somatic hypermutation. Perhaps the sim-
plest way for the Ig mutator system to avoid
that scenario would be to overwhelm the
DNA repair system with so many mutations
that they could not all be repaired before
becoming fixed. But if that were the case,
then Pms2*°/Pms2%° mice should have a
higher frequency of mutations at the Ig loci,
as they have at other loci (6, 14); in fact,
the frequency is lower at the Ig loci. An-
other simple strategy for the Ig mutator
system would be to throw a monkey wrench
into the works to turn off or otherwise
ensure that DNA repair was ineffective in
hypermutable B cells. But if that were the
case, then Pms2*°/Pms2*° mice should have
the same frequency of mutations at the Ig
loci; in fact, the frequency is lower. Yet
another strategy would be for the Ig mutator
system to co-opt the DNA repair system to
subvert it to create rather than prevent
mutations. The third strategy would seem to
be the only one that would explain the
results of the experiments described here.
Of course, the above argument applies only
to a mismatch repair system requiring Pms2.
How the Ig mutator system deals with other
DNA repair pathways can only be discov-
ered by experimentation.

The prototypic mismatch repair system
in E. coli corrects the newly synthesized
DNA strand, which is transiently unmeth-
ylated (15), using the old methylated DNA
strand as a template. In eukaryotic cells, the
basis for strand repair bias is not well un-
derstood, although it may involve single-
strand breaks (16). We propose the follow-
ing mechanism for the action of Pms2 at the
Ig loci: After mismatches have been intro-
duced at an Ig locus in hypermutable cells
by an unknown mechanism, the mismatch
repair system identifies the “wrong,” mutat-
ed strand as a template and thus fixes the
mutations. In mice without mismatch re-
pair, this model, in its simplest version,
predicts that at the next replication the old
strand will give rise to a nonmutant allele,
whereas the new strand will give rise to an
allele with one or more mutations. Thus,
the frequency of mutations would be re-
duced by one-half. Because we found rather
lower mutation frequencies in the absence
of repair than would be predicted by this
basic model, it might require some elabora-
tion. For example, other repair mechanisms
might correct mismatches in the absence of
the repair system involving Pms2, and this
would reduce the mutation frequency to less
than one-half.

It has been reported that many human
tumors exhibit high mutation rates (17).
We envisage that the co-option of mis-
match repair that we have described here
for Ig hypermutation may also play a role in
some of these tumor phenotypes. That
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would require, however, that the co-option
not be limited to Ig genes but have a broad
scope of action.
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Pleiotropy and the Preservation of Perfection

David Waxman and Joel R. Peck*

A mathematical model is presented in which a single mutation can affect multiple
phenotypic characters, each of which is subject to stabilizing selection. A wide range of
mutations is allowed, including ones that produce extremely small phenotypic changes.
The analysis shows that, when three or more characters are affected by each mutation,
a single optimal genetic sequence may become common. This result provides a hy-
pothesis to explain the low levels of variation and low rates of substitution that are

observed at some loci.

Many continuously varying phenotypic
characters are subject to stabilizing selection,
so that the optimal phenotypic value lies
between the minimum and maximum possi-
ble values (I-7). These phenotypic charac-
ters can be anything from the circumference
of the stem of a plant to the distance be-
tween two subunits within a protein. Models
of stabilizing selection often allow for a con-
tinuous range of mutations, so that some
mutations have very small effects, whereas
others have substantial effects (2, 3, 8-14).
We follow this approach in the present
study. Analyses of stabilizing selection have
concentrated on models for which any given
mutation affects only one phenotypic char-
acter. Nevertheless, mutations that affect
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multiple characters are well known and are
commonly regarded as ubiquitous (5, 14—
25). Here, we show that, when three or more
characters are affected by each mutation, a
single optimal genetic sequence may become
predominant. This finding contrasts sharply
with the usual finding that, in equilibrium,
the optimal sequence is rare and many
slightly suboptimal sequences are present.
Consider a simple nonpleiotropic model
of viability selection in a very large popula-
tion of haploid and asexual organisms (the
results are expected to generalize to sex and
diploidy). Parents produce offspring and
then die, so that generations are discrete.
After birth, offspring undergo viability selec-
tion, and the probability that an individual
will survive depends on phenotype, which is
described by measurements on k different
characters. An individual’s measurement on
the ith character is denoted by z, (where —oo
< z; < ®). These characters are chosen so
that they affect fitness independently, and z
= 0 is the optimal value for each character.
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We use a Gaussian fitness scheme, so that
the probability of surviving viability selec-
tion for a particular individual is proportion-
al to TTE. | exp[—2/(2V)], where V > 0.

After viability selection, the remaining
individuals reproduce, and fertility is unaf-
fected by phenotype. The phenotype of a
particular offspring on the ith character is
assumed to depend on its “genotypic value”
on that character (x,) plus a normally dis-
tributed environmental noise component, ¢,
(so z; = x; + ¢,). The distribution of e, has
mean zero and variance V,. For i # j, e, and
¢; are uncorrelated.

For the ith character, an individual’s ge-
notypic value (x;) is identical to that of its
mother, unless a new mutation has occurred
in the part of the genetic sequence that
controls the character. The rate of such
mutations is denoted by ® (where 0 = @
= 1). For now, we assume that mutations
that affect one character do not affect other
characters and that mutations to different
characters occur independently. Thus, the
probability that an individual will have one
or more new mutations (U) is given by U
=1-(1—-0):k

Most  fitness-affecting characters are
probably controlled by many codons. There-
fore, we treat the genotypic value (x,) as a
continuous variable, and each possible value
is associated with a different sequence of
codons. Throughout this report, we will dis-
cuss gene sequences in terms of the sequence
of codons, and we will treat two codons as
identical if they code for the same amino
acid (that is, we ignore “silent” variation).

Mutant values of x; are distributed
around the parental value. When a muta-
tion occurs that alters x, the probability
that the mutant offspring will have a value
of x; in the interval y + dy > x, > yis f(y —
x*)dy, where dy is infinitesimal and x* is
the value of x, for the mutant’s mother. We
use the traditional Gaussian function

\ 1 —(y —x*)’
-0 [0
(1)

2m’
Thus, m gives the standard deviation of

mutant effects for a single character.
Let us define o = @)Vs/mz, where V, =
V + V.. For now, we assume that o << 1.
Models similar to the one just described
have been studied previously (13, 26-28).
Qur analysis agrees with previous work in
that we find that, at equilibrium, each char-
acter has a distribution of x, values that is
smooth and bell-shaped and has a peak at x,
= 0(the optimum). The smoothness of this
distribution implies that, regardless of the
strength of selection and the mutation rate,
the sequence of codons for which x, = 0 (the
optimal sequence) is virtually absent at equi-
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librium. Instead, many suboptimal sequences
are present (Fig. 1A). (With a smooth dis-
tribution, any single value of x; has infinites-
imal frequency.) These results (and others
reported below) are proved in (29).

Let us define w as the probability of
surviving viability selection for an individ-
ual with a particular set of genotypic values
(x), X5 - . ., %), relative to that of an indi-
vidual of the optimal genotype. As demon-
strated elsewhere (13), the value of w is
given by

k _XZ
w=[[exp (W) (2)
i=1 s

Let @ represent the mean value of w at
equilibrium (thus, @ is proportional to the
percentage of offspring that survive viability
selection). We can show that, for this model,
w > 1 — U [in agreement with Biirger (27,
28)]. Thus, at equilibrium, the decrease in
fitness caused by having a suboptimal se-
quence of codons for any character is typi-
cally less than ©. Very rough estimates of ®
suggest that values as high as 1072 apply for
many phenotypic characters (13, 30).
Pleiotropic mutations affect multiple
characters. To introduce pleiotropy, we

collect the characters into sets of size ()
(where Q is a positive integer and k is a
multiple of Q). There are Q = k/Q such
sets. The ) characters in any set have a
common genetic basis, and a mutation
affecting one character will affect each of
the other ) — 1 characters in the same
set. The rate at which the genetic se-
quences coding for the characters in any
given set undergo codon-altering muta-
tions is given by 0, and sets mutate inde-
pendently. Thus, the probability that any
given individual will have one or more
new mutations (U) is now given by U =
1 — (1 — ®)2 Mutant effects follow a
multidimensional Gaussian distribution
(17). In particular, pick any set and assign
the characters that make it up the num-
bers 1, 2,..., Q. Consider an individual
that undergoes a mutation to this set and
who is born to a mother whose genotypic
values on these characters are x’f, X
x%, respectively. The probability that this
individual will have x, in the interval y, +
dy, > x; >y, and x, in the interval y, +
dy, > x, >v,,...is given by TI [y, —
x;)dy], where the dy, values are infinitesimal
and f(y, — x/) is given by Eq. 1. When ) =
1, this pleiotropic model is identical to the

B Q=2

-1 -0.5 0 0.5
x1/m )

-0.5 0 0.5 1
xi/m

Fig. 1. The equilibrium distributions of genotypic effects for a single character, ®,(x,), plotted as a
function of genotypic effect, x,. The scaling for both axes depends on m.(the standard deviation of
mutant effects), as indicated by the axis labels. In these examples, we set o« = OV,/m? = 0.05. (A) The
nonpleiotropic model (2 = 1). (B) Q = 2, so that mutations simultaneously affect two phenotypic
characters. In (A) and (B), the distribution is nonsingular at x, = 0, and so the proportion of individuals
with an optimal genotypic value is infinitesimal. However, for Q = 2, the value of ®,(0) is large [®,(0) =
1039/m]. (C) A singularity does appear for 0 = 3, and 90% of the population has x, = 0. (D) When ) =
4, x, = 0 for 95% of the population. The width of the line that rises above x, = 0in (C) and (D) should
be infinitesimal, because it represents a Dirac delta function. We broadened it to allow visualization. To

produce these figures, we used Egs. 9, 10 and 11.
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nonpleiotropic model considered above.

The equilibrium distribution for a single
character, x;, when mutations affect two
characters () = 2) is shown in Fig. 1B. The
distribution is more peaked than that in Fig.
1A (the nonpleiotropic result) but is still
continuous. This finding is in agreement
with recent theoretical studies (19-23).

When mutations affect three or more
characters (2 = 3), a qualitatively new phe-
nomenon occurs. The distribution of any
given character (i) contains a singularity at x;
= 0 (Fig. 1, C and D). Thus, a nonnegligible
fraction of the population has perfect ge-
nomes. When ) = 3, the proportion of the
population for which x; # 0 is of order & =
OV,/m?. Individuals with the perfect genome
for character 1 also are genetically perfect for
characters 2, 3, ..., Q. Furthermore, if the
proportion of the population for which x; =
0 is denoted by P, then the proportion of
individuals who have the perfect genome
with respect to all k traits is equal to P¥?,
Previous analyses of similar models have sug-
gested the possibility of singular behavior of
the type noted here (28, 31). However, in
these previous studies, only highly implausi-
ble fitness functions were shown to lead to
singularities.

When Q) = 2, mean fitness (w) is greater
than 1 — U (just as when ) = 1). Howev-
er, for O =3, we havew =1 — U.

To gain an intuitive understanding of
these results, consider two modified ver-
sions of our model, each of which makes the
unrealistic assumption that all mutations
are deleterious. For the first of these models,
assume that only two genotypes are possi-
ble, one optimal and one suboptimal. Let
(1 — s) represent the relative viability of
suboptimal individuals. Optimal individuals
mutate to suboptimal ones at a rate U, but
not vice versa. In this well-known model, if
s > U, then, at equilibrium, the frequency
of optimal individuals is given by 1 — (U]s)
and w = (1 — U). However, if s < U, then,
at equilibrium, optimal individuals are en-
tirely absent from the population and w =
(1 —s). Thus, w > (1 — U).

When s < U, this model resembles the
nonpleiotropic model () = 1). In both
models, the optimal genotype vanishes,
and w > (1 — U). However, in the non-
pleiotropic model, deleterious mutations
affect slightly suboptimal genotypes, as
well as optimal ones. Nevertheless, some
of these deleterious mutations are, effec-
tively, canceled out, because when Q) = 1,
nearly optimal genotypes are created at a
nonnegligible rate by beneficial muta-
tions. When 0 = 1 and x; # 0, 50% of
mutations will move x; toward the direc-
tion of the optimum (although some will
push x; beyond the optimum). The cre-
ation of nearly optimal genotypes by mu-
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tation is also likely when Q = 2 (29). In
contrast, when = 3, mutations that
improve fitness and produce a nearly op-
timal genotype on all Q affected charac-
ters are extremely unlikely (29). Roughly
speaking, this is because, when Q = 3,
only a very small region of “genotypic
space” corresponds to near optimality.

A second modified model illuminates
the impact of this shift in favor of delete-
rious mutations. Say that when offspring
are produced, they may undergo a certain
number of mutational steps, each of which
decreases fitness by a factor of (1 — s),
where 0 < s < 1. The number of muta-
tional steps follows a Poisson distribution
with mean and variance equal to \. Thus
U, the genome-wide probability of at least
one new mutation, is given by U = 1 —
e~ ™. This is a well-known model (32), and,
at equilibrium, w = 1 — U and the opti-
mal genotype takes a nonnegligible fre-
quency. This model is analogous to the
pleiotropic model above when ) = 3. In
both models, w = 1 — U and the optimal
genotype is preserved at equilibrium be-
cause there is a strong tendency for muta-
tions to degrade fitness in nearly optimal
genotypes. When ) = 3, the loss of nearly
optimal genotypes because of selection is
not compensated for by a substantial gain
of such genotypes because of beneficial
mutations, and thus the superiority of the
optimal genotype allows it to rise to a
nonnegligible frequency.

What happens when our assumption
that a = OV, /m? << 1 does not hold? For
any value of a, the frequency of the optimal
genotype is negligible when ) = 1 and () =
2. However, there is always a critical value
of Q, say Q% such that when O = Q%*, a
nonnegligible frequency of the optimal ge-
notype appears. When o << 1, Q% = 3.
However, if a << 1 is not satisfied, then we
may have Q* > 3 (29).

For many proteins, there is very little
within-population variation (33-35). Low
amounts of variation can lead to low sub-
stitution rates (3, 9, 11), and proteins
exist that have apparently not changed at
all for at least 100 million years (34, 36).
Lack of variation can be a consequence of
small population size and genetic drift, but
drift will not stop substitutions. In some
cases, natural selection is clearly the cause
of low amounts of variation. (36-38) or
infrequent substitutions (34, 36). In large
populations, stabilizing selection on one
or two characters can produce low
amounts of variation and substitution only
if mutations that have very small selective
effects are exceedingly rare. However, our
results show that, when each mutation
affects three or more phenotypic charac-
ters, variation (and thus, substitution) can

be suppressed in favor of an optimal se-
quence even when mutations of very small
effect are common.
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Q0 2
—x
X) = n exp <§\/~> (4a)
s
i=1
Q 2

fi(x) = l_[ S exp _—Xg (4b)
o J2mm? 2m

1
and all integrals cover the full range of the integration
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Bum e

variables. Equation 3 can be written as
Wi = (1 = ©)w;(x)]D(x)

=0 f fix — y)wi(y)D(y)d % (5)

where w, % fw,(y)®(y)d? and this quantity is de-
termined by the condition that ®(x) is normalized to
unity, namely

f D(x)d % = 1 (6)

General features of ®(x) follow from f,(x —y), w,(x)
and ®(x) being =0. In particular, from Eq. 5, it follows
that [w, — (1 — ©)w,(x)] = 0. The smallest value of
[w, — (1 = ®)w,(x)]occursatx = (0,0,...,0) =0,
where w,(0) = 1; hence, generally, w, = 1 — ©
[closely related results have been derived by Burger
and his collaborators (26, 28, 39)]. The inequality w,
> 1 — O and the equality w, = 1 — © lead to
qualitatively different forms for ®(x), and we discuss
these separately.

Casei:w, > 1 — @: This case yields, from Eq. 5,

] f filx — y)wi(y)®(y)d Y

Wy — (1 = 0)w;(x)

D(x) = ™

®(x) is a peaked but nonsingular function of x, be-
cause for x = 0, the right-hand side is finite. The
constant w, is determined by the condition of nor-
malization (Eq. 6). The application of the normaliza-
tion condition, Eq. 6, to Eq. 7 leads to the x integral:
Jf(x — yVw, — (1 — @)w,(x)]d%, and this, as a
function of w,, is unbounded from above when
=1and Q = 2. As a consequence, irrespective of
how small @ is, w, can be chosen so that ®(x) in Eq.
7 is normalized to unity. Therefore, the case w, >
1 - O appliesforQ =1and Q = 2. Ifa < 1, this
case cannot apply for ) = 3. If we do not assume a
<< 1,thenw, > 1 — ® may apply for larger values of
Q and hence yield nonsingular distributions for these
values of ). As an example, if V./m?2 = 100, then we
numerically find that when a < 0.67, w, > 1 — @ will
only apply for @ = 1 and Q = 2, but if 1.67 > o >
0.67,w, > 1 — O will apply for @ = 1, Q = 2, and,
additionally, ) = 3.

Caseii: w, = 1 — ©: For this case, we cannot simply
solve Eq. 5 to obtain the result of Eq. 7 because [w, —
(1 = ®)w,(x)] vanishes as x = 0 and the solution to Eq.
5 must include the singular function 8(x) = TI2,3(x),
where §(X) is a Dirac delta function of argument x. De-
rivatives of Dirac delta functions cannot be present in
the solution because they correspond to distribution
functions that are negative for some x. Thus, whenw, =
1 - 0, Eq. 5is equivalent to

D(x) = A3(X)
o fﬁ (x = y)w; (y)D(y)d Yy
+<1 ) T w0 ®

where A (=0) is determined by normalization (Eq. 6).
When Q = 1 and Q = 2, the x integral that results
from the normalization condition, [f,(x — y)/[1 —
w,(X)[d%, diverges and hence definitely rules out
these ) values. For Q) = 3, the same integral is finite,
and when a << 1, the delta function term must be
present (that is, A # 0) in order that ®(x) is normal-
ized to unity. Thus, ®(x) contains a singular delta
function part for ) = 3when o < 1.

If, for a given value of £, the mutation rate ® (and
hence o) is large enough that the condition of nor-
malization yields A < 0O, then we can infer that the
case w, = 1 — @ does not apply to this value of Q.
For example, if V,/m? = 100, then, when 1.67 > o >
0.67, case ii does not apply to & = 3, although it
does apply for Q = 4.

Distributions: We determine approximate forms
for the distribution of a single character, say x,, and
we denote the single character distribution by @, (x,).
We use the house-of-cards approximation (73, 37),
which entails replacing [f ,(x — yw,(y)®(y)d? in
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Egs. 7 and 8 by f,(x)w,(0)fD(y)d?y = f,(x). This ap-
proximation can be shown to be highly accurate
when o << 1. Assuming m?/V, << 1, which is ap-
parently reasonable (73), and, furthermore, that Q
<< V/m?, we can replace the Gaussian w,(x) by 1 —
3£ x2/(2V,) without any substantial loss of accuracy.
When Q = 1, ®,(x,) = &(x,) and we obtain

—x
Byt = (g a2 9
1X1) = omm? X% , (
F + ma
m
To obtain the single character distribution, ®,(x,), in

a pleiotropic model, we integrate ®(x) over x,,
Xgy ++ + 1 Xg. When Q) = 2, we have

I‘<1 x4 N )
5 7 T C2
a exp (Cg)) 2' 2m 10)

[0 ~
1) <¢zﬁ—m \/ e
2m? + c,

where ¢, = exp (—y — a™"). For = 3, we have
2a
P~ | T-5=5 [3%)

(—(Q -3 a xi \emoe
() ()

In the above, y = 0.5772...is Euler's constant
and T(a,b) % [z ua=" e~Y du is the incomplete
gamma function.

Origin and explanation of the results: The fun-
damental origin of the results we have produced
arises from the suppression of beneficial mutations
when pleiotropic mutations are present. To see this,
consider a single mutation that affects the genotypic
value x in one of the sets of () characters. The prob-
ability that the mutation will change this genotype to
a genotype with associated fitness lying in the range

&

%?:é@ﬁ 5

REPORTS

w, to wy + dw, is, when w, =~ 1, approximately
porportional to

HO(T = wy) @2 2l (12)

When = 3, this probability is much smaller than
that for @ = 1 or Q = 2. When o = ®@V,/m? << 1, it
is the suppression of beneficial mutations to w, ~ 1
that results in singular distributions for Q = 3. Larger
values of a may push the delta function singularity to
occur at a larger value of Q.

Inspection of cases i and ii considered above indi-
cates the mathematical reason why delta functions in
®(x) are not possible when Q = 1 or Q) = 2 yet are
possible when = 3. The reason is that the integral,
with respect to X;, X5, ..., Xq, Of 1/(x3 + x3
+ ... x3) over a region near (and including) the ori-
gin, x = 0, is divergent when () = 1 or Q = 2 but finite
when © = 3. The extension of the results given in this
work to more general fitness functions is straightfor-
ward, and the convergence of analogous integrals is
the key to the presence of delta functions in ®(x).
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Sensorimotor Adaptation in Speech Production
John F. Houde*{ and Michael I. Jordan

Human subjects are known to adapt their motor behavior to a shift of the visual field
brought about by wearing prism glasses over their eyes. The analog of this phenomenon
was studied in the speech domain. By use of a device that can feed back transformed
speech signals in real time, subjects were exposed to phonetically sensible, online
perturbations of their own speech patterns. It was found that speakers learn to adjust
their production of a vowel to compensate for feedback alterations that change the
vowel’s perceived phonetic identity; moreover, the effect generalizes across phonetic

contexts and to different vowels.

When human subjects are asked to reach
to a visual target while wearing displacing
prisms over their eyes, they are observed to
miss the target initially, but to adapt rapidly
such that within a few movements their
reaching appears once again to be rapid and
natural. Moreover, when the displacing
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prisms are subsequently removed subjects
are observed to show an aftereffect; in par-
ticular, they miss the target in the direction
opposite to the displacement. This basic
result has provided an important tool for
investigating the nature of the sensorimotor
control system and its adaptive response to
perturbations (1).’

The experiment described in this report is
based on an analogy between reaching
movements in limb control and articulatory
movements in speech production. Although
reaching and speaking are qualitatively very
different motor acts, they nonetheless share
the similarity of having sensory goals—
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