 
after a shift t o  the  nonpermissive temper- 
ature ( 3 i ° C ) ,  two temperature-sensitive 
alleles, apc2-1 and apc2-4, caused a suh- 
stantial increase in  cells with a 2 n  DNA 
content  as compared with wild-type cells 
(Fig. 3, A and B). Both alleles caused cell 
cycle arrest primarily as large budded cells 
wi th  the  nucleus a t  or near the  neck, a 
phenotype characteristic of other known 
A P C  mutants. Tubul in  staining revealed 
tha t  the  majority of cells arrested with 
short to midlength spindles, indicating a 
G2-M arrest (Fig. 3 C ) .  T h e  shift t o  the  
nonpermissive temperature was lethal; vi- 
ability dropped to  below 7% after 24 hours 
a t  3 i ° C  (23) .  Furthermore, a known A P C  
substrate, Pdslp ,  was stabilized a t  3 i ° C  in  
apc2-I and apc2-6 mutants (Fig. 3D), con-  
sistent with results reported for cdc23-1 
and cdcl6-123 mutants (10). T h e  stabili- 
zation of Pdslp ,  along with the  coimmu- 
noprecipitation data,  confirms tha t  Apc2p 
(YLR127c) is a subunit of the  yeast A P C .  

T h e  identification of the  stoichiometric 
vertebrate A P C  subunits has been complet- 
ed. As  revealed by our biochemical and 
genetic studies, the  composition of the  
A P C  is highly conserved in organisms from 
yeast to humans. Furthermore, APC2 con- 
tains a region that shares sequence similar- 
ity with cullins. T h e  CH region may per- 
form similar biochemical functions in both 
systems, such as binding ubiquitin or the  
uhiquitin-conjugating enzymes. 
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