
somatic l~ypermutation. Perhaps the sin- 
plest way for the Ig lnutator system to avoid 
that scenario would be to overwhelm the 
DNA repair system with so tnany mutations 
that they could not all be repaired before 
becoming fixed. But if that were the case, 
then Pms2k"/Pms2"" tnice should have a 
higher frequency of mutations at the Ig loci, 
as they have at other loci (6, 14); in fact, 
the frequency is lower at the Ig loci. An- 
other simple strategy for the Ig mutator 
system would be to throw a monkey wrench 
into the works to turn off or otherwise 
ensure that DNA repair was ineffective in 
hypermutable B cells. But if that lvere the 
case, then Pms2"0/Pms2ko mice should have 
the same frequency of mutations at the Ig 
loci; in fact, the frequency is lower. Yet 
another strategy would be for the Ig mutator 
system to co-opt the DNA repair system to 
subvert it to create rather than orevent 
mutations. The third strategy would seem to 
be the only one that would exnlain the 
results of the experiments descrihed here. 
Of course, the above argument applies only 
to a mismatch repair systetn requiring Pms2. 
How the Ig tnutator system deals wit11 other 
DNA repair pathways can only be discov- 
ered bv exnerimentation. , L 

The prototypic mismatch repair system 
in E. coli corrects the newly synthesized 
DNA strand, which is transiently unmeth- 
ylated (15), using the old methylated DNA 
strand as a template. In eukaryotic cells, the 
basis for strand repair bias is not well un- 
derstood, although it may involve single- 
strand breaks (1 6). We propose the follolv- 
ing mechanism for the action of Pms2 at the 
Ig loci: After mismatches have been intro- 
duced at an Ig locus in hypermutable cells 
by an ~lnknown mechanism, the mismatch 
repair systetn identifies the "wrong," mutat- 
ed strand as a template and thus fixes the 
mutations. In mice without mismatch re- 
pair, this model, in its simplest version, 
nredicts that at the next renlication the old 
strand will give rise to a nonrnutant allele, 
whereas the new strand will give rise to an 
allele with one or more mutations. Thus, 
the freguencv of mutations would be re- 
duced b; one:llalf. Because we found rather 
lower mutation freauencies in the absence 
of repair than would be predicted by this 
basic model, it might require some elabora- 
tion. For example, other repair mechanisms 
might correct mismatcl~es in the absence of 
the repair system involving Pms2, and this 
would reduce the tnutation frequency to less 
than one-half. 

It has been reported that many human 
tumors exhibit high mutation rates (1 7). 
We envisage that the co-option of mis- 
match renair that we have described here 
for Ig hypermutation may also play a role in 
some of these tumor phenotvpes. That 

would require, holvever, that the co-option 8. J. C h e m t  a/, , E/iJiBO J. 12, 821 (19931. 
9. J. Chen eta/,  . Int. Immunol. 5, 647 (1 993). 

'lot be '!Inited Ig genes "lt 'lave a 
10. Ths antbodv was oroduced bv T, mansh-Karl ,  Its 

scope ot action. 

REFERENCES AND NOTES 

1. M. G. Weigert, I .  M. Cesar~, S. J. Yonkovich, M. 
Cohn, Nature 228, 1045 (1 970); D. McKean et a/. , 
Proc. Natl. Acad. Sci. U.S.A. 81. 3180 (1984); C. A. 
Reynaud, L. Qunt. B. Bertocci. J.-C. We i .  Sem. 
lmmunol. 8. 1 25 (1 996). 

2. M. Wabl and C. Steinberg. Curr. Opin, lmmunol. 8, 
89 (1 9961. 

3. S. Brenner and C. M s t e n .  Nature 21 1.  242 (1 966): 
M. Wabl et a/. . Immunol. Rev. 96, 91 (1 9861: N. Kim 
eta/.  , J. Exp. Med. 186, 41 3 (1 997). 

4. P. Nevers and H. Spatz. Mol. Gen. Genet. 139, 233 
(19751: P. J. Pukka.  J. Peterson. G. Herman. P. 
Modr~ch, M. Meselson, Genetics 104, 571 (1 983); 
A,-L. Lu, S. Clark, P. Modrich, Proc. Natl. Acad. Sci. 
U.S.A. 80, 4639 (1983). 

5. R. A. F~shel eta/. , Cell 75, 1027 (1 993): F. S. Leach et 
a/. , ibid., p. 121 5; C. E. Bronner et a/. , Nature 368, 
258 (1 9941: N. C. Nicolaides et a/, . ibid. 371, 75 
(1 9941: N. Papadopoulos et a/. . Science 263, 1625 
(1 994). 

6. S. M. Baker et a/. . Cell 82, 309 (1 995); L. Narayanan 
eta/. .  Proc. Natl. Acad. Sci. U.S.A. 94 31 22 (1 9971. 

7. M. Cascalho, A. Ma. S. Lee. L. Masat, M.' ~ a b ' l .  
Science 272, 1649 (1 996). 

detaed characterzation has ndt yet been pubshed. 
11. M. Cascaho. J. Wong. M. Wabl. J, Imrnunol. 159. 

5795 (1 997). 
12. M. Cascaho. J. Wong, M. Wabl. unpubshed data. 
13. There is also some evidence for a polymorphism at 

the 3'  end of VX,. 
14. N. de W n d  et a / . ,  Cell 82, 321 (19951: W. Edemann 

et a/. . bid. 85, 1 125 (1 996). 
15. M. Meselson, In Recombination of the Genetic Ma- 

terfal. K. B. Low, Ed. (Academc Press. San Dego. 
CA. 1988), pp. 91-1 13. 

16. J. Homes et a / . .  Proc. Natl. Acad. Sci. U.S.A. 87. 
5837 (1 990): D. C. Thomas et a/. . J. Biol. Chem. 266, 
3744 (1991): P. Modr~ch and R. Lahue, Annu. Rev. 
Biochem 65. 101 (1 996). 

17. L. A. Loeb, Science 277, 1449 (1 997). 
18. We thankT, manish-Kar for provding antibodies to 

the idotype VH17.2.25: G. Wu and M. Liskay for 
comments on the manuscrpt: and S. Baker and M. 
Lskay for provdng PmsP knockout mce.  Ths work 
was supported by N H  grant 1 R01 GM37699, by the 
Engalitcheff Award of the Arthr~t~s Foundation: by 
funds from the Markey Trust; by a Howard Hughes 
grant for transgenc mce:  and by a grant from the 
Junta Naciona de nvestigaqao Cientif~ca e Tecno- 
ogica, Praxs XX-BD 3763194 to M.C. 

1 December 1997: accepted 21 January 1998 

Pleiotropy and the Preservation of Perfection 
David Waxman and Joel R. Peck* 

A mathematical model is presented in which a single mutation can affect multiple 
phenotypic characters, each of which is subject to stabilizing selection. A wide range of 
mutations is allowed, including ones that produce extremely small phenotypic changes. 
The analysis shows that, when three or more characters are affected by each mutation, 
a single optimal genetic sequence may become common. This result provides a hy- 
pothesis to explain the low levels of variation and low rates of substitution that are 
observed at some loci. 

M a n y  continuously varying pl~enotypic 
characters are subject to stabilizing selection, 
so that the optimal phenotypic value lies 
between the minimum and tnaxirnum possi- 
ble values (1-7). These phenotypic charac- 
ters can be anything from the circumference 
of the stem of a nlant to the distance be- 
tween two subunits within a protein. Models 
of stabilizing selection often allow for a con- 
tinuous range of mutations, so that some 
mutations have very small effects, whereas 
others have substantial effects (2 ,  3, 8-14). 
We follow this approach in the present 
study. Analyses of stabilizing selection have 
concentrated on models for which anv given , - 
nl~~tation affects only one phenotypic char- 
acter. Nevertheless, mutations that affect 
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for Theoretical Physics. Univers~ty of Sussex. Brgliton. 
BNl UK. 
J. R. Peck, Centre for the Study of Evouton and School 
of Biolog~cal Sciences. University of Sussex, Brighton. 
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ln~lltiple characters are well known and are 
cotnmonly regarded as ubiquitous (5, 14- 
25). Here, lve show that, when three or more 
characters are affected by each mutation, a 
single optimal genetic sequence may become 
predominant. This finding contrasts sharply 
with the usual finding that, in equilibrium, 
the optimal sequence is rare and many 
slightly suboptimal sequences are present. 

Consider a simple nonpleiotropic model 
of viability selection in a very large popula- 
tion of haploid and asexual orgallisms (the 
results are expected to generalize to sex and 
diploidy). Parents produce offspring and 
then die, so that generatiolls are discrete. 
After birth, offspring ~lndergo viability selec- 
tion, and the probability that an individual 
will survive depends on phenotype, which is 
described by measurements on it different 
characters. An individual's measurement on 
the ith character is denoted by ;, (where -x 
< ;, < m) .  These characters are chosen so 
that they affect fitness independently, and 2, 
= O is the optimal value for each character. 
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W e  use a Gaussian fitness scheme. so that 
the probability of surviving viability selec- 
tion for a particular indi\lidual is proportion- 
al to n i l  exC[-zi/(?V)], where V > @. 

After viahilitv selection, the  rernainille 
individuals repro'duce, and fertility is unai: 
fected by phenotype. T h e  phenotype of a 
particular offspring o n  rhe ith character is 
assumed to depend o n  its "genotypic \lalueU 
o n  that character ( x , )  plus a norlnally dis- 
tributed environmental noise cornuonent, e. 
(SO z, = x, + e,). T h e  distribution of e, has 
mean zero and variance V,. For i + j, e, and 
el are uncorrelateil. 

For the  ith character, a n  individual's ge- 
notypic value (x,) is identical to  that of its 
mother, unless a new mutation has occurred 
in  the  part of the genetic sequence that 
controls the character. T h e  rate of such 
lnutations is denoted by O (where @ 5 O 
5 1) .  For now, lve assume that mutations 
that affect one character do  not  affect other 
characters and that mutations to different 
characters occur indepe~ldently. Thus, the  
probability that an  individual will have one 
or Inore new mutations ( U )  is given by U 
= 1 - ( 1  - 0 ) " .  

Most fitness-affectine characters are - 
probably controlled by many codons. There- 
fore, we treat the genotypic value (x,) as a 
continuous variable, and each possible value 
is associated with a different senuence of 
codons. Tllrouglxout this report, lve will dis- 
cuss gene sequences in terms of the sequence 
of codons, and we will treat two codons as 
identical if they code for the salne aini~lo 
acid (that is, we ignore "silent" variation). 

b1~1tant values of x. are distributed 
around the parental valuk. W h e n  a muta- 
tion occurs that alters x, ,  the  probability 
that the mutant offspring will have a value 
of x, in the interval y + dy > x, > y is f(y - 
x")dy, where dy is infi~litesi~llal and x':: is 
the  value of x. for the mutant's mother. W e  
use the traditional Gaussian function 

Thus, tn gives the  standard deviation of 
mutant effects for a single character. 

Let us define a = OV,/m2, where \.7$ = 

V + V,. For now, we assume that a << 1. 
Models similar to the one just described 

have heen studied previously (13, 26-28). 
Our analysis agrees with previous work in 
that we find that,  at equilibrium, each char- 
acter has a dis t r ibut io~~ of s values that is 
smooth and bell-shaped and ilas a peak at x, 
= @ (the ontlmum). T h e  slnoothness of thls 
distribution implies that, regardless of the 
strength of selection and the  mutation rate, 
the sequence of codolls for which x, = 0 ( the  
optimal sequence) is virtually absent at equi- 

librium. Instead, lnany suboptimal seqLiences 
are present (Fig. 1A) .  (Wi th  a slnooth dis- 
tribution, any single value of x, has infinites- 
imal frequency.) These results (and others 
reported below) are proved in (29).  

Let us define w as the  probability of 
surviving viability selection for an  individ- 
~ ~ a l  with a particular set of genotypic values 
(x, ,  x2, . . . , xk), relative to  that of a n  indi- 
vidual of the  optinla1 genotype. As demon- 
strated elsewhere ( 1  3) ,  the  value of u, is 
given by 

k 

l L 1  = exp ($1 (71) 
1 - 1  

Let u! represent the mean value of 20 at 
ecl~~ilihrium (thus, 20 is proportional to the 
percentage of offspri~lg that survive viability 
selection). W e  can show tllat, for this model, 
G > 1 - U [in agreelnent with Biirger (27, 
28)]. Thus, at equilibrium, the decrease in 
fitness caused by having a suboptimal se- 
quence of codons for any character is typi- 
cally less than O. Very rough estimates of O 
suggest that values as high as I@-' apply fix 
many pl le~~otyplc  characters ( 13, 30). 

Pleiotronic mutations affect multiole 
characters. T o  introduce pleiotropy, we 

collect the  characters into sets of size I1 
(where 12 is a positive integer and it is a 
multiple of 0 ) .  There  are Q = klI1 such 
sets. T h e  12 characters in  any set have a 
collllnon genetic basis, and a mutation 

u 

affecting one  character will affect each of 
the  other  Cl - 1 characters in  the  same 
set. T h e  rate a t  which the  genetic se- 
quences coding for the  characters in  any 
given set undergo codon-altering muta- 
tions is given bv O ,  and sets mutate inde- - 
pendently. Thus,  the  probability that  ally 
given i~ldi \ l id~ial  will have one  or Inore 
new mutations (U) is now given by L1 = 

1 - (1 - O)U. Mutant  eftects follow a 
~n~i l t id imensional  Gaussian J i s t r i b u t i o ~ ~  
(17) .  In particular, pick ally set and assign 
the  characters that  make it up the  num- 
bers 1, 2,  . . . , 12. Consider a n  individual 
tha t  undergoes a mutation to  this set and 
who is born to  a mother whose genotypic 
values o n  these characters are s:$, x;, . . . , 
r:,, respectively. T h e  probability that  this 
indi\lidual will have s ,  in  the  interval v ,  + - I 
iiy, > x, > y, and s, ' in the  interval y, + 
dy, > x, > y,, . . . is given by n::, [f(?, -~ 

x,)dyi], where the dy, values are infinitesi~nal 
and f(y, - x, ) is given by Eq. 1. When  I1 = 

1, this pleiotropic model is identical to the 

Fig. 1. The equlibrlum dstributions of genotypc effects for a single character. (I),(x,), plotted as a 
functon of genotypc effect. x , .  The scang  for both axes depends on m (the standard deviaton of 
mutant effects), as indicated by the axis labels. In these examples. we set a = @V,/rn" 0.05. (A) The 
nonpleiotropic model (R = 1 ) .  (B) R = 2. so that mutations simultaneously affect two phenotypic 
characters, In (A) and (B), the distribution is nonsinguar at x, = 0. and so the proporton of individuals 
with an optimal genotypic value is infinitesimal. However, for 0 = 2. tlie value of @,(O) is large [@,(O) = 

1039/rn]. (C) A singularity does appear for 0 = 3. and 90% of the population hasx, = 0. (D) When R = 

4, x, = 0 for 95% of the population. The width of the line that rises above x, = 0 in (C) and (D) should 
be infinitesimal, because it represents a Dirac delta function. We broadened II to allow visualizat~on. To 
produce these figures. we used Eqs. 9,  10 and 11. 
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nonnleiotrooic model considered above. 
The equilibrium distribution for a single 

character, xi, when tnutations affect two 
characters ( R  = 2)  is shown in Fig. 1B. The 
distribution is more peaked than that in Fig. 
1A (the nonpleiotropic result) hut is still 
continuous. This finding is in agreement 
with recent theoretical studies ( 1  9-23). 

When mutations affect three or more 
characters (12 2 3), a qualitatively new phe- 
nomenon occurs. The distribution of any 
given character (i) contains a singularity at x, 
= O (Fig. 1, C and D). Thus, a nonnegligible 
fraction of the population has perfect ge- 
nomes. When R 2 3, the proportion of the 
population for which x1 # O is of order a = 

OVS/m2. Individuals with the perfect genome 
for character 1 also are genetically perfect for 
characters 2,  3, . . . , 12. Furthermore, if the 
proportion of the population for which x1 = 

O is denoted by P, then the proportion of 
individuals who have the perfect genome 
with respect to all k traits is equal to Pki". 
Previous analvses of similar models have sue- 
gested the poksibility of singular behavior i f  
the tvne noted here 128, 3 1 ). However, in 

, A  

these previous studies, only highly implausi- 
ble fitness f~~nctions were shown to lead to 
singularities. 

When 12 = 2, tnean fitness (G) is greater 
than 1 - U (just as when 12 = 1). Howev- 
er, for R 2 3, we have iT = 1 - U. 

To gain an intuitive understanding of 
these results, consider two tnodified ver- 
sions of our model. each of which makes the 
ilnrealistic assumption that all tnutations 
are deleterious. For the first of these models. 
assume that only two genotypes are possi- 
ble, one optitnal and one suboptimal. Let 
(1 - s) represent the relative viability of 
suboptimal individuals. Optitnal individuals 
mutate to suboptimal ones at a rate U, but 
not vice versa. In this well-known model, if 
s > U, then, at equilibrium, the frequency 
of optimal individuals is given by 1 - (U/s) 
and ii = (1 - U). However, if s < U, then, 
at equilibrium, optimal individuals are en- 
tirely absent from the population and G = 

(1 - s). Thus, G > (1 - U). 
When s < U, this model resembles the 

nonpleiotropic model (0 = 1).  In both 
models, the optimal genotype vanishes, 
and ii > (1 - U).  However, in the non- 
pleiotropic model, deleterious mutations 
affect slightly suboptimal genotypes, as 
well as optimal ones. Nevertheless, some 
of these deleterious mutations are, effec- 
tively, canceled out, because when 0 = 1, 
nearly optimal genotypes are created at a 
nonnegligible rate by beneficial muta- 
tions. When .R = 1 and x, # 0, 50% of 
mutations will move x, toward the direc- 
tion of the optimum (although some will 
push x, beyond the optimum). The cre- 
ation of nearly optimal genotypes by mu- 

tation is also likely when I1 = 2 (29). In 
contrast, when I1 2 3, mutations that 
improve fitness and produce a nearly op- 
timal genotype on all 12 affected charac- 
ters are extremely ilnlikely (29). Roughly 
speaking, this is because, when I1 r 3, 
only a very small region of "genotypic 
space" corresponds to near optimality. 

A second modlfied model illuminates 
the imoact of this shift in favor of delete- 
rious mutations. Say that when offspring 
are produced, they tnay ilndergo a certain 
number of mutational steps, each of which 
decreases fitness hv a factor of 11 - s), 
where L1 < s < 1. The numbel of tnuta- 
tlonal stens follolvs a Polsson dlstrlbutlon 
with mean and variance equal to A. Thus 
U, the genome-wide probability of at least 
one new mutation, is given by U = 1 - 
e-'. This is a well-known model (32), and, 
at equilibrium, G = 1 - U and the opti- 
mal genotype takes a nonnegligible fre- 
quency. This tnodel is analogous to the 
oleiotronic tnodel above when I1 r 3. In 
both models, G = 1 - U and the optimal 
genotype is preserved at equilibrium be- 
cause there is a strong tendency for muta- 
tions to degrade fitness in nearly optitnal 
genotypes. When 12 r 3, the loss of nearly 
optimal genotypes because of selection is 
not compensated for by a substantial gain 
of such genotypes because of beneficial 
mutations, and thus the superiority of the 
optltnal genotype allows lt to rlse to a 
nonnegllglhle frequency. 

What happens when our assumption 

that a = OV/m2 << 1 does not hold? For 
any value of a ,  the frequency of the optimal 
genotype is negligible when R = 1 and I1 = 

2. However, there is always a critical value 
of 12. sav 12". sucl~ that when R r R*, a 
nonneg1;gible frequency of the optimal ge- 
notype appears. When a << l ,  0" = 3.  
However, if a << 1 is not satisfied, then we 
mav have 0" > 3 129). . , 

For many proteins, there is very little 
within-population variation (33-35). Low 
amounts of variation can lead to low sub- 
stitution rates (3,  9 ,  11), and proteins 
exist that have apparently not changed at 
all for at least 100 million vears (34, 36). 
Lack of variation can be a consequence of  
small population size and genetic drift, but 
drift will not stop substitutions. In some 
cases, natural selection is clearly the cause 
of low amounts of variation (36-38) or 
infrequent substitutions (34, 36). In large 
populations, stabilizing selection on one 
or two characters can produce low 
amounts of variation and substitution only 
if mutations that have very small selective 
effects are exceedinelv rare. However, our 

u ,  

results show that, when each mutation 
affects three or more phenotypic charac- 
ters, variation (and thus, substitution) can 

be suppressed in favor of an optimal se- 
quence even when mutations of very small 
effect are common. 
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29 The proofs we present here are n accordance w~ th  

the rather general mathemat~cal results of Burger 
and collaborators (26-28, 39). The populaton IS de- 
scribed In equ~libr~um by the d~str~bution T(x,,  
x,, . . . , x,). Thus, the proporton of the populaton 
w~th genotypic values in the ~nf~n~tesimal volume 
d" = dx,dx, . . . dx, centered at (x,, x,, . . . , x,) IS 

111 (x, x,, . . . , x,)d%, Every mutat~on affects Cl 
characters, and we deal w~th the sets of characters 
(x,. X,, . . . . xn), (xr2+,, xr1+*, . . . 5 x2,,), . . . . 

It is poss~ble to show that, ~n equibr~um, the prob- 
ab~lty densty factorzes Into the form (x,, x,, . . . , 
x,) = @(xl, X,, . . . , xnJ@(xn+,, Xn+,, . . . , 
x,,,) . . . . From the l~fe cycle that we have specfled, 
it follows that with x dg (x,, x,, . . . xi>), @(x) obeys 

@(x) 

Iw i iY l@iY)d" i  

(3) 
where 

and all Integrals cover the full range of the ~ntegraton 
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varables. Equaton 3 can be wrtten as 

[GI - (1 - )w,(x)I@(x) 

= @ fi(x - Y)W,(Y)@(Y)~"Y I (5) 

where G, dg Jwl(y)@(y)dny and thls quantlty s de- 
termlned by the condton that @(x) 1s normazed to 
unlty, namely 

General features of @(x) follow from f,(x - y), w,(x) 
and @(xi be~ng 2 0 .  In particular, from Eq. 5, t follows 
that [w, - (1 - O)w,(x)] 2 0. The smallest value of 
[El - (1 - O)w,(x)] occurs at x = (0, 0, . . . , 0) - 0 
where w,(O) = 1; hence, generally, E, 2 1 - O 
[closely related results have been derved by Burger 
and hls collaborators (26, 28, 39)]. The inequa~ty w, 
> 1 - O and the equallty w, = 1 - O lead to 
qual~tat~vey dfferent forms for @(x), and we discuss 
these separately. 

Case i: F, > 1 - O: Ths case y~elds, from Eq. 5, 

@(x) 1s a peaked but nonsnguar funct~on of x, be- 
cause for x = 0 the r~ght-hand s~de 1s iin~te. The 
constant G, 1s determ~ned by the condit~on of nor- 
mal~zat~on (Eq. 6). The applicaton of the normaliza- 
t~on condt~on, Eq. 6 to Eq. 7 leads to the x integral: 
Jfl(x - y)/[w, - (1 - O)w,(x)]dnx, and th~s, as a 
funct~on of w ,  1s unbounded from above when Cl 
= 1 and R = 2. As a consequence, irrespect~ve of 
how small O s ,  w, can be chosen so that @(x) in Eq. 
7 1s normazed to unity. Therefore, the case w, > 
1 - O apples for 0 = 1 and R = 2, If a << 1, ths 
case cannot apply for Cl 2 3. If we do not assume a 
<< I, then G, > 1 - O may apply for larger values of 
0 and hence y~eld nonslnguar dstr~butons for these 
values of R. As an example, if Vs/m2 = 100, then we 
numerically f~nd that when a < 0.67, G, > 1 - O wll 
only apply for R = 1 and 0 = 2, but f 1.67 > a > 
0.67 w, > 1 - O w11I apply for Cl = I, Cl = 2 and, 
addtonally, Cl = 3. 

Case ii: K, = 1 - O: For this case we cannot simply 
solve Eq. 5 to obtain the result of Eq. 7 because [w, - 
(1 - O)w,(x)] vanshes as x = 0 and the solut~on to Eq. 
5 must nclude the s~ngular function 6(x) - n:ji8(x,j, 
where 6(x) 1s a Dirac delta function of argument x. De- 
rlvatves of Dirac delta iunct~ons cannot be present ~n 
the solution because they correspond to dstribution 
funct~ons that are negativefor somex. Thus, whenw, = 
1 - O, Eq. 5 1s equivalent to 

@(x) = AF(x) 

whereA (20) 1s determned by normalzat~on (Eq. 6). 
When Cl = 1 and 0 = 2, the x integral that results 
from the normalzat~on condition Jf,(x - y)/[l - 
w,(x)]di'x, diverges and hence dei~n~tely rules out 
these Cl values. For Cl 2 3, the same Integral 1s f~nite, 
and when a << 1, the delta function term must be 
present (that is A # 0) In order that @(x) 1s normal- 
lzed to unity. Thus, @(x) contains a slnguar delta 
funct~on parl for Cl 2 3 when a << 1 

If for a given value of Cl, the mutailon rate O (and 
hence a) 1s large enough that the cond~tion of nor- 
mazation y~elds A < 0, then we can Infer that the 
case G, = 1 - O does not apply to ths value of 0. 
For example, f Vs/m2 = 100, then, when 1.67 > a > 
0.67, case I does not apply to Cl = 3 although t 
does apply for Cl 2 4 

Distributions: We determ~ne approximate forms 
for the dlstrbutlon of a sngle character, say x,, and 
we denote the slngle character dstrbut~on by @,(x,). 
We use the house-of-cards approxmatlon (73, 37), 
wh~ch enta~ls replacing Jf ,(x - y)w,(y)@(y)dRy n 

Eqs. 7 and 8 by f,(x)w,(0)J@(y)dRy = f,(x). Ths ap- 
proxlmaton can be shown to be hghly accurate 
when a << 1. Assum~ng m21Vs << 1 wh~ch 1s ap- 
parently reasonable (73), and, furthermore, that 0 
<< Vs/m2, we can replace the Gauss~an w,(x) by 1 - 
Zf~,x;2/(2Vs) wthout any substantla loss of accuracy. 
When 0 = 1, @,(x,) = @(x,) and we obtain 

To obtan the slngle character dstr~but~on @,(x,), In 
a ple~otrop~c model, we integrate @(x) over x,, 
x, . . . , x,. When R = 2, we have 

a exp (c2j r ( ; ' s  + c2J 
@ - ) i x, (1 0) 

where c, = exp (-y - a-').  For Cl 2 3 we have 

w, to w, + dw, s ,  when w, - 1, approx~mately 
porporllona to 

fi(x)(l - w , ) ( ! ' ~ ~ " ~ ~ w ,  (1 2) 

When 0 2 3, thls probabl~ty 1s much smaller than 
that for Cl = 1 or Cl = 2. When a = OVs/m2 << 1, ~t 
1s the suppresson of beneflcal mutatons to w, - 1 
that results In singular dstr~butons for Cl 2 3. Larger 
values of a may push the delta funct~on snguar~ty to 
occur at a larger value of Cl. 

Inspecton of cases I and I consdered above indl- 
cates the mathemat~cal reason why detafunct~ons ~n 
@(x) are not possble when Cl = 1 or Cl = 2 yet are 
possible when 0 2 3. The reason 1s that the Integral, 
w~th respect to x, x,, . . . , x,, of Il(x: + x: 
+ . . . x:,) over a regon near (and ncludng) the or-  
g n  x = 0, s divergent when 0 = 1 or R = 2 but f~n~te 
when Cl 2 3. The extenson of the results gven in ths 
work to more general f~tness funct~ons 1s straghtfor- 
ward and the convergence of analogous Integrals 1s 
the key to the presence of delta functons In @(x). 
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Sensorimotor Adaptation in Speech Production 
John F. Houde*? and Michael I. Jordan 

Human subjects are known to adapt their motor behavior to a shift of the visual field 
brought about by wearing prism glasses over their eyes. The analog of this phenomenon 
was studied in the speech domain. By use of a device that can feed back transformed 
speech signals in real time, subjects were exposed to phonetically sensible, online 
perturbations of their own speech patterns. It was found that speakers learn to adjust 
their production of a vowel to compensate for feedback alterations that change the 
vowel's perceived phonetic identity; moreover, the effect generalizes across phonetic 
contexts and to different vowels. 

W h e n  human subjects are asked to reach 
to a visual target while wearing displacing 
prisms over their eyes, they are observed to 
miss the target initially, but to adapt rapidly 
such that within a few movements their 
reaching appears once again to be rapid and 
natural. Moreover, when the displacing 
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prisms are subsequently removed subjects 
are observed to show an aftereffect; in par- 
ticular, they miss the target in the direction 
opposite to the displacement. This basic 
result has provided an important tool for 
investigating the nature of the sensorimotor 
control system and its adaptive response to 
perturbations (1 ). 

The experiment described in this report is 
based on an analogy between reaching 
movements in limb control and articulatory 
movements in speech production. Although 
reaching and speaking are qualitatively very 
different motor acts, they nonetheless share 
the similarity of having sensory goals- 
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